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Electrostatic patch potentials give rise to forces between neutral conductors at distances in the
micrometer range and must be accounted for in the analysis of Casimir force experiments. In
this paper we develop a quasi-local model for describing random potentials on metallic surfaces.
In contrast to some previously published results, we find that patches may provide a significant
contribution to the measured signal, and thus may be a more important systematic effect than was
previously anticipated. Additionally, patches may render the experimental data at distances below
1 micrometer compatible with theoretical predictions based on the Drude model.
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I. INTRODUCTION

The Casimir effect [1–4] is a remarkable consequence
of vacuum field fluctuations which, in its simplest man-
ifestation, leads to the attraction of two neutral ideal
conducting plates. At very short distances quantum fluc-
tuation forces dominate the interaction between neutral
objects making them an essential consideration for micro-
electro mechanical devices (MEMS) and atom traps,
among others. The comparison between experimental
measurements and theory for Casimir forces between
metallic plates has been a matter of debate in recent
years. This debate is of particular importance if this
comparison is used to derive constraints on hypothetical
new short-range interactions appearing in addition to the
gravity force in unification models [5–8].

Two recent experiments are at the heart of this debate.
Casimir force measurements by the IUPUI group [9, 10],
performed at distances smaller than 750 nm, were inter-
preted by the authors as excluding the dissipative Drude
model and agreeing with the lossless plasma model. This
has led to a discrepancy between experiments and phys-
ically motivated theoretical models, such as the Drude
model, for real conductors which exhibit dissipation. In
distinction, a recent experiment by the Yale [11] was able
to measure Casimir forces at distances up to 7 µm and
was interpreted by the authors as being in agreement
with the Drude prediction, including quantum as well as
thermal fluctuations, once an electrostatic patch contri-
bution has been taken into account.

It is known that patch effects are a source of concern
for Casimir experiments [12–16], as well as for other pre-
cision measurements [17–26]. For the Yale experiment
the patches were assumed to be much larger than the
gap D between the spherical and planar plates used in
the measurement. Under these conditions the patch force
is found to be proportional to RV 2

rms/D in the proximity
force approximation (see below), where R is the radius
of curvature of the spherical plate and Vrms is the root-
mean-square (rms) voltage of electrostatic patch poten-
tials [11]. For the IUPUI experiment, a patch analysis

was performed with different assumptions leading to the
conclusion that the patch effect had a negligible influ-
ence [9]. Unfortunately, it was not possible in any of
these experiments to measure the patches independently.
It follows that the conclusions of the theory-experiment
comparisons heavily rely on the patch models used in the
data analysis.

In this paper, we revisit electrostatic patch effects and
analyze their possible influence in Casimir force measure-
ments. Our approach is based on the method pioneered
by Speake and Trenkel [12] with the electrostatic patches
described in terms of a power spectral density. However,
we will develop a model for the power spectral density
differing from the one proposed in [12] and used in [9, 10].

Our model is based on the observation that bare metal-
lic surfaces are composed of crystallites, each of which
constitutes a single patch, where the local surface volt-
age is determined by the local work function [27]. By as-
suming that through the surface preparation process the
crystallographic orientation, and hence the correspond-
ing work function, of each crystallite is determined inde-
pendently and randomly we can infer that voltage corre-
lations are restricted to points lying on the same patch:
We refer to this as quasi-local correlation. Our model
with quasi-local correlations can be compared to the case
of quenched charge disorder in dielectrics [29, 30], and
also shows close similarities with models proposed re-
cently to describe patch correlation functions for atomic
or ionic traps [31, 32].

We will show that the voltage correlation function from
our quasi-local model strongly differs from that initially
proposed in [12] and used in [9, 10]. As a result, in con-
trast to the claims of [9, 10], patches may have a sig-
nificant contribution to the IUPUI measurements. In
addition we will qualitatively address the issue of sur-
face contamination which is expected to lead to larger
correlation lengths and reduced voltage fluctuations [28].
Given that the degree of contamination is unknown we
perform a fit of the patch model we propose to the differ-
ence between measurements and the Casimir theoretical
prediction based on the Drude model and find that it
qualitatively explains the residual signal. For the Yale
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experiment, our results will essentially reproduce those
obtained in [11].

II. ELECTROSTATIC PATCH EFFECT

In the present section, we recall a few general results
of interest, assuming that the validity conditions of the
proximity force approximation (PFA) are satisfied, that
is, the radius of the sphere used in the experiment is much
greater than the sphere-plane distance. In this case, the
expression for the force gradient Gsp (derivative with dis-
tance of the force Fsp) in the sphere-plane geometry is
written as follows in terms of the pressure Ppp (the force
per unit area) calculated between two planes

Gsp(D) ≡ ∂Fsp(D)

∂D
= 2πRPpp(D). (1)

This expression is used throughout the paper for both
Casimir and patch effects.

The basic description of the patch effect after [12] is a
statistical ensemble of patch potentials Vi(r) on the sur-
faces of two planar plates labeled i = 1, 2. The potentials
are assumed to have zero mean 〈Vi(r)〉 = 0, and to be de-
scribed by the two-point potential correlation functions

Cij(r) = 〈Vi(r)Vj(0)〉 =

∫
d2k

4π2
eik·rCij [k]. (2)

In the plane-plane geometry, points on the planes are
denoted in cartesian coordinates as r = (x, y) and the
point 0 is an arbitrary origin. The correlation functions
Cij(r) and therefore the power spectra Cij [k] are also
assumed to be isotropic. The relations between these
two functions can be written

Cij(r) =
1

2π

∫ ∞
0

dk k J0(kr) Cij [k],

Cij [k] = 2π

∫ ∞
0

dr r J0(kr) Cij(r), (3)

where we have simply denoted r ≡ |r| and k ≡ |k| and
where Jn(x) is the n-th order Bessel function [33]. The
patch power spectrum Cij [k] corresponds to the notation

C̃ij(k) in [12]. As usual, the variances and covariances
are given by the integrals

Cij(0) = 〈ViVj〉 =
1

2π

∫ ∞
0

dk k Cij [k]. (4)

The pressure due to electrostatic patches in the plane-
plane geometry can be computed exactly [12] as

P patch
pp (D) =

εo
4π

∫ ∞
0

dk k3

sinh2(kD)
(5)

×{C11[k] + C22[k]− 2C12[k] cosh(kD)} .

It is worth emphasizing at this point that the integral
is reduced to a very simple expression when patch sizes,
with a typical value denoted `patch, are larger than the

distance D. In this case, all wavevectors k contributing
to the integral (5) satisfy kD � 1, so that the pressure
scales universally as 1/D2, irrespective of the particular
details of the power spectrum (Eq. (4) is used)

P patch
pp (D) =

εo
2D2

∫ ∞
0

dk k

2π
{C11[k] + C22[k]− 2C12[k]}

=
εo

2D2

〈
(Vi − Vj)2

〉
, D � `patch. (6)

The above result is expected from the analogy with a
parallel plate capacitor with prescribed voltages. In con-
trast, when the relevant wavevectors no longer satisfy
the above inequality, different models for the patch power
spectrum result in different predictions for the patch con-
tribution to the pressure.

It is also worth mentioning here some conditions for
the expression (5) of the electrostatic patch pressure be-
tween two plates to be valid. A fundamental assumption
in this analysis is that the ergodic hypothesis is satisfied,
which means that the distribution of patches within the
interaction area is a fair approximation of the ensemble-
averaged distribution function defined by the power spec-
trum Cij [k]. When applied to two plane plates of finite
area A, we expect this assumption to be well satisfied if
the effective interaction area contains a large number of
patch correlation areas A� `2patch. For the sphere-plane
geometry, the effective area of interaction is of the order
of πDR, leading to the validity requirement

πDR� `2patch. (7)

In the following two subsections we recall a model used
in [12] and [9, 10], and introduce another model with
quasi-local correlations which we think to be a better
description of sputtered surfaces.

A. The sharp-cutoff model

We now discuss the model of patch correlations which
was proposed as an example in [12] and then used in
[9, 10] to assess the contribution of electrostatic patches
to the Casimir force measurements.

It is a simple description based upon two assumptions:
a) the power spectrum of patches is an annulus in k-
space possessing no other dependence than a sharp cutoff
at small (kmin) and large (kmax) wavevectors (hence the
name sharp-cutoff model); b) there are no cross correla-
tions between the two plates (C12 = 0). This model gives
the power spectrum for a single plate as

Cii[k] =
4πV 2

rms

k2max − k2min

θ(kmax − k)θ(k − kmin), (8)

where V 2
rms is the variance of the potential on one plate

and θ is the Heaviside step function.
In order to determine the parameters of this model, the

authors of [9] used the further assumptions : c) based on
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AFM images of the surfaces, the minimum and maxi-
mum grain sizes of the samples were determined to be
`min
patch = 25 nm and `max

patch = 300 nm ; d) the patch sizes
were assumed to be the same as the grain sizes and the
cutoffs in k-space were derived from the inverse maximum
and minimum grain sizes kmin = 2π/`max

patch = 20.9µm−1

and kmax = 2π/`min
patch = 251µm−1 ; e) the rms voltage

was obtained by computing the variance of the work func-
tions over the different crystallographic planes of gold,
which led to Vrms ≈ 80.8 mV. Using the five assump-
tions a) to e), it was concluded in [9] that the patch
pressure had a negligible influence on the estimation of
the Casimir force. A reasonable agreement was then ob-
tained between the experimental data and the prediction
for the Casimir pressure using the lossless plasma model
(more discussions below).

Now we will argue that model (8) is not a good de-
scription for the patch power spectrum for the surfaces
used in the experiments, and later on, we will also ques-
tion the relation between patch and grain sizes. In order
to make the former point clear, let us write the correla-
tion function Cii(r) of patches in real space which can be
obtained through an inverse Fourier transform (3) from
the spectrum (8)

Cii(r) = 2V 2
rms

kmaxJ1(kmaxr)− kminJ1(kminr)

(k2max − k2min) r
. (9)

As one moves away from coincidence the correlation func-
tion Cii(r) oscillates between positive and negative values
with a period of the order of the smallest patch size, and
is contained within an envelope decaying as r−3/2 (see
Fig.1). These oscillations imply that the patch potential
shows correlations as well as anti-correlations in space.
Such behavior could be expected for surfaces exhibiting
some kind of antiferroelectric ordering (where the con-
figurational energy is minimized when adjacent surface
dipoles are antiparallel), but will unlikely describe the
random potentials on sputtered surfaces.

As already stated, the strict relation between patch
sizes and grain sizes, assumed in the analysis of [9], has
also to be questioned. The adsorption of contaminants
on the surfaces alters patch sizes which, as a result, do
not necessarily correspond to the grain sizes [28]. We
expect that contamination leads to an effective smearing
of the patch layout, so that patch sizes will be larger than
grain sizes while the voltage variance will be less than the
value obtained for a clean sample from the assumption
e) discussed above.

B. The quasi-local correlation model

We now propose another patch model which we think
to be a better motivated description of the patch corre-
lation function for the surfaces used in the experiments.

To model the layout of cystallites on a plate, we choose
a random patch layout and afterward assign a random
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FIG. 1. Comparison of the sharp-cutoff and quasi-local patch
models described in subsections II-A (dashed lines) and II-B
(solid lines), respectively. Plot (a) shows the voltage correla-
tion functions in real space while plot (b) shows the associated
spectrum in Fourier space. All plots correspond to the corre-
lation function C ≡ Cii divided by V 2

rms. On the lower plot,
the sharp-cutoff spectrum discussed in II-A is multiplied by
a factor of 100 in order for it to appear at the scales shown.
The parameters used for both models, discussed in subsec-
tions II-A and II-B, are taken from [9], but however, do not
correspond to the same average patch size.

potential to each patch. For a given micro-realization of
patches we write the voltage over the whole surface as

V (x) =
∑
a

vaΘa(x). (10)

The sum is over all patches, va is a random variable de-
scribing the voltage on patch a, and the function Θa(x)
is defined to be 1 for x on the ath patch, and 0 otherwise.

We now obtain the two-point voltage correlation func-
tion by performing ensemble averages over all micro-
realizations of the patch voltages and layouts. Physically,
the voltage on each site is determined by the crystallite
face exposed to the surface. As we assume that each
crystallite is deposited with a random crystallographic
orientation and that each deposition is statistically inde-
pendent we can infer that

〈vavb〉v = δabV
2
rms, (11)

where the expectation value 〈...〉v averages over the volt-
age fluctuations only and δab is the Kronecker delta.
Also, note that we are implicitly assuming that there
are no cross correlations between the patches on differ-
ent plates, C12 = 0. Using (10) and (11) we construct
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the two-point voltage correlation for a single micro-
realization of the patch layout

〈V (x)V (x′)〉v = V 2
rms

∑
a

Θa(x)Θa(x′). (12)

The final step in constructing the ensemble-averaged
voltage correlation function is to average over all patch
layouts. We carry this out by exploiting several symme-
tries:

1. We assume that the patches are distributed uni-
formly and isotropically which implies that the av-
erage patch associated with any given point on the
surface is circular with a radius determined from a
distribution of patch sizes. In reality no patch is
circular and this notion of patch radius should only
be taken in a statistical sense.

2. For any two points on the sample surface, the
voltage correlation function C(x,x′) is propor-
tional to the number of patches which contain both
points (among all micro-realizations). By employ-
ing the statistical description of patches, as de-
scribed above in 1, the correlation will be computed
by summing over all circular patch centers and sizes
as depicted in Fig. 2.

3. As a check one can verify that the correlation
at coincidence is the constant V 2

rms. Moreover,
translational and rotational invariance implies that
C(x,x′) depends only on r = |x− x′|.
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FIG. 2. The voltage correlation function, C(x,x′), is con-
structed by summing over all circular patches which contain
both x and x′. This is undertaken by integrating over patch
centers y, and accounting for the distribution in patch sizes
with the distribution Π(`).

Given these considerations we find the following form
for the correlation function:

C(x,x′)=
∫ ∞
0

d` Π(`) (13)

×4V 2
rms

π`2

∫
d2y θ(`/2− |x− y|)θ(`/2− |x′ − y|),

where the integral over y, constrained by the θ-functions,
sums over all patches of size ` which contain both points.
The final integral over ` averages over patch sizes where
Π(`) is the distribution of patch diameters. Note in par-
ticular that the translational invariance of the correlation
function is made apparent by the change of variables
x′ − y → z . Subsequently performing the integration
over y reveals the rotational invariance of the final result

C(r) ≡ Cii(r)=
2V 2

rms

π

∫ ∞
r

d` Π(`)

×
[

cos−1
(r
`

)
− r

`

√
1−

(r
`

)2]
. (14)

The patch power spectrum can then be obtained
through the Fourier transform (3). Some interesting
properties can be given at this point. First, the integra-
tion of the correlation function over all space is simply

C[k = 0] =
1

4
π`2V 2

rms, (15)

with `2 the variance of the distribution Π(`). Second, the
integral of C[k] over wavevectors is just the variance of
the potential

∫∞
0
dkkC[k] = 2πV 2

rms.
One can derive some universal scaling laws for the

patch contribution to the pressure in some limiting cases.
When the patches are much larger than the gap (D � ¯̀),
the expression (6) is obtained. This 1/D2 scaling law for
the pressure (and the corresponding 1/D for the energy
per unit area for planar plates) is universal for all patch
power spectral densities whenever the typical patch sizes
are much larger than the gap. In particular, this scaling
was used in [11] to model the patch effect [34]. In the
opposite limit, where the typical patch sizes are much
smaller than the gap, one can obtain a simple scaling law.
In this case the spectrum C[k] is approximately constant

over the wavevector range k <
∼ 1/D which provides the

most significant contribution to (5). We then find, when
using (15),

P patch(D) ' ε0
2π

C[0]

∫ ∞
0

dk
k3

sinh2(kD)
(16)

' 3ζ(3)

4

ε0V
2
rms`

2

D4
≈ 0.90

ε0V
2
rms`

2

D4
.

We emphasize at this point that this 1/D4 scaling law is
generic for all spectra having a finite limit at k = 0, but
does not hold when C[k] vanishes at k = 0. In particular,
in the model discussed in II-A, there is a sharp-cutoff of
the power spectral density at kmin > 0. In this case, the
pressure (5) is exponentially small when kminD � 1, that
is also D � `max

patch. The leading order contribution indeed

comes from the exponential tail of 1/ sinh2(kD) and is
much smaller than the result found in the generic case
(16). This point will play a crucial role in the comparison
to experimental data discussed in the next section.

Before entering this discussion we choose a specific
form for the patch size distribution Π(`) which is similar
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in spirit to the sharp-cutoff model discussed in subsection
II-A. By assuming the patch sizes are distributed uni-
formly within a finite interval between a minimum `min

patch
and maximum `max

patch value, the probability distribution
is

Π(`) =
θ(`max

patch − `)θ(`− `min
patch)

`max
patch − `min

patch

, (17)

and has the following moments

` =
`max
patch + `min

patch

2
(18)

`2 =
(`max

patch)2 + (`min
patch)2 + `max

patch`
min
patch

3
.

Additionally, we would like to remark that we have also
considered other size patch size distributions Π(`) (log-
normal, Gaussian, generalized gamma, etc.) and have
found similar results for the pressure in all cases.

We emphasize that, despite some similarity in the con-
struction of the two models discussed in subsections II-A
and II-B, they correspond to very different correlation
properties, the most striking difference resulting from a
nonvanishing value for C[k = 0] in the quasi-local model
which gives a distinct large distance behavior. In par-
ticular, a patch model employing quasi-local correlations
was recently adopted to describe heating in ion traps and
dissipation in cantilevers [31]. There, the observed large
distance (D � `) scaling of electric field noise (∝ D−4)
is linked with a nonvanishing value of C[0].

To estimate the effects of contamination, we will as-
sume that the patch power spectrum on a dirty surface
takes the same form as on a clean surface (i.e., also given
by the quasi-local model), with the exception that the pa-
rameters of the model are altered by the contaminants.
Let us stress that quasi-local correlations may be not as
accurate for contaminated surfaces as for clean ones. We
employ the above assumptions in a preliminary manner
to account for the properties of contaminated surfaces, to
be confirmed by dedicated studies to come in the future.

III. COMPARISON WITH EXPERIMENTS

We now compare the theory and experiments by calcu-
lating the Casimir force from the Drude model, and the
patch pressure arising from the model with quasi-local
correlations. To make the comparison we first calculate
the plane-plane Casimir pressure Ppp(D) at temperature
T using the Lifshitz formula [35–37]. We use tabulated
optical data for gold, extrapolated to low frequencies with
a Drude model to describe the contribution of conduction
electrons, εcond(ω) = 1−Ω2

P /(ω(ω+iγ)), where ΩP is the
plasma frequency and γ quantifies the damping rate. To
account for roughness corrections to the Casimir pressure
we adopt the simplest formulation based on an additive
scheme (Eq. (33) in [9]). We will call the resulting pres-
sure as the “Drude model” Casimir pressure PDrude

pp (D).

As already stated, we use the PFA to relate the experi-
mental data corresponding to the sphere-plane geometry
to the predictions calculated in the plane-plane geome-
try, for the Casimir and the patch effects. In the IUPUI
experiments the sphere-plane force gradient Gsp is mea-
sured, which is related to the equivalent plane-plane pres-
sure as in (1). In the Yale experiments the sphere-plane
force Fsp is measured, which is related similarly to the
plane-plane energy per unit area.

After subtracting from the experimental data the the-
oretical predictions for the Casimir interaction, we find a
residual signal

δPDrude(D) ≡ P experiment
pp (D)− PDrude

pp (D). (19)

The question we address in the following is whether or
not the residual δPDrude can be explained by a reason-
able modeling of patch effects. The criterium is then to
minimize the remaining difference between the residual
signal and the patch pressure δPDrude(D) − P patch(D).
The residual is defined here for the Drude model and
may be as well be defined for the plasma model. The
patch pressure P patch(D) is then defined for a given patch
model, say in particular the sharp-cutoff (subsection II-
A) or quasi-local (subsection II-B) models.

A. Data analysis for the IUPUI experiment

For the comparison with the IUPUI experiment we
compute the Casimir force at room temperature T = 295
K using tabulated optical data extrapolated to low fre-
quencies with a Drude model with parameters ΩP = 8.9
eV for the plasma frequency and γ = 0.0357 eV for the
damping rate. Root mean square roughness heights for
the plane and the sphere are 3.6 nm and 1.9 nm, respec-
tively. These permittivity and roughness parameters are
the ones reported in [10].

We collect in Fig.3 the information needed to com-
pare IUPUI experimental data with predictions from the
Drude model and modelings of the patch effect. We plot
the residuals δPDrude defined as in (19) as points with
error bars and the patch pressure Ppatch for different
patch models as lines. The error bars represent the to-
tal experimental error described in Fig. 2 of [10] at 67%
confidence. The theoretical predictions for the Casimir
pressure PDrude

pp are calculated for the Drude model as
described above and assumed to have no error. There
are four different patch models represented in Fig.3 :

1. The solid curve is the estimation of the patch ef-
fect using all the assumptions of subsection II-A.
The patches are thus described by the sharp-cutoff
model (8) with the parameters kmax = 251µm−1,
kmin = 20.9µm−1 and Vrms = 80.8 mV (these are
the parameters used in [9]).

2. The dotted curve is the result of the quasi-local
correlation model (14) with the patch size distri-
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bution (17) described in subsection II-B. The pa-
rameters, `min

patch = 25nm, `max
patch = 300nm and

Vrms = 80.8 mV, correspond to the assumptions
that the patch sizes are given by the grain sizes
and the rms voltage is determined by the variance
of the work function over the different crystallo-
graphic planes (these are the same parameters used
in item 1 above).

3. The long-dashed curve is obtained from a
least-squares minimization of the difference
δPDrude(D) − P patch(D), using the quasi-local
patch correlation model given by (14) and (17).
As `min

patch is found to have a small influence, we

fix it to the smallest grain size `min
patch = 25 nm as

discussed above. The best fit on the two remaining
parameters gives `max

patch ≈ 2476 nm and Vrms ≈ 9.2
mV and results in qualitative agreement between
the residual and the fitted patch pressure. The
associated first moments of the patch size distri-
bution are ` = 1251 nm and `2 = (1437 nm)2. The
reduced-χ2 for this fit, calculated using the total
error bars from Fig 2. of [10] at 67%, is 0.814.
It is important to note that the values of the fit
parameters and quality of the fit are very sensitive
to the sample’s optical parameters, in particular
to the plasma frequency used in the extrapolation
of optical data to low frequencies [38]. However,
one should avoid giving too much importance to
any of these values of reduced-χ2 as a measure
with statistical significance of experiment-theory
agreement. Indeed, the influence of sample de-
pendency of optical parameters, the use of a very
crude description of roughness corrections to the
Casimir pressure, and, most importantly, the lack
of precise information of the patch correlation
function in actual experimental samples, all imply
that the fits obtained with the quasi-local model
for patches have a qualitative nature; dedicated
patch effects measurements are required to make
metrological claims (see the Conclusions for further
discussions).

4. The short-dashed curve (underneath the long-
dashed curve) is a fit of a phenomenological model
proposed by Carter and Martin [32]. The correla-
tion function of this model, based on a Monte-Carlo
simulation of patch layouts, can be expressed in
terms of a shifted Gaussian and is specified by the
rms voltage and the average patch area w2, related
to our patch radius via w ≈

√
π `/2. Our best fit

values are ` ≈ 1229 nm and Vrms = 8.6 mV with
reduced-χ2 of 0.812.

After this description of the information gathered on
Fig. 3, let us now comment on the significance of the
various results:

1. The solid curve reproduces and confirms the cal-
culations which were performed to quantify patch
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FIG. 3. Comparison of the residual δPDrude between the ex-
perimental pressure in [10] and the Drude prediction (points
with error bars at 67% confidence taken from Fig. 2 of [10])
with patch pressure Ppatch for four different patch models
(more details in the main text) : 1. The solid curve is the
result of the sharp-cutoff model (with assumptions of subsec-
tion II-A) ; 2. The dotted curve corresponds to the quasi-
local patch correlation model assuming that the patch sizes
are given by the grain sizes and that the rms voltage is given
by the variance of the work function over different crystallo-
graphic planes ; 3. The long-dashed curve is the result of a
best-fit on the parameters (`max and Vrms) of the quasi-local
patch correlation model ; 4. The short-dashed curve (under-
neath the long-dashed curve) is a fit of a phenomenological
model proposed in [32]. The inset shows the residual sig-
nal resulting from subtracting the fit of the quasi-local model
(long-dashed curve) from δPDrude.

effects in [9, 10]. With the assumptions described in
subsection II-A, the calculated patch pressure is in-
deed far too small to explain the difference between
experimental data and theoretical predictions using
the Drude model.

2. The dotted curve gives the result of the quasi-local
model of patch correlations (17) with parameters
determined as was done in [9, 10], but here for a
different patch spectrum model. As a striking il-
lustration of the importance of this difference, the
calculated patch pressure is now larger than the dif-
ference between experimental data and theoretical
predictions using the Drude model. This illustrates
the highly model dependent nature of the computed
patch pressure. Thus, patches may be an impor-
tant systematic effect for which their contribution
to the measured signal should ideally be assessed
independently of any Casimir force measurement.

3. The long-dashed curve corresponds to a least
squares fit of the quasi-local correlation model to
the residual δPDrude. With the best-fit parameters
`max
patch and Vrms, this model qualitatively fits the dif-

ference between experimental data and theoretical
predictions using the Drude model. These param-
eters have reasonable values: `max

patch is larger than
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the maximum grain size on the samples, and Vrms

smaller than the rms voltage for a clean sample
[9, 10]. This suggests the presence of contaminants
on the sample surfaces [28].

4. The best-fit of the phenomenological model pro-
posed in [32] is essentially indistinguishable from
that of the quasi-local correlation model (long-
dashed curve). The best-fit values for ` and Vrms

are consistent with the average patch size and rms
voltage obtained from the best-fit parameters of the
quasi-local model.

At this point, we also want to comment on the validity
requirement (7), which allows one to calculate the patch
effect in the sphere-plane geometry within the PFA. This
requirement ensures that the effective area of interaction
between the sphere and the plane, of the order of πRD
for a sphere of radius R, contains a large number of el-
ementary patch areas, so that the sum over the micro-
realization of patches on a given plate is a good effective
description of the statistical ensemble-average given by
the power spectral density. With the numbers in [10],
that is a radius of curvature of the sphere R = 151.3µm
and a shortest distance Dmin = 160nm, the interaction
area is πRD ≈ 76(µm)2. Meanwhile, the average patch

area is (π/4)`2 ≈ 1.6(µm)2, there is a large number of
elementary patch areas (≈ 48) within the effective area
of interaction, but it is possible that one could expect a
small correction to the patch pressure at short distances
when the ergodic hypothesis begins to break down.

For completeness we have also studied the residual
δP plasma(D), as defined in Eq. (19), with the excep-
tion that we have compute the plane-plane Casimir pres-
sure P plasma

pp (D) using the “plasma model”, instead of
the Drude model. More precisely, we have computed the
pressure using for the permittivity ε(iξ) the “generalized
plasma model”:

εg.plasma(iξ) = 1 +
Ω2

P

ξ2
+

6∑
j=1

fj
ω2
j + ξgj + ξ2

, (20)

where the first two terms correspond to the permittivity
for the plasma model for conduction electrons (dissipa-
tion of conduction electrons is set to zero ad hoc with-
out physical justification), and the second sum of terms
accounts for the interband transitions of gold [39]. To
account for roughness corrections to the Casimir pres-
sure we use the same additive scheme employed above.
Computing δP plasma(D) in this way, we have confirmed
the findings of [9, 10], namely that a negligible contri-
bution of the patch effect leads to an agreement of data
with theoretical predictions using the plasma model. We
note, however, that the patch pressure calculated from
the quasi-local model, with sizes and voltages used in
[9], is much larger than the difference between the mea-
surements and the plasma prediction, as shown in Fig.
4 [41]. We think that this result constitutes a serious
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FIG. 4. Comparison of the residual δP plasma (points with
error bars at 67% confidence taken from Fig. 2 of [10]) with
patch pressures given by the sharp-cutoff model and the quasi-
local model: 1. The solid curve is the result of the sharp-cutoff
model (with assumptions of subsection II-A). We find, con-
sistently with the analysis in [9, 10], that the patch pressure
from this model gives a negligible contribution to the mea-
sured signal. 2. The dotted curve corresponds to the quasi-
local patch correlation model adopting the same parameters
used in [9, 10] for the patch size and the rms voltage. In
distinction to the sharp-cutoff model, we find that the quasi-
local model gives a large signal as compared to the residual
δP plasma.

warning against the claims according to which the plasma
model would be confirmed with a high confidence level
by Casimir experiments performed with real metals [43].

B. Data analysis for the Yale experiment

In addition to analyzing the IUPUI experiment we now
apply the same models to the recent experiment by the
Yale group [11]. A patch analysis was already carried
out in [11] and it led to a good agreement between ex-
perimental data and the Drude model. This analysis only
considered the asymptotic form ∝ 1/D of the plane-plane
energy due to patches (6). Here we extend the analysis
by using the more general expression (5) for the patch
pressure with the quasi-local patch correlation function
described in subsection II-B. Because we have no infor-
mation regarding grain or patch sizes in the Yale experi-
ment, we will focus our attention on best-fit estimations
of the parameters `max

patch, `min
patch, and Vrms characterizing

the quasi-local patch correlation function (14,17).
To analyze Yale experimental data we first compute

the Casimir force using tabulated optical data extrapo-
lated to low frequencies with the Drude model using the
plasma frequency ΩP = 7.54 eV and the dissipation rate
γ = 0.052 eV employed in [11]. We set the temperature
to be T = 295K. The roughness correction to the Casimir
force is ignored as it gives a negligible correction to the
force at the distances considered in the Yale experiment.
Fig.5 shows the difference of the Yale experimental force
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FIG. 5. Comparison of the residual δFDrude between the data
of [11] and the computed sphere-plane force with the associ-
ated patch pressure F patch. The dots correspond to δFDrude,
with the errors bars including only the experimental error in
the force determination. The solid line is a best-fit of the
patch force within the quasi-local model of subsection II-B.
The inset shows the corresponding residual δF plasma with the
same convention employed in the main figure.

data and the Casimir force prediction using the Drude
model, δFDrude (defined by analogy with (19)), depicted
by points with error bars (we assume no error for the
theory). The solid curve shows the resulting patch force
for parameters arising from a least-squares minimization
of the quantity δFDrude − F patch using the quasi-local
patch correlation model (17) described in subsection II-
B. The best fit parameters are given by `max

patch ≈ 614µm,

`min
patch ≈ 566µm, (corresponding with ` = 590µm) and
Vrms ≈ 3.9 mV. We should point out, however, that the
result of the best-fit is essentially insensitive to the details
of the patch power spectrum. Indeed, since the residual
δPDrude in the Yale experiment has an approximate 1/D
power law we can infer using (6) that the typical patch
size is much larger than D for the whole range of dis-
tances explored in the experiment (0.7 µm - 7µm). Per-
forming a constrained fitting by requiring that `max

patch be

less than some predetermined value (e.g. 500 µm), yet
still satisfying the constraint ¯̀ � D, we were able to
verify that a good fit can still be achieved over a large
range of patch sizes. In summary, we point out the result
of our fitting using the more detailed quasi-local patch
model confirms the patch treatment in [11].

Finally, we also report for the sake of completeness
some supplementary test we performed for comparing the
data in [11] with the predictions of the plasma model de-
scribed by Eq.(20) (see the inset of Fig. 5). The good
agreement obtained for the Drude model is dramatically
degraded. Therefore, we confirm the result obtained in
[11] that patches cannot explain the difference between
the experimental data and the plasma model in Yale
data.

IV. CONCLUDING REMARKS

In this paper, we have analyzed the patch contribution
to Casimir experiments with a model featuring quasi-
local voltage correlations. Our model is derived from
well-motivated physical principles and shares key fea-
tures with experimentally verified patch models used to
describe ion trap heating and cantilever damping [31].
Thus, for the description of the surfaces used in the ex-
periments discussed in this paper, we believe that this
model is more appropriate than the sharp-cutoff model
which has been used to the same aim in previous publi-
cations [9, 10].

Due to the large difference in the patch power spec-
trum, in particular for small wavevectors, the quasi-local
model gives a larger contribution than the sharp-cutoff
model. As a striking consequence, when the patch sizes
are deduced from the grain sizes (as was done in [9, 10]),
the quasi-local model produces a patch pressure larger
than the difference between the experimental data and
the Drude (and plasma) Casimir prediction, whereas the
sharp-cutoff model produces a negligible patch pressure.
Therefore, it is important to emphasize that because
of the combination of: a) the highly model dependent
nature of the computed patch pressure and b) the po-
tentially large patch contribution to the measured sig-
nal, patches may lead to nonnegligible systematic ef-
fects. This necessitates an independent measurement of
patch effects in order to meet metrological standards for
Casimir force measurements.

We have also used the new quasi-local patch model to
fit the difference between experimental data of the IUPUI
experiment [9, 10] and the theoretical prediction for the
Casimir pressure. The latter was computed taking into
a) tabulated optical data extrapolated to low frequencies
by means of the Drude model, and b) roughness effects
modeled by a simple additive technique. We have found
best-fit parameters for the average patch size and for the
rms voltage that are consistent with a contamination of
the metallic surfaces, which is expected to enlarge the
patch sizes (with respect to grain sizes) and smear the
patch voltage (with respect to those of a surface of bare
crystallites) [28]. Indeed, surface contamination is ex-
pected, and we believe that preferential adsorption [28]
and saturation of contaminants may be compatible with
the observation of reproducible results in experiments re-
peated several times with different samples [42].

Taken together, our results constitute a strong warning
against the previously published claims of an agreement
of Casimir experiments with the plasma model, and an
elimination of the Drude model [43]. However, we want
to emphasize that they do not constitute yet a proof of
agreement of experimental data with the new model. The
parameters of the patch model have been fitted and it is
still possible that the qualitative agreement thus obtained
is a fortunate output of the fitting procedure rather than
an explanation of the experimental data.

In this paper we have focused our attention on only the
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IUPUI and Yale experiments, but of course the analysis
can be repeated for other Casimir measurements between
metallic plates as well [44–53].

A better characterization of the surfaces used in the
experiments is now key to reaching firmer conclusions.
The patch distributions can be measured with appropri-
ate technologies such as Kelvin probe force microscopy
which can achieve the necessary size and voltage resolu-
tions [54, 55]. In addition, the study of cold atoms and
cold ions trapped in the vicinity of metallic surfaces [22]
or the role of patch effects in other precision measure-
ments [24–26] are other ways for accessing information of
interest for our problem. Let us repeat at this point that
our new quasi-local model is similar to recent proposals
for patch physics used to achieve a better understanding
of atomic and ionic traps [31, 32].

The challenges of forthcoming studies may be stated
as follows. First, it is important to confirm the hypothe-
sis that the patch voltages show quasi-local correlations,
and to better specify the power spectrum which quan-
titatively describes these correlations. Second, it would
also be interesting to study how the patch power spec-
trum depends on contamination, in particular, fabrica-
tion, treatment, history of the samples, and on tempera-
ture. Finally, an independent determination of the patch
power spectrum could lead either to a confirmation of the
best-fit analysis presented in this paper or to new ques-
tions. This study is important not only for the test of
the Casimir effect, a central prediction of quantum field

theory, but also for the searches of the hypothetical new
short-range forces predicted by unification models [5–8].
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