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We discuss the evolution from BCS to BEC superfluids in the presence of spin-orbit coupling for
a balanced mixture of ultra-cold fermions. The dependence of several thermodynamic properties,
such as chemical potential, order parameter, pressure, entropy, isothermal compressibility and spin
susceptibility tensor on the spin-orbit coupling and interaction parameter at low temperatures are
analyzed. We studied both the case of equal Rashba and Dresselhaus (ERD) and the Rashba-only
(RO) spin-orbit coupling. Comparisons between the two cases reveal several striking differences
in the corresponding thermodynamic quantities. Finally, we propose measuring the isothermal
compressibility and spin susceptibility as a way of detecting the effects of the spin-orbit coupling.
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Superfluidity is a ubiquitous phenomenon that is en-
countered in nearly every area of physics including con-
densed matter, nuclear, astro, and atomic and molec-
ular physics. Superflow results from strong correla-
tions between particles, which for any given interacting
Fermi system could not be controlled externally until re-
cently with the advent of ultra-cold atoms. In standard
condensed matter there is a continuous search for new
charged superfluids (superconductors) since the type and
strength of interactions can not be tuned even within the
same class of materials. In the case of nuclear matter and
neutron stars the tunability of interactions is extremely
difficult. However, the situation is much more favorable
for ultra-cold Fermi atoms, where the ability to control
interactions between particles, via Feshbach resonances,
has been demonstrated in experimental studies of the so-
called crossover from BCS to BEC superfluidity.

Further control of interactions is now possible through
newly developed experimental techniques that allow the
production of fictitious magnetic fields which couple to
neutral bosonic atoms [1, 2]. These fictitious magnetic
fields are generated through an all optical process, but
produce real effects like the creation of vortices in the
superfluid state of bosons. Furthermore, artificial spin-
orbit coupling has also been produced in neutral bosonic
systems [3] where the strength of the coupling can be con-
trolled optically. In principle the same techniques can be
applied to ultracold fermions [3, 4], which, when coupled
with the control over the interaction using Feshbach res-
onances, allows for the exploration of superfluidity not
only as a function of interactions, but also as a function
of fictitious magnetic fields [6], or as a function of spin-
orbit coupling discussed here. An introduction to the
effects of controllable fictitious magnetic and spin-orbit
fields can now be found in the literature [7].

It is in anticipation of experiments involving spin-orbit
coupling in fermionic atoms such as 6Li, 40K, 171Yb and
173Yb, that we discuss here the evolution from BCS to
BEC superfluidity in the presence of controllable spin-
orbit couplings for balanced fermions in three dimen-

sions. We investigate spin-orbit effects with Dressel-
haus [8] and/or Rashba [9] terms, and analyze several
thermodynamic quantities including the order param-
eter, chemical potential, thermodynamic potential, en-
tropy, pressure, isothermal compressibility, and spin sus-
ceptibility tensor as a function of spin-orbit coupling and
interaction parameter at low temperatures.
Hamiltonian: To address the problem of the evolu-

tion from BCS to BEC superfluidity in the presence of
spin-orbit fields for balanced or imbalanced Fermi-Fermi
mixtures, we start with the generic Hamiltonian density

H(r) = H0(r) +HI(r). (1)

The single-particle Hamiltonian density is

H0(r) =
∑

αβ

ψ†
α(r)

[
K̂αδαβ − hi(r)σi,αβ

]
ψβ(r), (2)

where K̂α = −∇2/(2mα)−µα is the kinetic energy in ref-
erence to the chemical potential µα , and hi(r) is the spin-
orbit field along the i-direction (α =↑, ↓, i = x, y, z). The

interaction term is HI(r) = −gψ†
↑(r)ψ

†
↓(r)ψ↓(r)ψ↑(r),

where g is a contact interaction. In this paper we set
h̄ = kB = 1.
Effective Action: The partition function at tempera-

ture T is Z =
∫
D[ψ, ψ†] exp

(
−S[ψ, ψ†]

)
with action

S[ψ, ψ†] =

∫
dτdr

[
∑

α

ψ†
α(r)

∂

∂τ
ψα(r) +H(r, τ)

]
. (3)

Using the standard Hubbard-Stratanovich transfor-
mation that introduces the pairing field ∆(r, τ) =
g〈ψ↓(r, τ)ψ↑(r, τ)〉 we can write the intermediate action
Sint[ψ, ψ

†,∆,∆†] = Sno[ψ, ψ
†] + SI[ψ, ψ

†,∆,∆†], where
the no-interaction action is

Sno[ψ, ψ
†] =

∫
dτdr

[
∑

α

ψ†
α(r)

∂

∂τ
ψα(r) +H0(r, τ)

]
,

and the action due to the auxiliary field is

SI =

∫
dτdr

[
|∆(r, τ )|2

g
−∆ψ†

↑ψ
†
↓ −∆†ψ↓ψ↑

]
.
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Using the four-dimensional vector representation
Ψ†(r, τ ) = {ψ†

↑, ψ
†
↓, ψ↑, ψ↓}, the intermediate action be-

comes

Sint =

∫
dτdr

[
|∆(r, τ )|2

g
+

1

2
Ψ†MΨ+

1

2
(K̃↑ + K̃↓)

]
.

The 4× 4 matrix M is

M =




∂τ + K̃↑ −h⊥ 0 −∆

−h∗⊥ ∂τ + K̃↓ ∆ 0

0 ∆∗ ∂τ − K̃↑ h∗⊥
−∆∗ 0 h⊥ ∂τ − K̃↓


 , (4)

where h⊥ = hx − ihy corresponds to the transverse com-
ponent of the spin-orbit field, hz to the parallel com-
ponent with respect to the quantization axis z, K̃↑ =

K̂↑ − hz, and K̃↓ = K̂↓ + hz . Integration over the fields
Ψ and Ψ† leads to the effective action

Seff =

∫
dτdr

[
|∆(r, τ )|2

g
−

T

2V
ln det

M

T
+ K̃+δ(r− r′)

]
,

(5)

where K̃+ = (K̃↑ + K̃↓)/2 is the average kinetic energy
and V is the volume of the system.
Saddle Point Approximation: To proceed we use the

saddle point approximation ∆(r, τ) = ∆0 + η(r, τ), and
separate the matrix M into two parts. The first one is
the saddle point matrix M0, where the transformation
∆(r, τ) → ∆0 takes M → M0. The second one is the
fluctuation matrix MF = M −M0, which depends only
on η(r, τ) and its Hermitian conjugate.
Using the saddle point approach we write the effective

action as Seff = S0 + SF, where

S0 =

∫
dτdr

[
|∆0|

2

g
−

T

2V
ln det

M0

T
+ K̃+δ(r− r′)

]

is the saddle point action and

SF =

∫
dτdr

[
|η(r, τ)|2

g
+ L −

T

2V
ln det

(
1+M−1

0 MF

)]

is the fluctuation action for all orders in the fluctuation
field, with L = [∆0η

∗(r, τ) + ∆∗
0η(r, τ)] /g. The effects

of fluctuations at both zero temperature and near the
critical temperature will be discussed later.
A transformation to the momentum-frequency coordi-

nates (k, iωn), where ωn = (2n+ 1)πT , leads to

S0 =
V

T

|∆0|
2

g
−

1

2

∑

j,k,iωn

ln

[
iωn − Ej(k)

T

]
+
∑

k

K̃+

T
,

where Ej(k) are the eigenvalues of the matrix

H0 =




K̃↑(k) −h⊥(k) 0 −∆0

−h∗⊥(k) K̃↓(k) ∆0 0

0 ∆∗
0 −K̃↑(−k) h∗⊥(−k)

−∆∗
0 0 h⊥(−k) −K̃↓(−k)


 ,

(6)

which describes the Hamiltonian of the elementary ex-
citations in the four-dimensional vector basis Ψ†(k) ={
ψ†
↑(k), ψ

†
↓(k), ψ↑(−k), ψ↓(−k)

}
defined in momentum

space. The spin-orbit field is h⊥(k) = hR(k) + hD(k),
where the first term is of the Rashba-type hR(k) =
vR (−kyx̂+ kxŷ) , and the second is of the Dresselhaus-
type hD(k) = vD (kyx̂+ kxŷ) . We assume, without
loss of generality, that vR > 0 and vD > 0. The
magnitude of the transverse field is then h⊥(k) =√
(vD − vR)

2 k2y + (vD + vR)
2 k2x. In the limiting cases of

Rashba-only (RO) with vD = 0 and of equal Rashba-
Dresselhaus (ERD) couplings with vR = vD = v/2, the

transverse fields are h⊥(k) = vR
√
k2x + k2y (vR > 0) and

h⊥(k) = v|kx| (v > 0), respectively.
Order parameter and number equations: The saddle

point thermodynamic potential Ω0 = TS0 is obtained by
integrating out the fermions leading to

Ω0 = V
|∆0|

2

g
−
T

2

∑

k,j

ln {1 + exp [−Ej(k)/T ]}+
∑

k

K̄+,

with K̄+ =
[
K̃↑(−k) + K̃↓(−k)

]
/2. The order parame-

ter is determined via the minimization of Ω0 with respect
to |∆0|

2 leading to

V

g
= −

1

2

∑

k,j

nF [Ej(k)]
∂Ej(k)

∂|∆0|2
, (7)

where nF [Ej(k)] = 1/(exp [Ej(k)/T ] + 1) is the Fermi
function for energy Ej(k). We replace the contact in-
teraction g by the scattering length as through the rela-
tion 1/g = −m+/(4πas) + (1/V )

∑
k
[1/(2ǫk,+)] , where

m+ = 2m↓m↑/(m↓ +m↑) is twice of the reduced mass,
ǫk,α = k2/(2mα) are the kinetic energies, and ǫk,+ =
[ǫk,↑ + ǫk,↓] /2. The number of particles at the saddle
point is obtained by Nα = −∂Ω0/∂µα, leading to

Nα =
1

2

∑

k


1−

∑

j

nF [Ej(k)]
∂Ej(k)

∂µα


 . (8)

The self-consistent relations shown in Eqs. (7) and (8)
are general for arbitrary mass and population imbalances.
However, next, we particularize our discussion to the case
of a balanced system with equal masses.
Balanced Populations: In the case of mass and pop-

ulation balanced systems, the four eigenvalues of the

matrix H0 are E1(k) =

√
[ε1(k)]

2
+ |∆0|2, E2(k) =√

[ε2(k)]
2
+ |∆0|2, E3(k) = −E1(k), and E4(k) =

−E2(k). Here, the auxiliary energies are ε1(k) = ξ(k) +
h⊥(k), and ε2(k) = ξ(k) − h⊥(k). The corresponding
order parameter equations at the saddle point level is

V

g
=

1

2

∑

k

[
X1(k)

2E1(k)
+

X2(k)

2E2(k)

]
, (9)
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where Xm(k) = tanh [Em(k)/2T ] (m = 1, 2). Since the
mixture of equal mass fermions is balanced, the chemical
potentials are the same µ↑ = µ↓ = µ, and the associated
number equation is N = −∂Ω/∂µ that reduces to

N =
∑

k

[
1−

X1(k)

2E1(k)
ε1(k)−

X2(k)

2E2(k)
ε2(k)

]
. (10)

In Fig. 1, we show the zero temperature behavior of
|∆0| and µ as a function of 1/(kFas) for various values
of spin-orbit coupling in the equal-Rashba-Dresselhaus
(ERD) and for Rashba-only (RO) cases. In the ERD case
the order parameter |∆0| is independent of v, and the
chemical potential µ(v) is simply µ(v) = µ(0) −mv2/2,
since the transverse field h⊥(k) = v|kx| can be elimi-
nated by momentum shifts along the x-direction, effec-
tively gauging away spin-orbit effects in the charge or

momentum sector. This symmetry also implies that the
critical temperature Tc as a function of 1/(kFas) for finite
v is the same as that for v = 0. However, in the RO case,
shifts in momentum can not gauge away the spin-orbit
coupling, and |∆0| increases with increasing vR, while µ
decreases as vR increases, exhibiting the same tendency
as in the ERD case. In the BCS regime, the increase of
|∆0| with vR also leads to an increase of Tc with increas-
ing vR.
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FIG. 1: Order parameter |∆0| and chemical potential µ (in
units of the Fermi energy ǫF ) as a function of interaction pa-
rameter 1/(kF as) for different spin-orbit couplings vR/vF = 0
(solid), 0.8 (dashed), 1.0 (dotted), and 1.2 (dot-dashed) at
T = 0 in the RO case. For the ERD case |∆0| corresponds
to the solid line in (a), while µ corresponds to the solid line
in (b) shifted by −mv2/2. Here vF = kF/m is the Fermi
velocity and the Fermi system is balanced.

Momentum distribution and excitation spectrum: The
momentum distribution n(k) is obtained from Eq. (10)
using the definition N =

∑
k
n(k). At fixed momentum

component kz = 0 and fixed interaction strength, the
momentum distribution n(k) shifts continuously with in-
creasing spin-orbit coupling in the BCS [1/(kFas) ≪ −1]
or unitarity regimes [1/(kFas) → 0]. For zero spin-orbit
coupling, n(k) is that of a superfluid degenerate Fermi
system with identical single-particle bands ξ(k) and has
a nearly flat momentum distribution until the Fermi mo-
mentum is reached. However, as the spin-orbit cou-
pling is turned on, non-identical single-particle bands

ξ⇑(k) = ξ(k) − h⊥(k) and ξ⇓(k) = ξ(k) + h⊥(k) emerge
in the helicity basis [5] |k⇑〉, |k⇓〉 and produce a double
structure with a reasonably flat momentum distribution
centered around finite momenta in the kx-ky plane. In
the BEC regime [1/(kFas) ≫ 1] the momentum distribu-
tions for weak and strong spin-orbit coupling broadens
substantially due to the loss of degeneracy in the Fermi
system when the chemical potential goes below the min-
ima of the helicity bands and becomes large and negative.
Even though there is a substantial change in the momen-
tum distribution as a function of the spin-orbit coupling,
we notice that the excitation energies E1(k) and E2(k) is
always gapped for all values of the interaction parameter
1/(kFas) or the spin-orbit field h⊥(k), immediately sug-
gesting that thermodynamic properties, which depend on
the excitation energies, evolve smoothly from the BCS to
the BEC regime in the balanced case for fixed values of
spin-orbit coupling. The omnipresence of a gap in the
excitation spectrum shows that the evolution from BCS
to BEC superfluidity at finite spin-orbit coupling for bal-
anced systems is a crossover. The situation is different
for imbalanced systems, where gapless regions emerge in
the excitation spectrum and topological phase transitions
occur, so long as the system is stable [10, 11]. A thermo-
dynamic signature of this crossover for balanced systems
is seen in the isothermal compressibility discussed next.
Isothermal compressibility: An important thermody-

namic property, which can now be measured experimen-
tally using the fluctuation-dissipation theorem, is the
isothermal compressibility

κT = −
1

V

(
∂P

∂V

)

T

=
V

N2

(
∂N

∂µ

)

T

. (11)

As shown in Fig. 2a, for the RO case, the isother-
mal compressibility κT at fixed interaction parameter
1/(kFas) increases with increasing spin-orbit coupling
vR, as the Fermi system becomes less degenerate reducing
the Pauli pressure, and thus more compressible. How-
ever, in the ERD case, the isothermal compressibility for
fixed interaction parameter does not change with increas-
ing spin-orbit coupling v. In this high symmetry situa-
tion the momentum shift in the energy spectrum and the
accompanied shift in the chemical potential do not affect
the degeneracy of the Fermi system or the Pauli pres-
sure, leading to an isothermal compressibility which is
independent of the spin-orbit coupling v.
Equation of State and Entropy: Since the thermody-

namic potential Ω = −PV , the saddle point pressure
is P0(T, µα) = −Ω0/V, which can be shown to be al-
ways positive for arbitrary spin-orbit coupling. The gen-
eral trend of the pressure for fixed interaction param-
eter (from the BCS to the unitarity regimes) is to de-
crease with increasing spin-orbit coupling for both ERD
and RO cases. The situation in the BEC regime re-
quires the inclusion of quantum fluctuations to recover
the corresponding Lee-Yang corrections in the presence
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FIG. 2: a) Compressibility κT (in units of 1/(nǫF )) as a func-
tion of interaction parameter 1/(kF as) at T = 0 and b) en-
tropy per particle S0/N as a function of temperature T (in
units of ǫF ) at unitarity in the RO case, for vR/vF = 0 (solid),
0.8 (dashed), 1.0 (dotted), and 1.2 (dot-dashed).

of spin-orbit effects. The entropy is then calculated from
S = − (∂Ω/∂T )V,µα

. In Fig. 2b, we show the saddle point
entropy S0 for the RO case at unitarity. For fixed T , S0

decreases with increasing spin-orbit coupling due to the
stabilization of superfluidity by the spin-orbit field.
Spin Susceptibility Tensor: A rotation of the matrix

H0 into the helicity basis |k⇑〉, |k⇓〉 introduces order pa-
rameters ∆0,⇑⇑(k) and ∆0,⇓⇓(k), which are controlled
by the spin-orbit coupling. The emergence of the triplet
component affects dramatically the spin susceptibility of
the system. Using standard linear response theory [12],
the Pauli uniform spin susceptibility tensor [13] per unit
volume is

χij = −
µ2
B

V

∑

k

[aij(k) − bij(k)] , (12)

where the spin-spin correlations in the single-particle
channel are aij(k) =

∑
iω Tr [σiG(k, iω)σjG(k, iω)]

and in the pair (anomalous) channel are bij(k) =∑
iω Tr

[
σiF(k, iω)σ

T
j F

†(k, iω)
]
. The matrices G and F

are the block matrices appearing in the inverse of M de-
fined in Eq. (4),

M̃−1(k, iω) =

(
G F

F† G

)
.

In Fig. 3a, we show plots of χzz for the ERD case at
T = 0 as a function of 1/(kFas) for various values of spin-
orbit coupling, and the behavior of χzz for the RO case
is qualitatively similar. In Fig. 3b, we show χzz versus v
in the unitary limit 1/(kFas) = 0. The maximum in χzz

corresponds to the maximum in the triplet component of
∆0. For small and large v the triplet component is small.
In the ERD case χzz = χxx 6= χyy, and in the zero

temperature limit χyy(T → 0) = 0, while χzz = χxx

remains finite for non-zero spin-orbit coupling. In the
RO case χzz 6= χxx = χyy, and in the T → 0 limit
χxx(T → 0) = χyy(T → 0) = χzz(T → 0)/2. Lastly,
for h⊥(k) = 0 (no spin-orbit coupling) the spin sus-
ceptibilty tensor becomes χij = χδij , where the scalar

χ =
[
µ2
B/(2V T )

]∑
k
sech2

[√
ξ2
k
+ |∆0|2/(2T )

]
is the

Yoshida function, which vanishes at zero temperature,
i.e., χ(T → 0) = 0. The existence of non-zero spin re-
sponse even at T = 0 is a direct measure of the induced
triplet component of the order parameter due to the pres-
ence of spin-orbit coupling, since that a pure singlet su-
perfluid at T = 0 must have zero spin susceptibility since
all fermions are paired into a zero-spin state.
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FIG. 3: a) Pauli spin susceptibility χzz (in units of µ2

Bn/ǫF )
as a function of 1/(kF as) at T = 0 in the ERD case for
vR/vF = 0 (solid), 0.8 (dashed), 1.0 (dotted), and 1.2 (dot-
dashed). b) Pauli spin susceptibility χzz as a function of v/vF
at T = 0 at unitarity in the ERD case.

Conclusions: We have studied the effects of spin-orbit
coupling in the evolution from BCS to BEC superfluidity
at low temperatures for balanced populations. We dis-
cussed effects of spin-orbit coupling on thermodynamic
properties including the order parameter, chemical po-
tential, pressure, entropy, isothermal compressibility and
spin susceptibility tensor. Finally, We also proposed a
way to detect experimentally the effects of spin-orbit cou-
pling by measuring the isothermal compressibility and
the spin susceptibility.
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Note added: After the submission of our work [14],

we became aware of additional papers [15–17] that dis-
cuss the effects of spin-orbit fields during the evolution
from BCS to BEC superfluidity for balanced fermions.
While these papers focus on the Rashba spin-orbit cou-
pling only, we also discuss the case of Equal Rashba-
Dresselhaus (ERD) coupling and compute the spin-orbit
dependence of several thermodynamic quantities includ-
ing the entropy, isothermal compressibility and spin sus-
ceptibility tensor.
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