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We investigate how to apply a high-frequency driving field to the quantum control of a single
particle in an open double-well system. The linear stability analysis points out that the stability
depends on the external-field parameters and the loss (or gain) coefficients of the system, and the
instability leads to transition of the Floquet quasi-energy from real to complex values and results
in the decaying probabilities of the particle in the double-well. Combining the analytical solutions
in the high-frequency approximation with the numerical calculations based on the accurate model,
we exhibit quantum-dynamical behaviors of the particle such as the Floquet oscillation, coherent
destruction of tunneling, quasi-noon-state population, partial tunneling of one-particle, and the
decaying behavior of the probabilities, which are due to the competition and balance between the
quantum coherence and the loss (or gain) effect. The results propose an experimental method for
testing the quantum motions of the open system by adjusting the driving field.

PACS numbers: 32.80.Qk, 03.65.Xp, 03.65.Ge, 05.60.Gg

I. INTRODUCTION

A periodically driven double-well system has focused
much attention during the last few years [1, 2]. The main
research interest was motivated by showing the coherent
control of quantum tunneling through such a system [3–
6]. For applicability purposes, open quantum systems
have recently become the subject of extensive studies [7].
The non-Hermiticity was due to the presence of various
gain or loss mechanisms in the open systems [8–11], which
brought many new contents to the quantum control [12–
15]. For a single particle the non-Hermitian double-well
system (or the mathematically equivalent two-level sys-
tem) is a basic system for researching the coherent con-
trol [16–18]. It’s not only a simple extension of the
corresponding Hermitian one-body system, but also can
be used to simulate the non-Hermitian many-body sys-
tem without interaction [19], while the zero interaction
strength can be realized by the Feshbach resonance tech-
nique [20]. However, most of the previous works on the
non-Hermitian double-well system took into account of
the effect of a static field on the stationary states [16–18]
and the incoherent control of quantum tunneling [21],
only a few works concerning the coherent control via a
periodic external field are reported [22].

In this paper, we study a different non-Hermitian sys-
tem with a single particle held in an open and high-
frequency-driven double-well, and seek the analytical so-
lutions and their boundedness conditions. By apply-
ing the coherent-control method of the Hermitian sys-
tem [23, 24] to the non-Hermitian system, we explore the
competition and balance between the coherent enhance-
ment or suppression of tunneling and the loss (dissipa-
tion) or gain from the environment, and further apply
them to manipulate the stable quantum motions. Un-
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der the high-frequency approximation, our analytical re-
sults reveal the effects of the external-field parameters
and loss- or gain-coefficient on the system’s stability, and
display that the loss of stability leads to the transition
of the Floquet quasi-energy spectrum from real (exact
phase) to complex (broken phase) values [8] and the
corresponding decay of particle’s occupied-probabilities
[21, 25]. Due to the competition and balance between
the quantum coherence and loss or gain, the quantum
effects such as the Floquet oscillations of the quantum
states with real energies, coherent destruction of tunnel-
ing (CDT), quasi-noon-state population [26], partial tun-
neling of one-particle, Schrödinger cat-like states, and the
decaying probabilities, are shown. The numerical com-
putations from the accurate model confirm agreement
with the analytical results. Based on the capacity of the
current setups [5, 27, 28], we expect that the quantum
motions of the open system can be experimentally tested
by adjusting the driving parameters.

II. GENERAL ANALYTICAL SOLUTION IN

THE HIGH-FREQUENCY APPROXIMATION

We consider a single particle held in an open double-
well, whose quantum dynamics is dominated by the PT -
symmetric non-Hermitian Hamiltonian [8]

H(t) = ε1(t)a
†
1a1 − ε2(t)a

†
2a2 + ν(a†1a2 + a†2a1),

εj(t) = α cos(ωt)− iβj , j = 1, 2, (1)

where aj(a
†
j) are annihilation (creation) operators for the

atom in j-th well with j = 1, 2; ν is the coupling pa-
rameter which presents tunneling rate between the two
wells; εj(t) contains the driving field with amplitude α
and frequency ω and the j-th well’s loss coefficient for
βj > 0 and/or gain one for βj < 0. To simplify, Eq. (1)
has been treated as a dimensionless equation in which
the reference frequency ω0 ∼ 102Hz and ~ = 1 are set
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such that the parameters α, βj and ν are in units of

ω0 and time is normalized in units of ω−1
0 . Obviously,

when βj = 0 for j = 1, 2 are taken, system (1) becomes
the familiar Hermitian system of a single particle in the
double-well [23, 24]. Particularly, when ω = 0, α = ε,
βi = 0, βj 6= 0, i 6= j or ω = 0, β1 = β2 = γ are selected,
we arrive at the non-Hermitian many-particle Hamilto-
nian without interaction [19].
Using the localized states |1〉 and |2〉 as the basis, the

quantum state |ψ〉 of system (1) can be expanded as [23,
24]

|ψ〉 = C1(t)|1〉+ C2(t)|2〉, (2)

where Ci for i = 1, 2 denote the time-dependent proba-
bility amplitudes in the two wells. Inserting Eqs. (1) and

(2) into the Schrödinger equation i∂|ψ〉∂t = H |ψ〉 produces
the coupled equations

iĊ1(t) = ε1(t)C1(t) + νC2(t),

iĊ2(t) = −ε2(t)C2(t) + νC1(t) (3)

of the probability amplitudes. Although Eq. (3) is very
simple, no analytical solution in a finite form exists, be-
cause of the presence of periodic functions εj(t). How-
ever, in the case of high-frequency driving with ω ≫ ν, βj,
we can get the approximate analytical solution. To do
this, we introduce the slowly varying functions di(t) for
i = 1, 2 and make the function transformations [23, 24]

C1(t) = exp
[

− i
α

ω
sin(ωt)

]

d1(t),

C2(t) = exp
[

i
α

ω
sin(ωt)

]

d2(t), (4)

which transform Eq. (3) into the coupled equations be-
tween the slowly varying functions,

iḋ1(t) = −iβ1d1(t) + ν exp
[

i
2α

ω
sin(ωt)

]

d2(t),

iḋ2(t) = iβ2d2(t) + ν exp
[

− i
2α

ω
sin(ωt)

]

d1(t). (5)

In the high frequency limit, the slowly varying functions
di(t) can be treated approximately as the constants dur-
ing a short period 2π

ω . Thus the rapidly varying expo-
nential functions of Eq. (5) can be replaced by their
time-average [29] so that Eq. (5) is simplified as [23]

iḋ1(t) = −iβ1d1(t) + Jd2(t)

iḋ2(t) = iβ2d2(t) + Jd1(t), (6)

where J = νJ0(
2α
ω ) is the effective or renormalized tun-

neling rate with J0

(

2α
ω

)

being the zero-order Bessel

function of 2α
ω , which depends on the field parameters

through the ratio of driving strength and frequency. We
here consider the strong-field case [5] in which the ratio
of field parameters obeys 0.45 ≤ α

ω < 2.6. This gives the
field amplitude α being in the order of ω. In the high-
frequency regime, such a driving strength means that the

used driving field is a strong field. From the first equation
of Eqs. (6), we directly arrive at

Jd2 = i[ḋ1(t) + β1d1(t)]. (7)

Combining Eq. (6) with Eq. (7), the former equation is
decoupled to the form

d̈1(t) + (β1 − β2)ḋ1(t) + (J2 − β1β2)d1(t) = 0. (8)

Clearly, Eq. (8) is a second-order linear equation with
the two constant coefficients, the smaller “damping fac-
tor” Γ = β1 − β2 and the lower “quadratic frequency”
ω2
l = J2 − β1β2 for the slowly varying functions d1(t).

The physical bounded solutions of Eq. (8) exist only un-
der the boundedness conditions Γ ≥ 0 and ω2

l ≥ 0, where
the equal-signs mean some balances between the driving
and damping. The former condition is fixed by the ex-
ternal environment, and the latter is controlled by the
effective tunneling rate. The constant ωl describes oscil-
lation frequency of the slowly varying functions di(t) and
satisfies the inequality ωl ≪ ω.
The general solution of Eq. (8) is mathematically well-

known,

d1 = F1 exp (λ1t) + F2 exp (λ2t), (9)

where λ1 and λ2 are the characteristic values associated
with the linear equations (6), F1 and F2 are undeter-
mined constants determined by the initial conditions and
normalization. The substitution of Eq. (9) into Eq. (7)
gives another slowly varying function

d2 =
i

J
[F1(λ1+β1) exp (λ1t)+F2(λ2+β1) exp (λ2t)]. (10)

Inserting Eqs. (9) and (10) into Eq. (6) and setting F1 =
0 or F2 = 0, respectively, we obtain the characteristic
values

λ1,2 =
1

2
[(β2 − β1)±

√

(β1 − β2)2 − 4(J2 − β1β2) ](11)

with λ1 and λ2 corresponding to the positive and nega-
tive signs, respectively. Given the general solutions (9)
and (10), we can easily exhibit the time evolutions of
probability Pi = |di|2 for the particle localized in i-th
well.
The stability analysis [30] on the linear equations (6)

and (7) reveals that real parts of the characteristic values
λ1,2 are related to stability of the linear system. Writ-
ing λ1,2 in the form λ1,2 = Re(λ1,2) + iIm(λ1,2), we
know that two special situations of λ1,2 are associated
to the particular properties of the solutions. Firstly, if
the boundedness conditions Γ ≥ 0 and ω2

l ≥ 0 cannot
be satisfied, the characteristic values with Re(λn) > 0
(n = 1 and/or 2) appear such that the probability of
particle in j-th well tends to infinity, lim

t→∞
|dj(t)|2 → ∞.

This means that the system loses its stability in the sense
of Lyapunov [30]. The instability causes that the Flo-
quet quasi-energy transits from real to complex values.
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The corresponding solutions of Eqs. (9) and (10) do
not satisfy the requirement of the probability interpre-
tation in quantum mechanics, and should be dropped
thereby. Secondly, when the real parts Re(λ1,2) are equal
to zero under the boundedness conditions, the imaginary
parts correspond to the Floquet quasi-energies [31, 32],
E1,2 = −Im(λ1,2) in the case F1 = 0 and case F2 = 0
respectively. Inserting dj with F1 = 0 or F2 = 0 into Eqs.
(2) and (4) gives the corresponding Floquet state |ψ1〉 or
|ψ2〉. Therefore, the quantum state in Eq. (2) with the
general solutions (9) and (10) may be a coherent super-
position of the two Floquet states, |ψ〉 = D1|ψ1〉+D2|ψ2〉
withD1, D2 being constants adjusted by the initial condi-
tions and normalization. The superposition states imply

quantum interferences and may cause the coherent en-
hancement or suppression of tunneling, whose degree is

described by the value of the effective tunneling rate J .

Generally, for the appropriate environment with Γ ≥ 0,
we can obtain the physically meaningful solutions of Eq.
(2) from the general solutions (9) and (10), by adjusting
the field parameters to obey the boundedness conditions
ω2
l ≥ 0. We divide the physical solutions into the three

cases as follows.

Case A, CDT and quasi-noon-state populations under
the dissipation balance. By the dissipation balance we
mean that the loss (gain) coefficients of the two wells
take the same values, β1 = β2. Such a balance could
be established by making the two wells in the same en-
vironment. For such a case the adjustment to the field
parameters or equivalent J in Eq. (11) could lead to
Re(λn) = 0, (n = 1 and 2) such that the probability
amplitudes dj(t) (j = 1 and 2) in Eqs. (9) and (10)
are the periodic functions [Im(λn) 6= 0] or constants
[Im(λn) = 0]. The corresponding quantum states in
Eq. (2) become the Floquet states with real quasi-energy
spectrum or zero-energy, which describe the particle’s
quasi-stationary states whose populations don’t change
and the same occupied-probability in any well is kept as
a constant. Such quasi-stationary states are called the
atomic quasi-noon-states, compared to the noon-state as
a stationary state with the same occupied-probability in
each well [26]. The invariable populations mean that
CDT results in stable populations of particle in the ini-
tially occupied states.

Case B, Stable populations without the dissipation bal-
ance. The unbalanced dissipation infers β1 6= β2 and
the part loss of the stability, which will cause changes of
the Floquet quasi-energy from real to complex values [8].
By adjusting the effective tunneling rate J , we can get
Re(λn) < 0, λn′ = 0, (n 6= n′) which are associated with
that the probabilities |dj(t)|2 for j = 1 and 2 decrease and
increase from the initial values to the different final val-
ues, respectively. For any well the probability difference
between the initial and final states indicates the single-
direction tunneling with different degrees. The popula-
tions may tend to a stable Schrödinger cat-like state with
total probability finding the particle in the double-well is
less than one. But a special ratio between the two loss

parameters could make the total probability tending to
one.
Case C, Instability and decaying probabilities. For the

unbalanced dissipations and underthe boundedness con-
ditions, regulations to the field parameters can make
Re(λn) < 0 for n = 1 and 2 so that |dj |2 for j = 1
and 2 decrease exponentially fast. The latter means loss
of the specific stability of quantum mechanics [33]. Thus
the survival probability [21, 25] of the particle in an ini-
tial state and the total probability finding the particle in
the double-well decay to zero rapidly.
In the next section, we will show that some balance

conditions between the coherent enhancement or sup-
pression of tunneling and the loss or gain from the envi-
ronment can be realized by adjusting the field param-
eters, and such adjustments can control the particle’s
instability. Therefore, we can arrive at the physical so-
lutions in the above-mentioned three cases and can ma-
nipulate the corresponding quantum motions of the open
system via the periodic field.

III. COHERENT CONTROL OF QUANTUM

TUNNELING VIA EXTERNAL FIELD

From Eqs.(9), (10) and (11) we know that the popula-
tions of the particle in the open double-well depend not
only on the effective tunneling rate J determined by the
amplitude α and frequency ω of external field, but also
on the loss or gain coefficients from the environment, β1
and β2. The “quadratic frequency” ω2

l = J2 − β1β2 re-
flects the competition between the coherent enhancement
or suppression of tunneling and the loss or gain from en-
vironment. The condition ω2

l = 0, (J2 = β1β2) means
the corresponding balance which differs from the above-
mentioned dissipation balance. For a fixed environment
with the given loss or gain coefficient, characteristic val-
ues λ1,2 are adjusted only by the effective tunneling rate
J . Therefore, in order to produce a required quantum
state, we can select a higher driving frequency ω and
then regulate the driving strength α to change the value
of ω2

l and to control the competition. Because the dif-
ferent states are associated with different atomic popula-
tions, the quantum state (2) with the analytical solutions
(9) and (10) are referable for experimentally researching
the quantum tunneling and localization of the particle in
the open double-well. We will enter into details of the
above-mentioned three situations, respectively.

A. CDT and quasi-noon-state populations under

the dissipation balance

At first, we consider the general situation of case A in
section II: Re(λn) = 0 and Im(λn) 6= 0. Because of the
dissipation balance, we can set β1 = β2 = β and apply
this to Eq. (11) to yield

λ1,2 = ±
√

−(J2 − β2). (12)
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For a weak loss or gain with small β value, we can adjust
the field parameter 2α

ω to satisfy the competition condi-

tion J2 − β2 > 0 between J and β, such that Eq. (12)
becomes

λ1,2 = ±i
√

J2 − β2 = ±iωl, (13)

where ωl is the lower frequency of slow-varying function
dj(t). The high-frequency condition implies ωl ≪ ω. In-
serting Eq. (13) into Eqs. (10) and (11) gives the periodic
solutions

d1 = F1e
iωlt + F2e

−iωlt,

d2 =
i

J
[F1(iωl+β)e

iωlt+F2(−iωl+β)e−iωlt]. (14)

We already know that this solution-pair is stable accord-
ing to the linear stability analysis in the previous section.
Using the normalization condition

|d|2 = |d1|2 + |d2|2

= 2(|F1|2+|F2|2)+
4βF1F2

J2
[β cos (2ωlt)−ωl sin (2ωlt)]

= 1, (15)

we establish the relationships between constants F1 and
F2 as

2(|F1|2 + |F2|2) = 1, 4βF1F2 = 0. (16)

Given Eq. (16), we assert that for a Hermitian system
without dissipation (β = 0), constants F1 and F2 are
constrained only by the first equation of Eq. (16), and
the corresponding solution-pair (14) contains more selec-
tions for the constants. The solutions without dissipation
have been discussed previously and will not be considered
here. For our non-Hermitian system, β 6= 0, the second
equation of Eq. (16) needs Fi = 0 for i = 1 or 2, and the

first equation of Eq. (16) gives Fi = 0, Fj = eiφ/
√
2 for

i, j = 1, 2 and i 6= j with φ being a constant. Neglecting
the immaterial phase factor eiφ, we get two sets of solu-
tions as follows. The first set of solutions from Eq. (14)
with F1 = 0 reads as

d1 =
1√
2
e−iωlt, d2 =

(ωl + iβ)√
2 J

e−iωlt, (17)

which periodically change in time with frequency ωl
obeying ωl ≪ ω. Inserting Eq. (17) into Eqs. (4) and
(2) yields the quantum state

|ψ1〉 =
e−iωlt

√
2

[

e−i
α
ω

sin (ωt)|1〉+ (iβ + ωl)

J
ei

α
ω

sin (ωt)|2〉
]

.

(18)

Similarly, the second set of solutions from Eq. (14) with
F2 = 0 leads to the quantum state

|ψ2〉 =
eiωlt

√
2

[

e−i
α
ω

sin (ωt)|1〉+ (iβ − ωl)

J
ei

α
ω

sin (ωt)|2〉
]

.

(19)

Equations (18) and (19) denote a pair of the oscillating
Floquet states whose phases change periodically and the
corresponding Floquet quasi-energies read E± = ±ωl,
respectively. From Eq. (13) we know J2 = β2 + ω2

l .
Making use of this to Eq. (17) produces the constant
probabilities |dj |2 = 1

2 for j = 1 and 2. They describe
the quasi-noon-state population with the same occupied
probability of the particle in each well [26]. The initially
occupied probabilities are kept and no quantum tunnel-
ing happens, this just is the well-known CDT. It is in-
teresting to compare our CDT condition J2 = β2 + ω2

l
with the CDT condition J = 0 for a Hermitian double-
well system [23, 24]. The former condition means the
balance between the quantum coherence and the envi-
ronment damping.
If the field parameter 2α

ω is regulated to reach the bal-

ance condition J2 − β2 = ω2
l = 0 (J = β), from Eq. (13)

we arrive at the special situation of case A, Re(λn) = 0
and Im(λn) = ±ωl = 0. Inserting this into Eqs. (18)
and(19) yields the quasi-stationary state with zero Flo-
quet quasi-energy and invariable population,

|ψ〉 = |ψ1〉 = |ψ2〉

=
1√
2
e−i

α
ω

sin(ωt)(|1〉+ ei[π/2+( 2α
ω

) sin(ωt)]|2〉), (20)

which describes the different quasi-noon-state.
The quasi-noon-states (18)-(20) with periodic phases

are the standard single-particle noon-states at any fixed
time [26]. They can be regarded as the Schrödinger cat-
like states of a single particle in two mode entanglement,
which supply a new approach for investigating the many-
body entanglement and single-particle cat state [26]. Our
results reveal existence of the quasi-noon-state, and pro-
vide a theoretical reference for experimentally preparing
a quasi-noon-state in the open system.

B. Stable populations without dissipation balance

When the system is in the case B of the second section,
instability causes transition of the Floquet quasi-energy
from real to complex values [8]. By setting the field pa-
rameters, from Eq. (11) we can get Re(λn) < 0 and
λn′ = 0 for n 6= n′. Applying such characteristic val-
ues to the general solutions (9) and (10), it is expectable
that the particle evolves from a given initial state to a
stationary final state with a certain probability. The
single-direction tunneling and decaying can occur simul-
taneously that lead to the another kind of Schrödinger
cat-like states with total probability finding the parti-
cle in the double-well being less than one. However, the
special ratio β1/β2 = 3 could make the total probability
tending to one. The tunneling of particle in the open
double-well depends on the competition between the co-
herent enhancement or suppression of tunneling and the
loss or gain from the environment, so it is an interest-
ing phenomenon differing from that of the corresponding
isolated system.
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According Eq. (11), for the dissipation coefficients
obeying β1 − β2 > 0 (or β1/β2 > 1) we can take λ1 = 0
and λ2 = β2 − β1 < 0, by adjusting the field parameter
2α
ω to get the new balance between the quantum coher-

ence and loss, ω2
l = J2 − β1β2 = 0. Thus the general

solutions (9) and (10) become

d1 = F1 + F2 exp [(β2 − β1)t],

d2 =
i

J
(F1β1 + F2β2 exp [(β2 − β1)t]). (21)

When the particle is initially located in the first well,
we have the initial conditions |d1(0)| = 1, |d2(0)| = 0.
Inserting them into Eq. (21) gets the undetermined con-
stants F1 and F2 in the forms,

F1 =
β2

β2 − β1
, F2 =

β1
β2 − β1

. (22)

Combining Eq. (22) with Eq. (21) results in the total
probability finding the particle in the two wells,

P = |d|2 = |d1|2 + |d2|2

=
(β1 + β2)[β2 + β1e

2(β2−β1)t]− 4β1β2e
(β2−β1)t

(β2 − β1)2
.(23)

It is well-known that the probability interpretation of
quantum mechanics requires the total probability to be
less than or equal to one. For an open system, the sur-
vival probability of particle maybe decay [21, 25], and the
initial normalized total probability may be decreased in
time. Therefore, it is necessary to confine the maximal
value of P to Pmax ≤ 1.
From dP/dt|t=tj = 0 we find that the total probability

given in Eq. (23) has the three extreme-value points of

time, t1 = 0, t2 = 1
β2−β1

ln
(

2β2

β1+β2

)

, t3 = ∞. At t1 = 0,

Eq. (23) gives Pmax(0) = |d(0)|2 = 1 which agrees with
the initial condition. When t = t2 is reached, the to-
tal probability satisfies Pmax(t2) =

β2

β1+β2

< 1. As time

increasing to t → ∞, Eq. (23) denotes the total proba-

bility of the final state, Pmax(t3) = |d(∞)|2 = β2(β1+β2)
(β1−β2)2

.

The physical requirement Pmax(t3) ≤ 1 means the corre-
sponding parameter range, β1/β2 ≥ 3, which agrees with
the previous confining condition β1/β2 > 1 for Eq. (21).
When β1/β2 = 3 is set, the biggest final-state probabil-
ity reads |d(∞)|2 = 1. If βj are limited in the range
β1/β2 > 3, the total probability finding the particle is
less than 1, but the particle still can be confined in the
double-well with a certain probability. As increasing the
value of β1/β2, Eq. (23) exhibits that the total probabil-
ity |P (∞)| of final state will decrease its value.
Now let us numerically illustrate the above results. We

take three sets of the parameters (ω, 2α
ω , ν, β1, β2) to

satisfy J2 − β1β2 = 0 and β1/β2 = 3, 4, 9, respectively,
and from Eqs. (21), (22) and (23) plot the time-evolution
figures of the probabilities Pj = |dj(t)|2 for the particle
in jth-well and the total probability P = |d(t)|2, as la-
beled by the circular points in Figs. 1(a), 1(b) and 1(c).

In the same parameter conditions and based on the accu-
rate model (3), we numerically make the time-evolution
figures of Pj = |dj(t)|2 and P = |d(t)|2, as shown by
the curves in Figs. 1(a), 1(b) and 1(c). Obviously, in
the high-frequency regime, the analytical and numerical
solutions are in good agreement. Hereafter, an immate-
rial difference between the both is that for the considered
driving-frequency ω = 80(ω0) = 8× 103Hz the numerical
solutions oscillate around the analytical solutions with
the high-frequency and some small-amplitudes.

In Fig. 1(a) with the special ratio β1/β2 = 3, we
can see that after a transient decay, the total probabil-
ity monotonically tends to the biggest value |P (∞)| = 1,
and the particle will be confined in the double-well sta-
bly. The probability P1 = |d1(t)|2 of the initially occu-
pied state decays quickly for a short time, then increases
slowly to approach the final value 0.3. The probability
P2 = |d2(t)|2 of the particle in the second well monoton-
ically increases and will near 0.7 for a time large enough.
This means that the particle will tunnel partly from the
first well to the second well with probability 0.7. For the
parameter ratio β1/β2 = 4, the comparison between Fig.
1(b) and 1(a) displays that the final value of any one of
the probabilities Pj and P has a little decrease. The final
total probability is less than 1, and the tunneling prob-
ability from the first well to second well is less than 0.5.
If β1/β2 = 9 is set, in Fig. 1(c) we show that the prob-
abilities for every well and the total probability further
reduce. The probability P1 in the initial state is finally
closed to zero, and the tunnel probability to the second
well tends to 0.2, which approximately equates the total
probability.

Similarly, if the particle is initially localized in the sec-
ond well, |d1(0)| = 0, |d2(0)| = 1, the total probability
is

P =
(β1 + β2)[β1 + β2e

2(β2−β1)t]− 4β1β2e
(β2−β1)t

(β2 − β1)2
.

(24)

It’s easy to prove that under the match condition
β1/β2 > 1 of Eq. (21), the total probability in Eq. (24)
may be greater than 1, which is physically unallowable
and must be dropped. Therefore, for the field parameters
satisfying J2 − β1β2 = 0, the particle initially occupying
well 2 cannot be stably trapped in the double-well.

It is worth noting that under the balance condition
J2 = β1β2, the change of βj from β1 > β2 to β1 < β2
will lead to the non-physical case in which one of the
Re(λn) is greater than 0 and values of the two dj tend
to infinity. The physical requirement β1 > β2 implies
that the external damping of the left-well 2 is weaker,
compared to that of the right well 1. Note that direction
of the external field is toward the right.
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FIG. 1: (Color online) Time evolution curves of the probabilities Pj = |dj(t)|
2 for the particle in jth-well and the total probability P = P1 + P2,

under the balance condition J2 −β1β2 = 0. The circular points label the analytical solutions and the curves represent the numerical results for the
high frequency ω = 80 and the parameters: (a) β1 = 0.3, β2 = 0.1, ν = 1, α

ω
= 2.50669 and β1/β2 = 3; (b) β1 = 0.4, β2 = 0.1, ν = 1, α

ω
= 2.46537

and β1/β2 = 4; (c) β1 = 0.9, β2 = 0.1, ν = 1, α
ω

= 2.29242 and β1/β2 = 9. The probabilities are dimensionless and time is in units of ω−1

0
= 0.01s.

C. Instability and decaying probabilities

When the system is in the case C of the second sec-
tion, Re(λi) < 0, (i = 1 and 2), the total probability
finding particle in the double-well will exponentially de-
cay to zero. Thus the system loses the special stability
of quantum mechanics, which is an important case in the
open system [33].
The above case corresponds to the loss or gain coef-

ficient obeying β1 − β2 > 0 and the field parameter 2α
ω

obeying the new competition condition 4(J2 − β1β2) >
(β1 − β2)

2 such that from Eq. (11) we have

λ1,2 =
1

2
[(β2 − β1)± i̟] (25)

with ̟ =
√

4J2 − (β1 + β2)2. For such a case, Eq. (25)
gives the real part of λj to be always less than zero.
According to the stability analysis, we know that for
any initial conditions, the system will lose its stability
of quantum mechanics and the total probability finding
the particle in the system tends to zero. To simplify, we
take the initial conditions |d1(0)| = 0, |d2(0)| = 1 as
an example. Inserting the initial conditions into Eqs. (9)
and (10), and using the normalization conditions produce
the undetermined constants

F1 = ± J

̟
, F2 = −F1. (26)

Then applying the F1 and F2 to Eqs. (9) and (10) yields
the probabilities of the particle in the two wells,

|d1|2 = e−(β1−β2)t
{2J2[1−cos (̟t)]

̟

}

,

|d2|2 = e−(β1−β2)t
[̟ cos (12̟t)+(β1−β2) sin (12̟t)

̟

]2

.

(27)

As an example, we take the parameter set (ω, 2α
ω , ν,

β1, β2) to match the condition 4(J2 − β1β2) > (β1 −
β2)

2. Adopting such parameters we illustrate the time
evolutions of the probabilities Pj = |dj(t)|2 and P =
P1 + P2 from Eq. (27), as labeled by the circular points

in Fig. 2. In the same conditions, we numerically solve
the exact model (3), which are shown by the different
curves of Fig. 2. Obviously, the analytical and numerical
solutions are in good agreement. From Fig. 2 we can see

P

P1

P2

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

t

P

FIG. 2: (Color online) Time-evolution curves showing the decaying
probabilities of the particle in the double-well. The circular points
describe the analytical results from Eq. (27) and the curves indicate
the numerical solutions based on Eq. (3). The system parameters and
the initial conditions are the same for the analytical and numerical
solutions. The probabilities are dimensionless and time is in units of
ω−1

0
= 0.01s.

that after some transitory oscillations, the probability of
the particle in any well and the total probability finally
tend to zero. So in this case, the particle cannot exist in
the double-well for a long time.

In order to conveniently describe the above behaviors,
people employ the conception of survival probability in
an initial state [21, 25] to investigate the population of
particle in an open system. The survival probability of
particle in the initial state |ψ(0)〉 is defined as [21, 25]

Psurv(t) = |〈ψ(0)|ψ(t)〉|2. (28)

In the initial conditions |d1(0)|2 = 0, |d2(0)|2 = 1, com-
bining Eqs. (2), (4) with Eq. (27), from Eq. (28) we
obtain Psurv(t) = |〈d2(0)|d2(t)〉|2 = P2, which has been
exhibited in Fig. 2. Clearly, after a transitory oscilla-
tion the survival probability of initial state |ψ(0)〉 = |2〉
decays and tends to zero.
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IV. CONCLUSION AND DISCUSSION

We have considered a single particle held in an open
and high-frequency-driven double-well. The coherent-
control method of quantum tunneling for the Hermitian
system [23, 24] is applied to the non-Hermitian system,
which leads to the analytical solutions and their bound-
edness conditions under the high-frequency limit. By us-
ing the analytical results we show the effects of the field
parameters and loss- or gain-coefficient on the system’s
stability and exhibit how to manipulate the stable quan-
tum motions. We have revealed that the loss of stabil-
ity leads to the transition of the Floquet quasi-spectrum
from real to complex values [8] and the corresponding de-
cay of particle’s probabilities [21, 25]. The competition
and balance between the coherent enhancement or sup-
pression of tunneling and the loss (dissipation) or gain
from the environment are found, and the quantum ef-
fects such as the Floquet oscillations of the quantum
states with real quasi-energies, coherent destruction of
tunneling for the new balance conditions, quasi-noon-

state population [26], partial tunneling of one-particle,
Schrödinger cat-like states, and the decaying probabil-
ities, are shown. By comparing the analytical solu-
tions with the numerical computations from the accurate
model, we find good agreement between them, which em-
phasizes the correctness of the conclusions from the dif-
ferent methods and the suitability of the high-frequency
approximation method for the open system. Based on
the capacity of the current setups [5, 27, 28], it is ex-
pectable to experimentally test the quantum motions of
the open system via a high-frequency driving field.
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