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Unlike the real part of the generalized weak value of an observable, which can in a restricted sense
be operationally interpreted as an idealized conditioned average of that observable in the limit of
zero measurement disturbance, the imaginary part of the generalized weak value does not provide
information pertaining to the observable being measured. What it does provide is direct information
about how the initial state would be unitarily disturbed by the observable operator. Specifically, we
provide an operational interpretation for the imaginary part of the generalized weak value as the
logarithmic directional derivative of the post-selection probability along the unitary flow generated
by the action of the observable operator. To obtain this interpretation, we revisit the standard
von Neumann measurement protocol for obtaining the real and imaginary parts of the weak value
and solve it exactly for arbitrary initial states and post-selections using the quantum operations
formalism, which allows us to understand in detail how each part of the generalized weak value
arises in the linear response regime. We also provide exact treatments of qubit measurements and
Gaussian detectors as illustrative special cases, and show that the measurement disturbance from a
Gaussian detector is purely decohering in the Lindblad sense, which allows the shifts for a Gaussian
detector to be completely understood for any coupling strength in terms of a single complex weak

value that involves the decohered initial state.

PACS numbers: 03.65.Ta,03.65.Ca,03.67.-a

I. INTRODUCTION

In their seminal Letter, Aharonov et al. [1] claimed
that they could consistently assign a particular value
to an observable that was being weakly measured in a
pre- and post-selected ensemble. To illustrate their tech-
nique, they weakly coupled an observable A to a con-
tinuous detector with an initial Gaussian wave-function.
Normally, such a weak von Neumann coupling [2] would
approximately shift the mean of the Gaussian detector
wave-function by the expectation value (1;|A|y;) of A in
the initial state |¢;), which would effectively measure A;
however, they showed that by post-selecting a final state
[ts) after the weak coupling, the mean of the Gaussian
detector wave-function could be made to approximately
shift by a compler quantity that they dubbed the weak
value of the observable,

(Al
A = e o

Notably, the weak value expression is not constrained
to the eigenvalue range for the observable A, so it can
become arbitrarily large for nearly orthogonal pre- and
post-selections.

This complex shift in the mean of the Gaussian de-
tector wave-function was only approximate under weak
von Neumann coupling and not directly observable, so
its significance was not overtly clear; however, the Let-
ter [1] also showed that both the real and imaginary
parts of (1) could be operationally obtained from the
linear response of the detector under separate conjugate
observable measurements. The practical benefit of this
observation was that one could amplify the response of
the detector by making a clever choice of post-selection,

which potentially allowed for the sensitive determination
of other small parameters contributing to the evolution.

After theoretical clarifications of the derivation in [3],
experimental confirmation of such amplified detector re-
sponse soon followed in optical systems [4, 5]. The am-
plification has since been used successfully to sensitively
measure a variety of phenomena [6-11] to remarkable pre-
cision, using both the real and imaginary parts of (1) as
amplification parameters. Several theoretical extensions
of the original derivation of the amplification [12-27] and
several proposals for other amplification measurements
have also appeared [28-32]. In particular, it has been
noted that how the amplification effect arises in such
a continuous wave-function detector is not intrinsically
quantum mechanical, but can also occur in classical wave
mechanics [33], which has prompted recent study into
the mathematical phenomenon of superoscillations (e.g.
[34, 35]).

Conceptually, however, the weak value expression (1)
has remained quite controversial: since it is generally
complex and not constrained to the spectrum of A, how
should it be interpreted? Its primary interpretation in
the literature has rested somewhat loosely upon the ob-
servation that despite its anomalous behavior one can
still decompose an expectation value through the in-
sertion of the identity into an average of weak values,
Wil Al = 3, 1102 (05| AL,/ (slaes)), which
has the same form as decomposing a classical expectation
value E(X|i) into an average of conditioned expectation
values E(X|i) = 3 P(f|i)E(X]i, f). This observation,
together with its approximate appearance operationally
in weak conditioned measurements, make it tempting to
interpret the weak value as a disturbance-free counter-
factual conditioned average that can be assigned to the
observable within the context of a pre- and post-selected



ensemble even when it is not strictly measured [36-39).

Supporting this point of view is the fact that when the
real part of (1) is bounded by the eigenvalue range of A,
it agrees with the classical conditioned expectation value
for the observable [37]. Moreover, even when the real
part is outside the normal eigenvalue range, it still obeys
a self-consistent logic [40] and seems to indicate oddly
sensible information regarding the operator A. As such,
it has been used quite successfully to analyze and inter-
pret many quantum-mechanical paradoxes both theoreti-
cally and experimentally, such as tunneling time [41-44],
vacuum Cherenkov radiation [45], cavity QED correla-
tions [46], double-slit complementarity [47, 48], superlu-
minal group velocities [49], the N-box paradox [50, 51],
phase singularities [52], Hardy’s paradox [53-56], pho-
ton arrival time [57], Bohmian trajectories [58-61], and
Leggett-Garg inequality violations [62—-64].

Arguably more important for its status as a quantity
pertaining to the measurement of A, however, is the fact
that the real part of (1) appears as a stable weak limit
point for conditioned measurements even when the detec-
tor is not a von Neumann-coupled continuous wave that
can experience superoscillatory interference (e.g. [63—
67]). As a result, we can infer that at least the real part
of (1) must have some operational significance specifi-
cally pertaining to the measurement of A that extends
beyond the scope of the original derivation. This observa-
tion prompted our Letter [68] showing that a principled
treatment of a general conditioned average of an observ-
able can in fact converge in the weak measurement limit
to a generalized expression for the real part of (1),

(2)

where {A, p;} = Ap; + p;A is the anti-commutator be-
tween the observable operator and an arbitrary initial
state p; represented by a density operator, and where
Py is an arbitrary post-selection represented by an ele-
ment from a positive operator-valued measure (POVM).
The general conditioned average converges to (2) pro-
vided that the manner in which A is measured satis-
fies reasonable sufficiency conditions [69, 70] that ensure
that the disturbance intrinsic to the measurement pro-
cess does not persist in the weak limit.

It is in this precise restricted sense that we can oper-
ationally interpret the real part of the weak value (2) as
an idealized conditioned average of A in the limit of zero
measurement disturbance. Since it is also the only ap-
parent limiting value of the general conditioned average
that no longer depends on how the measurement of A
is being made, it is also distinguished as a measurement
context-independent conditioned average. These observa-
tions provide strong justification for the treatment of the
real part of the weak value (2) as a form of value assign-
ment [36-39, 71, 72] for the observable A that depends
only upon the preparation and post-selection [73].

However, we are still left with a mystery: what is the
significance of the imaginary part of (1) that appears
in the von Neumann measurement, and how does it re-
late to the operator A? We can find a partial answer to
this question in existing literature (e.g. [12, 37, 41, 42])
that has associated the appearance of the imaginary part
of (1) in the response of the detector with the intrinsic
disturbance, or back-action, of the measurement process.
For example, regarding continuous von Neumann detec-
tors Aharonov and Botero [37, p.8] note that “the imag-
inary part of the complex weak value can be interpreted
as a ‘bias function’ for the posterior sampling point [of
the detector].” Furthermore, they note that “the weak
value of an observable A is tied to the role of A as a
generator for infinitesimal unitary transformations” [37,
p.11]. Similarly, while discussing measurements of tun-
neling time Steinberg [41] states that the imaginary part
is a “measure of the back-action on the particle due to
the measurement interaction itself” and that the detector
shift corresponding to the imaginary part “is sensitive to
the details of the measurement apparatus (in particular,
to the initial uncertainty in momentum), unlike the [shift
corresponding to the real part].”

In this paper, we will augment these observations in
the literature by providing a precise operational inter-
pretation of the following generalized expression for the
imaginary part of (1),

Te(Pr(—i[A, pi)
2Tr(Py i)

ImA,, = ) (3)

where [A, p;] = Ap;— p; A is the commutator between A
and the initial state. We will see that the imaginary part
of the weak value does not pertain to the measurement of
A as an observable. Instead, we will interpret it as half
the logarithmic directional derivative of the post-selection
probability along the flow generated by the unitary action
of the operator A. As such, it provides an explicit mea-
sure for the idealized disturbance that the coupling to A
would have induced upon the initial state in the limit that
the detector was not measured, which resembles the sug-
gestion by Steinberg [41]; however, we shall see that the
measurement of the detector can strongly alter the state
evolution away from that ideal. The explicit commutator
in (3) also indicates that the imaginary part of the weak
value involves the operator Ainitsrole as a generator for
unitary transformations as suggested by Aharonov and
Botero [37], in contrast to the real part (2) that involves
the operator A in its role as a measurable observable.
To make it clear how the generalized weak value ex-
pressions (2) and (3) and their interpretations arise
within a traditional von Neumann detector, we will pro-
vide an exact treatment of a von Neumann measurement
using the formalism of quantum operations (e.g. [74-76]).
In addition to augmenting existing derivations in the lit-
erature that are concerned largely with understanding
the detector response (e.g. [12, 13, 15, 18-21, 23-27]),
our exact approach serves to connect the standard treat-



ment of weak values to our more general contextual val-
ues analysis that produces the real part [68-70] more
explicitly. We also provide several examples that spe-
cialize our exact solution to typically investigated cases:
a particular momentum weak value, an arbitrary qubit
observable measurement, and a Gaussian detector. As
a consequence, we will show that the Gaussian detec-
tor is notable since it induces measurement disturbance
that purely decoheres the system state into the eigen-
basis of A in the Lindblad sense with increasing mea-
surement strength. Surprisingly, the pure decoherence
allows the shifts in a Gaussian detector to be completely
parametrized by a single complex weak value to all orders
in the coupling strength, which allows those shifts to be
completely understood using our interpretations of that
weak value.

The paper is organized as follows. In §II we analyze the
von Neumann measurement procedure in detail, starting
with the traditional unconditioned analysis in §IT A, fol-
lowed by an operational analysis of the unconditioned
case in §I1IB 1 and the conditioned case in §IIB 2. After
obtaining the exact solution for the von Neumann detec-
tor response, we consider the weak measurement regime
to linear order in the coupling strength in §III, which clar-
ifies the origins and interpretations of the expressions (2)
and (3). We discuss the time-symmetric picture in §IV
for completeness. After a brief Bohmian mechanics ex-
ample in §V A that helps to illustrate our interpretation
of the weak value, we provide the complete solutions for
a qubit observable in §V B and a Gaussian detector in
¢V C. Finally, we present our conclusions in §VI.

II. VON NEUMANN MEASUREMENT

The traditional approach for obtaining a complex weak
value [1] for a system observable is to post-select a weak
Gaussian von Neumann measurement [2]. The real and
imaginary parts of the complex weak value then appear
as scaled shifts in the conditioned expectations of conju-
gate detector observables to linear order in the coupling
strength. To clarify how these shifts occur and how the
weak value can be interpreted, we shall solve the von
Neumann measurement model exactly in the presence of
post-selection.

A. Traditional Analysis

A von Neumann measurement [1, 2] unitarily couples
an operator Aona system Hilbert space H¢ to a momen-
tum operator p on a continuous detector Hilbert space
Hg via a time-dependent interaction Hamiltonian of the
form,

Hi(t) = g(HA @ p. (4)

The interaction profile g(t) is assumed to be a function
that is only nonzero over some interaction time interval

t € [0,T]. The interaction is also assumed to be impulsive
with respect to the natural evolution of the initial joint
state p of the system and detector; i.e., the interaction
Hamiltonian (4) acts as the total Hamiltonian during the
entire interaction time interval.

Solving the Schrodinger equation,

ihd,U = H,U, (5)
with the initial condition Uy = 1 produces a unitary
operator,

Ur =exp (S A@p). (6)

T
g= / dt g(t). (7)

that describes the full interaction over the time interval
T. The constant g acts as an effective coupling parameter
for the impulsive interaction. If the interaction is weakly
coupled then g is sufficiently small so that Uy ~ 1 and
the effect of the interaction will be approximately negli-
gible; however, we will make no assumptions about the
weakness of the coupling a priori.

The unitary interaction (6) will entangle the system
with the detector so that performing a direct measure-
ment on the detector will lead to an indirect measure-
ment being performed on the system. Specifically, we
note that the position operator & of the detector satisfies
the canonical commutation relation [&,p] = ihly, and
thus will evolve in the Heisenberg picture of the interac-
tion according to,

(1 @ &)r = UL(1s © &)U, (8)
=1, 0&+gA®1,.
As a result, measuring the mean of the detector position

after the interaction (z)r = Tr((1s ®&)rp) will produce,
()7 = (z)o + g(A)o. 9)

Hence, the mean of the detector position will be shifted
from its initial mean by the mean of the system observ-
able A in the initial reduced system state, linearly scaled
by the coupling strength g. For this reason we say that
directly measuring the average of the detector position &
results in an indirect measurement of the average of the
system observable A.

The detector momentum p, on the other hand, does
not evolve in the Heisenberg picture since [Ur, 1, ® p] =
0. Hence, we expect that measuring the average detector
momentum will provide no information about the system
observable A.

As discussed in the introduction, however, when one
conditions such a von Neumann measurement of the de-
tector upon the outcome of a second measurement made
only upon the system, then the conditioned average of
both the position and the momentum of the detector can
experience a shift. To see why this is so, we will find it
useful to switch to the language of quantum operations
(e.g. [74-76]) in order to dissect the measurement in
more detail.
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FIG. 1. (color online) Schematic for a von Neumann mea-

surement. An initially prepared system state p; and detector
state |1¥) (1| become entangled with the von Neumann uni-
tary interaction Ur (6) over a time interval T. Measuring
a particular detector position x after the interaction updates
the detector state to |z)(z| and also updates the system state
to M (pi), where M, (11) is an effective measurement op-
eration that encodes the entanglement with and subsequent
measurement of the detector.

B. Quantum Operations
1. Unconditioned Measurement

As before, we will assume an impulsive interaction in
what follows so that any natural time evolution in the
joint system and detector state will be negligible on the
time scale of the measurement. (For considerations of
the detector dynamics, see [13].) We will also assume for
simplicity of discussion that the initial joint state of the
system and detector before the interaction is a product
state and that the detector state is pure,

p=pi @ V)W), (10)

though we will be able to relax this assumption in our
final results. Conceptually, this assumption states that a
typical detector will be initially well-calibrated and un-
correlated with the unknown system state that is being
probed via the interaction.

_ Evolving the initial state with the interaction unitary
Ur (6) will entangle the system with the detector. Hence,
subsequently measuring a particular detector position
will be equivalent to performing an operation M, upon
the reduced system state, as illustrated in Figure 1,

(11)
M, = («|Ur|y). (12)

Ma(pi) = Tra((1s ® |o) (2] ) Ur pUS) =

where Trg(+) is the partial trace over the detector Hilbert
space, and M, is the Kraus operator associated with
the operation M,. Furthermore, since (x|i)) = ¥ (z) is
the initial detector position wave-function we find M, =
J da exp(—gady)p(x)|a)(a| = [dayp(z — ga)la){al, or,
more compactly, M, = (x — gA).

If we do not perform a subsequent post-selection on
the system state, then we trace out the system to find

the total probability density for detecting the position z,

p(l‘) = T‘rs(Mm(ﬁz)) = Trs(EacpAi)v (13)
E, = M{M, = (|U}(1, @ [2)(z)Ur|p),  (14)

where Tr,(+) is the partial trace over the system Hilbert
space. The probability operator E, isa positive system
operator that encodes the probability of measuring a par-
ticular detector position z, and can also be written in
terms of the initial detector position wave-function as

E, = |i(z — gA)|>. To conserve probability it satisfies
the condition, f de E, = = 1,, making the operators E, a
positive operator-valued measure (POVM) on the system
space.

Consequently, averaging the position of the detector
will effectively average a system observable with the ini-
tial system state,

@r = [ drsple) = (0 (15)

= /Oo dezE, = (Y|UL1, © 2)Ur|y),

= <‘T>0j~s + gAu

where we see the Heisenberg evolved position operator
(8) naturally appear.

Since the probability operators E, are diagonal in the
basis of A, then the effective system operator O will also
be diagonal in the same basis. Hence, by modifying the
values that we assign to the position measurements, we
can arrange an indirect measurement of any system ob—
servable spanned by {Ew} in the basis of A, including A

itself,
[ (s

The chosen set of values (z
for A which can be thought of as a generalized spectrum
that relates A to the specific POVM {E,} associated
with the measurement context { My} [68-70]. They are
not the only values that we could assign to the position
measurement in order to obtain the equality (16), but
they are arguably the simplest to obtain and compute, as
well as the most frequently used in the literature. It is in
this precise sense that we can say that the von Neumann
coupling leads to an indirect measurement of the average
of A in the absence of post-selection.

The measurement of A comes at a cost, however, since
the system state is necessarily disturbed by the opera-
tions M, in order to obtain the probability operators E,.
The state may even be disturbed more than is strictly re-
quired to make the measurement of A, which can be seen
by rewriting the measurement operators in polar form,
M, = U, |E,|'/?, with the positive root of the probabll—
ity operator |E1|1/ 2 and an additional unitary operator

U,. This decomposition implies that M, splits into an

—(x)0)/g are contextual values



effective composition of two distinct operations,

M (pi) = Us(Ex(p1)), (17a)
Ex(pi) = |EL|" pil B |2, (17b)
U (p}) = U, p;U. (17¢)

We can interpret the operation &, that involves only the
roots of the probability operator |Ew|1/ 2 as the pure mea-
surement operation producing E,. That is, it represents
the minimum necessary disturbance that one must make
to the initial state in order to extract a measurable prob-
ability. The second operation U, unitarily disturbs the
initial state, but does not contribute to E,. Since only
E, can be used to infer information about A through the
identity (16), we conclude that the disturbance from U,
is superfluous.

To identify the condition for eliminating U,, we can
rewrite the Kraus operator (12) using the polar form
of the initial detector position wave-function ¢ (z) =

exp(iths(2))¢r (@),
M, = exp(itys(x — gA) ) (x — g A). (18)

The phase factor becomes the unitary operator U
exp(is(x — gA)) for U, while the magnitude becomes
the required positive root |E,|'/2 = ¢, (z — gA) for &,.
Hence, to eliminate the superfluous operation U, from a
von Neumann measurement with coupling Hamiltonian
(4), one must use a purely real initial detector wave-
function in position.

For contrast, measuring only a particular detector mo-
mentum p will be equivalent to performing a different
operation N, upon the reduced system state,

No(pi) = Tra((1s ® [p)(p))UrpUS) = NppiNj, - (19)
N, = (plUrl) = exp (574 (plus). (20)

The Kraus operator Np has a purely unitary factor con-
taining A that will disturb the system, regardless of the
form of the initial momentum wave-function (p|¢). More-
over, the probability operator associated with the mo-
mentum measurement has the form,

F, = N/ N, = |(p|¢) |1, (21)

which can only be used to measure the identity 1.

For completeness we also briefly note that the conju-
gate Kraus operators M, and N are related through a
Fourier transform,

. 1 o0 ) N

N, = Nz / dx e /RN, (22a)
A 1 o0 . .

M, = N / dpeP*/" N, (22b)

[ Y- 'y
Py
Y S— > Pr(Ma(5i))
M3
T ............... T
t=0 T 1T

FIG. 2. (color online) Schematic for a sequence of two indi-
rect measurements. After the von Neumann interaction and
measurement of z illustrated in Figure 1 that produces the
effective measurement operation M, upon the initial system
state, a second detector interacts impulsively with the sys-
tem for a time interval 75 — 7. The second detector is then
measured to have a particular outcome f, which updates the
system state to Py(Mz(pi)), where Py is another measure-
ment operation. Taking the trace of the final system state
will then produce the joint probability densities (24).

and that both detector probability operators can be ob-
tained as marginals of a Wigner quasi-probability opera-
tor on the system Hilbert space,

. 1 > .

Wep=— / dy e* /"M, M, _,, (23a)
E, = / dp W, ,, (23b)
F, = / dz W, . (23¢c)

In the absence of interaction, then the Wigner quasi-
probability operator reduces to the Wigner quasi-
probability distribution W (x,p) for the initial detector

state, Wi, ,, =0, W (z,p)i,

2. Conditioned Measurement

To post-select the system, an experimenter must per-
form a second measurement after the von Neumann mea-
surement and filter the two-measurement event space
based on the outcomes for the second measurement. In
other words, the experimenter keeps only those pairs of
outcomes for which the second outcome satisfies some
constraint. The remaining measurement pairs can then
be averaged to produce conditioned averages of the first
measurement.

If we represent the second measurement as a set of
probability operators { Py} indexed by some parameter
f that can be derived analogously to (14) from a set of
operations {Py} as illustrated in Figure 2, then the total
joint probability densities for the ordered sequences of

measurement outcomes (z, ) and (p, f) will be,
plx, f) = Trs(PrMa(p)) = Trs(Bo pfi),  (24a)
p(p, f) = TrS(prp(ﬁi)) = Trs(ﬁp,fﬁi)v (24b)



where the joint probability operators,
B, — NI'P, L,
Fp,f = N;I:)pr'

(25a)
(25Db)

are not simple products of the post-selection Pf and the
probability operators (14) or (21). Those operators can
be recovered, however, by marginalizing over the index f,
since the post-selection probability operators must satisfy
a POVM condition } , Py = 1.

The joint probabilities (24) will contain information
not only about the first measurement and the initial sys-
tem state, but also about the second measurement and
any disturbance to the initial state that occurred due to
the first measurement. In particular, the joint probabil-
ity operators (25) can no longer satisfy the identity (16)
due to the second measurement, so averaging the proba-
bilities (24) must reveal more information about the mea-
surement process than can be obtained solely from the
operator A, the initial state p;, and the post-selection
P;. As a poignant example, the unitary disturbance U,
in (17) that did not contribute to the operator identity
(16) will contribute to the joint probability operators,
E,; =|E,|'?U}P;U,|E,|"/>.

The total probability for obtaining the post-selection
outcome f can be obtained by marginalizing over either
x or p in the joint probabilities,

o= [ " dep(e f) = / T dpp ). (26)

- Trs(pfg(ﬁz))u
E(pi) = Tra(Ur(p: @ [0) () UL, (27)

where the operation £ is the total non-selective measure-
ment that has been performed on p;. Since £ is not the
identity operation, it represents the total disturbance in-
trinsic to the measurement process. It includes unitary
evolution of the reduced system state due to the inter-
action Hamiltonian (4), as well as decoherence stemming
from entanglement with the measured detector.

By experimentally filtering the event pairs to keep only
a particular outcome f of the second measurement, an
experimenter can obtain the conditional probabilities,

o f) _ T (B Me(p0)

Pl ==y = Tro(PrE(py)) | (282)
ol f) | T (PrMy(pi)
PR =T S T Bee) (288)

which can then be averaged to find the exact conditioned
averages for the detector position and momentum,

o° Trs(PfXT(ﬁi))
(x)yp = drrp(z|f) = ——=——2~, 29a
sayr = [ deaptely) g O
e [ _ Try(PyPr(pi)
so)r = / drppioln) = LB (2on)

where,
Xr(pi) = Tra((1s @ &)Ur(p; @ [9) (@) US),  (30a)
Pr(pi) = Tra((1s @ p)Ur(p; @ [0) (w)UL),  (30D)

are detector averaging operations that affect the system
state before the measurement of the post-selection is per-
formed. It is worth noting at this point that we can relax
the assumption (10) made about the initial state in the
exact operational expressions (27) and (30). Similarly, if
different contextual values are used to average the condi-
tional probabilities in (29), then corresponding detector
observables with the same spectra will appear in the oper-
ations (30) in place of & or p; for example, averaging the
values a(x) = (z—(x)¢)/g used in (16) will replace the de-
tector observable & in (30) with & = [*_ dz o) |2)(z].

To better interpret (30), we bring the detector opera-
tors inside the unitary operators in (30) using the canon-
ical commutation relations as in (8),

Xr(pi) = X(pi) + 9E({A, pi}/2),
Pr(pi) =P(pi),

which splits the X operation into two operations but
only changes the form of Pr. The operation proportional
to g disturbs the symmetrized product {A,p;}/2 =
(Aﬁi + f)iA)/2 of the initial system state with the oper-
ator A, while the operations,

X(pi) = Tra(Ur(pi @ {, [¥) (]} /2)UL),
P(ps) = Tra(Ur(ps @ {B, |¢) (¥} /2)UL),

disturb the symmetrized products of the initial detector
state with the detector operators.

The form of the equations (31) clearly illustrates how
the post-selection will affect the measurement. If the
post-selection is the identity operator, Py = 1,, then the
unitary operators Ur causing the total disturbance of
the initial state will cancel through the cyclic property of
the total trace in (29), leaving the averages in the initial
states that were previously obtained,

(31a)
(31b)

(32a)
(32b)

() = (x)o + g(A)o, (33a)
(p)r = (P)o- (33b)

In this sense, commuting the detector operators & and
P in (30) through the unitary operators to arrive at (31)
is equivalent to evolving them in the Heisenberg picture
back from the time of measurement 7" to the initial time
0 in order to compare them with the initial states. How-
ever, the presence of the post-selection operator Py will
now generally spoil the cancelation of the unitary oper-
ators that is implicit in the Heisenberg picture, leading
to corrections from the disturbance between the pre- and
post-selection.

The symmetrized products in (31) indicate the mea-
surement being made on the initial states of the sys-
tem and detector, which is then further disturbed by



the unitary operators TjT as a consequence of the cou-
pling Hamiltonian (4). The post-selection both condi-
tions those measurements and reveals the disturbance,
which corrects each term in (33), yielding the final exact
expressions,

I BX(p) | Tr(PE{ADY) g,

o) T (PrE(pr) | 2Tea(Pre(p) (312)
Tr,(PrP(p1)

f<P>T = TrS(PfE( Ai)) . (34b)

III. THE WEAK VALUE

If it were possible to leave the system state undisturbed
while still allowing the measurement of A, then we would
naively expect the disturbance £ to reduce to the iden-
tity operation. Similarly, we would naively expect the
operations X and P would reduce to (x)¢ and (p)o mul-
tiplying the identity operation, respectively. As a result,
the conditioned averages (34) would differ from the un-
conditioned averages (33) solely by the replacement of
the average (A)g with the real part (2) of the complex
generalized weak value expression,

A, = Ds(PrApi) (35)
Tr(Prpi)

Since this expression depends solely upon the initial state
pi, the post-selection Pf, and the operator A we are
naively tempted to give ReA,, an intuitive interpretation
as the ideal conditioned expectation of A in a pre- and
post-selected state with no intermediate measurement
disturbance. However, it is strictly impossible to remove
the disturbance from the measurement while still mak-
ing the measurement, so we cannot rely on this sort of
reasoning. We can make a similar interpretation in a re-
stricted sense, however, by making the coupling strength
g sufficiently small to reduce the disturbance to a minimal
amount that still allows the measurement to be made.

To see how the operations £, X, and P in (27) and
(32) depend on the coupling strength g, we expand them
perturbatively,

)=~ () oAy (p),  (36a)
n=0

X(p) =Y+ (L) @(adfi)"(m), (36b)
n=0

Po) = Y~ (4) (rhoadd) (5, (360)
n=0

where the operation (adA)(-) = [A, ] is the left action of
A in the adjoint representation of its Lie algebra, which
takes the form of a commutator. That is, (adA) explic-
itly describes how A disturbs the initial state due to the
interaction that measures it.

The initial detector state plays a critical role in (36)
by determining the various moments, (p™)q, (p"*1)o and
({p™,x}/2)¢ that appear in the series expansions. No-
tably, if we make the initial detector wave-function purely
real so that it minimally disturbs the system state then
all moments containing odd powers of p will vanish. We
conclude that those moments of the disturbance opera-
tions are superfluous for obtaining the measurable prob-
abilities that allow the measurement of A, while the mo-
ments with even powers of p are necessary.

After expanding the corrections (34) to first order in g,
we obtain the linear response of the conditioned detector
means due to the interaction,

9 (b z}o Trs(Pf(aflA)(ﬁi))

@) — (z)o + T Toa(By ) (37a)
Tr,(Pr{A, pi})
2Trs (Pps)

1) = (P)o + %<p2>01&~5(§,; ((a;féz)(p D) (37)

Measurements for which this linear response is a good
approximation are known as weak measurements.

After introducing the complex generalized weak value
(35), we can write the linear response formulas in a more
compact form,

g ({p,2})o
ho 2
= (p)o + %<p2>o (2ImA,,),

@) = (z)o +9 (2ImA,,) + gReA,, (38a)

(38b)

in terms of not only its real part, but also twice its imag-
mary part.

If the initial detector position wave-function () is
purely real, so that the measurement is minimally dis-
turbing, then ({p,x}/2)o will vanish, leaving only ReA,,
in p(z)r as we naively reasoned before. However, the
term proportional to 2ImA,, will not vanish in ¢(p)r to
linear order in g, making it an element of measurement
disturbance that persists even for minimally disturbing
weak measurements.

These linear response formulas for the von Neumann
measurement have also been obtained and discussed in
the literature with varying degrees of generality and rigor
(e.g. [1, 3, 12, 13, 15, 18-20, 23-27, 40]). However, our
derivation has a conceptual advantage in that we see ex-
plicitly how the origins of the real and imaginary parts
of the weak value differ with respect to the measurement
of A. We are therefore in a position to give concrete
interpretations for each part.

The real part (2) of the weak value ReA,, stems di-
rectly from the part of the conditioned shift of the de-
tector pointer that corresponds to the measurement of A
and does not contain any further perturbation induced
by the measurement coupling that would be indicated
by factors of (adA). As a result, it can be interpreted

as an idealized limit point for the average of A in the



initial state p; that has been conditioned on the post-
selection P; without any appreciable intermediate mea-
surement disturbance. To support this point of view, we
have also shown in [68-70] that ReA,, appears naturally
as such a limit point for minimally disturbing measure-
ments that are not of von Neumann type, provided that
those measurements satisfy reasonable sufficiency condi-
tions regarding the measurability of A.

The imaginary part (3) of the weak value ImA,,, on
the other hand, stems directly from the disturbance of
the measurement and explicitly contains (adA), which
is the action of A as a generator for unitary evolution
due to the specific Hamiltonian (4). The factor 2ImA,,
appears in (38) along with information about the initial
detector momentum that is being coupled to A in the
Hamiltonian (4), as well as factors of i, in stark contrast
to the real part. How then can it be interpreted?

The significance of 2ImA,, becomes more clear once we
identity the directional derivative operation that appears
in its numerator,

6() = —i(adA)(). (39)

That is, 04(p;) indicates the rate of change of the initial
state p; along a flow in state-space generated by A.

The directional derivative should be familiar from
the Schrédinger equation written in the form 0;p =
[H,p]/ik = da(p), where the scaled Hamiltonian © =
H /h is a characteristic frequency operator. The integra-
tion of this equation is a unitary operation in exponential
form p(t) = exp(tdn)(p(0)) = exp(—it§2)p(0) exp(it?)
that specifies a flow in state space, which is a collection
of curves that is parametrized both by a time parameter
t and by the initial condition p(0). Specifying the initial
condition p(0) = p;, picks out the specific curve from the
flow that contains p;. The directional derivative of the
initial state along that specific curve is then defined in
the standard way, 0;p(t) =0 = da(pi).

The fact that the quantum state space is always a con-
tinuous manifold of states allows such a flow to be de-
fined in a similar fashion using any Hermitian operator,
such as A, as a generator. Analogously to time evolu-
tion, such a flow has the form of a unitary operation,
p(e) = exp(eda)(p(0)), where the real parameter ¢ for
the flow has units inverse to A. Therefore, taking the di-
rectional derivative of p; along the specific curve of this
flow that passes through p; will produce (39). For an
explicit example that we will detail in §V B, the state-
space of a qubit can be parametrized as the continuous
volume of points inside the unit Bloch sphere; the deriva-
tive (39) produces the vector field illustrated in Figure 3
tangent to the flow corresponding to Rabi oscillations of
the qubit.

With this intuition in mind, we define the post-
selection probability for measuring Py given an initial
state p;(e) = exp(eda)(p;) that is changing along the
flow generated by A,

ps(e) = Trs(Pypi(e))- (40)

The logarithmic directional derivative of this post-
selection probability then produces the factor 2ImA,,
that appears in (38),

2ImA,, = 0-Inpy(e)| (41)

e=0’
which is our main result.

In words, the imaginary part of the weak value is half
the logarithmic directional derivative of the post-selection
probability along the natural unitary flow generated by
A. Tt does not provide any information about the mea-
surement of A as an observable, but rather indicates
an instantaneous exponential rate of change in the post-
selection probability due to disturbance of the initial state
caused by A in its role as a generator for unitary trans-
formations. Specifically, for small £ we have the approx-
imate relation,

pr(e) = pr(0)(1 + (2ImA, )e). (42)

For a pure initial state p; = [¢;){(;| and a projective
post-selection Py = |¢p£)(1¢|, the expression (41) simpli-
fies,

2ImA,, = 0: In|(y/| exp(—isA)|wi)|2‘E:0. (43)

Hence, the corrections containing 2ImA,, that appear
in (38) stem directly from how the specific von Neumann
Hamiltonian (4) unitarily disturbs the initial system state
infinitesimally prior to any additional disturbance in-
duced by the measurement of the detector. Conceptu-
ally, the coupling induces a natural unitary flow of the
initial system state generated by A, which for infinitesi-
mal g changes the joint probability p(p, f) for a specific
p by the amount (2ImA,,)(gp/h), where gp/h is the in-
finitesimal parameter € in (41) that has units inverse to
A. Averaging this correction to the joint probability with
the detector observables @ or p produces the correction
terms in (38).

IvVv. TIME SYMMETRY

As noted in [40, 77], a quantum system that has been
pre- and post-selected exhibits time symmetry. We can
make the time symmetry more apparent in our opera-
tional treatment by introducing the retrodictive state,

pr = Py/Tx(Py), (44)

associated with the post-selection (see, e.g., [78, 79]) and
rewriting our main results in the time-reversed retrodic-
tive picture.

After cancelling normalization factors, the detector re-
sponse (34) for a system retrodictively prepared in the
final state p; that has been conditioned on the pre-
selection measurement producing the initial system state



p; has the form,

oy = X000 | T (E(pp) AYp) 4o
’ TTS(S*( Af) Ai) 2T‘r8(5*(ﬁ.f)ﬁi) ,

o TP (By)p)

ip)r Toa € (p)p0) (45b)

where the retrodictive operations £, X'*, and P* are the
adjoints of the predictive operations in (27) and (32),

E(py) = (W|ULpUr|y), (46a)
X*(py) = (WH{&,ULp,Ur}/2\0), (46b)
P*(py) = WP, UtpsUr}/2|0). (46¢)

Notably, the symmetric product with A that appears
in the detector response (45) involves the retrodictive
state that has been evolved back to the initial time due
to the non-selective measurement operation £*. Hence,
in both pictures the measurement of A is being made
with respect to the same initial time.

After expanding the retrodictive operations perturba-
tively as in (36),

(o) =Y o (L) olad AV (o)), (47a)
n=0

X (o) =3 4 () 0 g Ay, (am)
n=0 "

P*(s) = %(%)”ww (ad” A)" (), (470)
n=0 "

where (ad*A)(-) = —(adA)(-) = [-, A] is the right action
of A, then the linear response of the detector (38) can be
written in terms of the retrodictive forms of the real and
imaginary parts of the complex weak value,

e = . (hrhy) )
. ’I‘rs((_z[ﬁfv A])ﬁl)
=0.In Trs(exp(—EKSA)(ﬁf)ﬁi) |a:0’

which should be compared with (2), (3), and (41).

We see that the imaginary part of the weak value can
also be interpreted as half the logarithmic directional
derivative of the pre-selection probability as the retro-
dictive state changes in the opposite direction along the
flow generated by A.

V. EXAMPLES

A. Bohmian Mechanics

To make the preceding abstract discussion of the weak
value more concrete, let us consider a special case that

has been recently discussed by Leavens [58], Wiseman
[59], and Hiley [61], where the operator A = p being
measured is the momentum operator of the system par-
ticle. Since the wave-number operator k= —p/h gener-
ates a flow that is parametrized by the position x, then
we expect from the discussion surrounding (41) that the
imaginary part of a momentum weak value will give in-
formation about how the post-selection probability will
change along changes in position.

If we restrict our initial system state to be a pure state
pi = |9) (@], and post-select the measurement of the mo-
mentum on a particular position Py = |z)(x|, then the
detector will have the linear response relations (38) with
the complex weak value given by,

_ <.’L‘|f)|¢> _ _ihaw(b(‘r)' (50)

P = "oy o(x)

We can split this value naturally into its real and imagi-
nary parts by considering the polar decomposition of the
initial system state ¢(x) = r(z) exp(iS(x)),

w = 10,5 (x) — ihd, Inr(x). (51)

The real part of the weak value Rep,, = hd,S(z) is
the phase gradient, or Bohmian momentum for the ini-
tial state, which we can now interpret operationally as the
average momentum conditioned on the subsequent mea-
surement of a particular x in the ideal limit of no mea-
surement disturbance. This connection between the real
part of a weak value and the Bohmian momentum that
was pointed out in [58, 59] has recently allowed Koc-
sis et al. [60] to experimentally reconstruct the averaged
Bohmian trajectories in an optical two-slit interference
experiment using such a von Neumann measurement.

The imaginary part of the weak value, Imp, =
—hdy Inr(x), on the other hand, is the logarithmic gradi-
ent of the root of the probability density p(x) = |¢(z)|? =
r?(z) for the particle at the point x. Written in the form,

2Im p,, = —h0, In p(x), (52)
it describes the instantanous exponential rate of posi-
tional change of the probability density with respect to
the particular post-selection point z, as expected. This
quantity, scaled by an inverse mass 1/m, was introduced
under the name “osmotic velocity” in the context of a
stochastic interpretation of quantum mechanics devel-
oped by Nelson [80], where it produced a diffusion term
in the stochastic equations of motion for a classical point
particle with diffusion coefficient i/2m. Nelson’s inter-
pretation was carefully contrasted with a stochastic inter-
pretation for the Bohmian pilot wave by Bohm and Hiley
[81], and the connection of the osmotic velocity with a
weak value was recently emphasized by Hiley [61].

Hence, the imaginary part of the momentum weak
value does not provide information about a measurement
of the momentum in the initial state. Instead, it indicates
the logarithmic directional derivative of the probability



density for measuring = along the flow generated by p.
The scaled derivative —hd, appears since p = —hk and
k generates flow along the position z.

B. Qubit Observable

To make the full von Neumann measurement process
more concrete, let us also consider a simple example
where A operates on the two-dimensional Hilbert space
of a qubit. (See also [12, 13, 15, 18-21, 23-27].) We can
in such a case simplify the perturbative expansions (36)
using the following identities,

A = A6, (53a)

SR Y .
[&j, &k] = 2i€jkl&l; (53C)
{65,61} = 20515, (53d)

where {6 };_, are the usual Pauli operators, the com-
ponents of the initial system state {rk}zzl are real and
satisfy the inequality 0 < >, r?2 < 1, €jp is the com-
pletely antisymmetric Levi-Civita pseudotensor, and 0
is the Kronecker delta. We have defined o3 to be diago-
nal in the eigenbasis of A and have rescaled the spectrum
of A for simplicity to zero out its maximally mixed mean

Try(A1,/2) = 0. As a result, (4) = Ars.

It follows that for positive integer n the repeated ac-
tions of A on the various qubit operators have the forms,

(adA)"(1,) =0, (54a)
(adA)?" Y (&) = i65(24)%" 7, (54b)
(adA)?"(61) = 61(24)%", (54c¢)
(adA)?" Y (6g) = —id1 (24)2 71, (54d)
(adA)?(62) = 62(24)", (54e)
(adA)"(63) =0, (54f)

which collectively imply that,

(adA)?" Y (p;) = = (24)*" L (169 — 1061),  (55a)

wl»—twl&-

(adA)2"(p;) = = (24)%" (1161 + r262) (55b)

and hence that the nonselective measurement operation
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has the exact form,

c(g)r1 — s(g)ra .

E(pi) = pi + 5 o1 (56a)
L g2 -2F s(g)r1 &,

(56b)

@ (7)o
e I

The correction term can be interpreted as a Rabi oscilla-
tion of the qubit that has been perturbed by the coupling
to the detector. Indeed, if the detector operator p were
replaced with a constant p, then the interaction Hamilto-
nian (4) would constitute an evolution term for the qubit
that would induce Rabi oscillations around the &3 axis of
the Bloch sphere, which would be the natural flow in state
space generated by the action of A. With the substitu-
tion p — p then (p™)g — p", so ¢(g) — cos(2gAp/h) — 1
and s(g) — sin(2gAp/h), which restores the unperturbed
Rabi oscillations.

Similarly, we find that the averaging operations for
the detector position and momentum (32) have the exact
forms,

-3
0-3

X(p1) = (a)ops + O o selghra ;. (57a)
ool o,
= (=" 249\ ({p*, 2o
cm(g)—;1 o < ) SR (67h)
RSN GR) 7 ({p? a o
%@>—Z;@n_1n(7r) E
(57¢)
and,
P(p0) = (phops + LN 22 (580)
el s,
00 n 2n
Cp(g)=z((;3! (%) "N, (58b)
00 _1\n+1 2n—1
N S ) I G

These operations differ from £ only in how the various
moments of the initial detector distribution weight the se-
ries for the Rabi oscillation. In particular, given the sub-
stitutions p — p and & — x, then ({p",x}/2)o — p"x
and (p" Ty — p"tL so c.(9) — w(cos(29Ap/h) — 1),
sz(g9) — = sin(29Ap/h), c,(g) — p(cos(2gAp/h) — 1),
and s,(g) — psin(2gAp/h). Therefore, if the detec-
tor remained uncorrelated with the system the averag-
ing operations would reduce to X(p;) — z&(p;) and



P(pi) — pE(P;), which are the decoupled intial detec-
tor means scaling the Rabi-oscillating qubit state.

Since we have assumed that A does not have a compo-
nent proportional to the identity, the symmetric product
{A p;})2 = Arsiy/2 = (A)o(1,/2) for a qubit will act
effectively as an inner product that extracts the part of
the initial state proportional to A. Therefore, the cor-
rection to (A) in ;(x)r that appears in (34a) has the
simple form,

Try (PrE({A, pi}/2))
Tr.(PrE(pi)
where the conditioning factor,

E(pi))s (60)
;)
c(g)r1 — s(g)r2)Trs(pror)
c(g)r2 + s(g)r1)Trs(pro2),

. 9<A>0
“5n @

p(f) = 2T

pr
=2Tr,(psp

(
(
+
+(

is (2/Tr,(Py)) times the total probability of obtaining the
post-selection. We have expressed p(f) more compactly
in terms of the retrodictive state (44) to show how the
deviations from the initial state that are induced by A
become effectively averaged by the post-selection state.
In the absence of post-selection, the retrodictive state will
be maximally mixed p; = 1,/2 and p(f) — 1, recovering
the unconditioned average (A)g.

The correction to the detector mean position (z)g in
(34a) can be expressed in a similar way,

TP L
ﬂxﬂam»‘ﬁﬁﬂ”>”nmmﬁ (61)
2)Tr,(pr6r)

+ (cz(g)r1 — sa(g)r
DTrs(p162)),

+ (cz(g)r2 + s2(g)r
as can the correction to the detector mean momentum
(p)o in (34b),

TrS(PfP(pi)) 1 .
Try(PrE(pi))  P(S) (2<p>0ﬂs(pfpl) (62)
+ (cp(g9)r1 — 8p(g)r2)Trs(pr61)
+ (cp(g)r2 + 5p(g)r1)Trs(pré& ))

Expanding (34) using (59), (61), and (62) to linear
order in g, we find the linear response (38) in terms of
the real and imaginary parts of the qubit weak value,

q>

_ (4 a

Redw = g 75 > PP (63a)
_ Trs(proa(pi))

2, = —p =N Brp) (63b)

5,4(/31) = A(—r2&1 + r1&2). (63C)

As expected, the real part contains information re-
garding the measurement of A as an observable in the
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FIG. 3. (color online) The projection onto the plane r3 = 0
of the qubit Bloch sphere, showing the vector field 4 (p:) =
—ro61 + ri162 for arbitrary initial states p; = (i +ro1 +
ro62 + r363)/2. The curves of the flow through this vector
field are the Rabi oscillations around the r3 axis that are
generated by the unitary action of 3. The quantity 2ImA,,
(63) is the logarithmic rate of change of the post-selection
probability (41) along this vector field.

initial state, conditioned by the disturbance-free overlap
between the predictive and retrodictive states. The imag-
inary part, on the other hand, contains d4(p;), which is
a tangent vector field on the Bloch sphere—illustrated in
Figure 3—that corresponds to an infinitesimal portion of
the Rabi oscillation being generated by A. This tangent
vector field contains only the components 71 and 7o from
bases orthogonal to A in the initial state p;, so 2ImA,,
contains only the retrodictive averages of corrections to
bases orthogonal to A, and thus contains no information
about the measurement of A as an observable. As dis-
cussed in (41), 2ImA4,, is the logarithmic rate of change
of the post-selection probability along the vector field
d4(pi). Scaling it by a small factor with units inverse
to A will produce a probability correction to linear or-
der. In the absence of post-selection, then pr — 14/2,
ReA,, — (A)o, and ImA,, — 0.

C. Gaussian Detector

We can also apply our general results to the traditional
case when the initial detector state in (10) is a zero-mean
Gaussian in position,

(al¢)) = (2m0®) "/ * exp(—a? /40?), (64)



Then the measurement operators for position detection
(12) have the initial Gaussian form shifted by gA,

~ 1 A2 2

- —(z—gA)* /4o
M, = e )
while the conjugate measurement operators for momen-
tum detection (20) have the initial Gaussian modified by

a unitary factor containing A,

~ 20’2 1/4 252 /h2 A /i
Np: (W) e P /h egpA/ h. (66)

The Wigner quasi-probability operator (23a) corre-
spondingly decouples into a product of Gaussian distri-
butions, with only the position shifted by the system op-
erator,

= 1 A2 2 5 2 232
Wz,p _ Ee (x—gA)* /20 e 2p~o”/h ) (67)

Marginalizing the Wigner operator over momentum
and position separately produces the probability oper-
ators (14) and (21),

. 1 X
By e A (o)
N 2 ~
F,= %\/j e~ (68b)
™

As anticipated, the probability operator for momentum
no longer contains any information about the system op-
erator A and is proportional to the identity, so measuring
the momentum provides zero information about any sys-
tem operator not proportional to the identity.

In the presence of post-selection we can also exactly
compute the disturbance operations (27), (30a), and
(30b) using the following identities for the Gaussian de-
tector moments,

(p*™)o = (%>2n (2n — 1)1, (69a

)

P 1o =0, (69b)

({p",2}/2)0 =0, (69¢)
-1 1

( (2n)!) T 2l (69d)

which hold for positive integer n. We find the simple
results,

() e (5 (L) ad) (). (100)

X(ps) = 0, (70D)
. g h? X R

P(pi) = =5 (adA)(E(pi)) (70c)

The quantity € = (g/20)? with units inverse to A2
emerges as the natural decoherence parameter, which we
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can see more clearly by rewriting the non-selective mea-
surement operation in (70) as,

pile) = £(pi) = exp (e£IA)) (5), (1)

CIA(p) = ApiAT — S{p, A A}, (71b)

The operation L[A](p;) is the Lindblad operation [75, 76,
82] that produces decoherence in continuous dynamical
systems, with A playing the role of the Lindblad operator
that decoheres the system. Since 0.p;(e) = L[A](pi(e)),
the Gaussian measurement acts as an effective Lindblad
evolution that decoheres the system state with increas-
ing € via the action of A, but does not cause unitary
disturbance along the natural flow of A [83].

The exact expressions for the conditioned Gaussian de-
tector means follow from (34) and (70),

Try (PrE({A, pi}))

Ho)r =g By (72a)
v _ g WP Tr(Pr(adA)(E(pi)))
1) = s TBEp) (72b)

Surprisingly, the special properties of the Gaussian mo-
ments (69) allow (72) to be written in a form proportional
to the real and imaginary part of a complex weak-value
involving the decohered system state (71) to all orders in
the coupling strength g,

_ Tro(PrApi(e))

Au(€) = — , (73a)
Trs(Pypi(e))

#{z)r = gReAy(e), (73b)

ovr = 27 (ot (o). (73¢)

" hdo?

Following the interpretations outlined in this paper we
can therefore understand the position shift ReA, (¢) to
all orders in g as the average of the observable A in the
decohered initial system state p;(€) conditioned on the
post-selection Pj. Similarly, we can understand the fac-
tor 2ImA,, (¢) in the momentum shift to all orders in g as
the logarithmic directional derivative of the probability of
post-selecting Py given the decohered initial system state
pi(€) along the unitary flow generated by A.

If the measured operator is the qubit operator A =
Aés as in (53), then we can further simplify the expres-
sion (70) using the identities (55) to find,

R JU - . R
g(pi) pPi + 5(6 (Ag/0)?/2 _ 1) (7‘10'1 + T20’2), (74)

1 /-

3 (1 +raby e A2 (G 4 7“2&2)) ;
which shows how the measurement decoheres the bases
orthogonal to A in the initial state with an increase in the
dimensionless flow parameter (Ag/c)? [84]. This deco-
herence is illustrated in Figure 4. The conditioned means



pi(e)

60'3 (pi(€)
ra

2

I3 r

FIG. 4. (color online) Two projections of the Bloch sphere
showing the pure decoherence of the specific state p;(e) =
exp(eL[63])(p:) = (1 + exp(—2€)v/362/2 + 63/2)/2 due to
the Gaussian detector (74). (left) The projection onto the
plane r1 = 0 showing the progressive collapse of p;(¢) onto
the 73 axis with increasing e. (right) The projection onto the
plane r3 = 0 showing the vector field o, (pi(€)) during the
progressive collapse. Notably the quantity 2ImA,,(¢) (73) is
the rate of change of the post-selection probability (41) along
this vector field for all €, but not along the purely decohering
trajectory that p;(e) actually follows.

(72) of a Gaussian qubit detector consequently have the
exact form,

{(4)o

Ho)r = gmv (75a)
g h2 2A —(Ag o)2
f<p>T:ﬁEme (A9/9)"/2 » (75Db)
(rMTrs(pro2) —roTrg(psé)),
ﬁ(f) =1+ r3Tr (ﬁfﬁ'g) (75C)

e A2 (1 Tr (pr61) + roTr(pr6a))

to all orders in the coupling strength g. When expanded
to linear order in g, (75) reduces to (38) with the real
and imaginary parts of the qubit weak value (63), as
expected.

For contrast, as g becomes large the unconditioned
measurement of A becomes essentially projective and the
operation £ almost completely decoheres the initial state
(74) into the basis of A as the pointer basis,

Ep) = 5 (s +733). (76)

Hence, in this strong measurement regime, the condi-
tioned means (75) approximate,

(A)o

o) = Qma (77a)
#p)r =~ 0. (77h)

The position shift contains the average of A in the deco-
hered initial system state £(p;), conditioned by the post-
selection. Moreover, since the decohered initial system
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state £(p;) is essentially diagonal in the basis of A, it
will no longer Rabi oscillate, so the directional derivative
along the flow generated by A will be essentially zero.
Hence, the probability correction factor represented by
2ImA,, (¢) vanishes.

VI. CONCLUSION

We have given an exact treatment of a conditioned von
Neumann measurement for an arbitrary initial state and
an arbitrary post-selection using the language of quan-
tum operations. The full form of the conditioned de-
tector response (34) naturally indicates how the mea-
surement disturbance and conditioning from the post-
selection modify the unconditioned detector response.
The corresponding linear response of the detector (38)
can be parametrized by the generalized compler weak
value (35), but the origins of the real and imaginary parts
differ.

The real part of the weak value (2) stems directly from

the measurement of A made on the initial system state,
and can be interpreted as the idealized zero-disturbance
conditioned average of the operator A acting in its role
as an observable. The imaginary part of the weak value
(3), on the other hand, contains no information about the

measurement of A as an observable, but instead arises
from the disturbance due to the von Neumann coupling.
We interpret it as the logarithmic directional derivative
(41) of the post-selection probability along the unitary
flow in state space generated by the operator A in its
role as the element of a Lie algebra. The complex weak
value therefore captures both halves of the dual role of
the operator A in the quantum formalism.

To illustrate this interpretation, we considered the
weak value of momentum (51) post-selected on a par-
ticular position. Its real part is the Bohmian momen-
tum representing the average momentum conditioned on
a position detection, while its imaginary part (52) is pro-
portional to the “osmotic velocity” that describes the
logarithmic derivative of the probability density for mea-
suring the particular position directed along the flow gen-
erated by the momentum.

Finally, we applied our exact solution to the useful
special cases of a qubit operator and a Gaussian detec-
tor. We showed how the natural qubit Rabi oscillations
that would be generated by the von Neumann interaction
Hamiltonian (4) become disrupted by the measurement.
We also showed that the Gaussian detector purely de-
coheres the initial system state into the basis of A in
the Lindblad sense, which allows the exact interpreta-
tion of the position and momentum shifts of the detector
in terms of a complex weak value (73) that involves the
decohered system state.
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