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Enhancement and control of the index of refraction in a mixture of two three-level atomic species
that form a pair of far detuned lambda schemes under two-photon resonance has been studied. We
employ the density matrix approach to properly take into account population relaxation and describe
the interaction of each lambda system with the electromagnetic fields. Both lambda systems are
driven by a corresponding far-detuned coherent field at one atomic transition and probed by the
same weak field. In the dressed state basis, it represents a superposition of effective two-level sub-
systems with the positions, widths and amplitudes of the resonances controlled by the driving fields
and allows for efficient control of the susceptibility of the total system; leading to refractive index
enhancement with vanishing absorption in the absence of amplification. We analyze the experimental
implementation of such a system in a cell of Rb atoms at natural abundance of isotopes. An upper
limit estimate of the refractive index enhancement is obtained.

I. INTRODUCTION

Tightly focused laser radiation allows for the selective
addressing of small regions of a medium. In microscopy,
it is used to image tiny objects such as biological cells,
organic molecules or NV centers in diamond. In lithog-
raphy, it is used for production of miniature semicon-
ductor integral circuits. In information processing, it is
used to provide multiple parallel optical channels. For
all of these applications, a key issue is the spatial res-
olution which is defined by the minimum spot size the
laser radiation can be focused to. This focal spot size is
fundamentally limited by the wavelength of light in the
medium, λ, which depends on the refractive index n as
following: λ = λvac/n. Thus, high refractive index (RI)
is very important for achieving high spatial resolution
in all of these applications. Materials with enhanced RI
on demand would also be important for phase shifters,
interferometers, and magnetic Faraday rotators.
Index of refraction characterizes the response of a

medium to electromagnetic radiation and hence it is
strongly enhanced near the atomic resonance. However,
if a medium is in thermal equilibrium the enhancement
of RI near the atomic resonance is accompanied by an
enhancement of absorption. Such that, when the maxi-
mal contribution from the atomic resonance to the RI is
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reached, the contribution to the absorption is the same.
As a result, a 2π phase shift and e-fold absorption take
place at the same distance in a medium, which prevents
usage of the obtained RI in transmission experiments. In
a inverted medium, high RI in the vicinity of the atomic
resonance is accompanied by high gain. However, even
higher gain is present at exact resonance which makes
such a system unstable and again non-suitable for high
index applications.

A mixture of atomic species will provide overlapping
absorption and gain if the difference in resonance frequen-
cies is on the scale of the linewidth and one of the atomic
species is inverted. A proper overlap could result in high
refractive index with vanishing absorption for a weak field
properly tuned between two atomic resonances. However
the difficulties associated with the practical implementa-
tion of such a combined system (finding proper species,
providing for an even mixture, and providing population
inversion for one species while avoiding spatial fluctua-
tions of density and population exchange, etc.) would
hardly be surmountable [1].

We consider here an idea, to use coherent effects in a
mixture of different species to induce strong and overlap-
ping electromagnetic responses to provide high refractive
index with vanishing absorption. The use of a coher-
ent preparation of a medium for elimination of absorp-
tion and index enhancement was pioneered by Scully [2],
which was further generalized in [3] by including the den-
sity dependent near dipole-dipole interactions. A number
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of other three and four level schemes followed. They in-
volved resonant driving at one or two atomic transitions
and probing in a way that resonant enhancement of re-
fractive index enhancement is accompanied by vanishing
absorption [1]. It was expected that χ ∼ 1 without ab-
sorption would be possible in high density (Nλ3 ≈ 50)
alkali but with a undesirable amplification region. Two
schemes, however a so called double dark resonance and
degenerate double Λ-scheme allowed for the elimination
of the gain region though under a rather exotic and nar-
row range of parameters [4]. These developments led to
a proof of principal experiment in Rb vapors, with a den-
sity of 1012 cm−3, which showed refractive index enhance-
ment with vanishing absorption. Although Nλ3 ≈ 1 was
achieved, the magnitude of index enhancement in this
experiment was quite low, of an order of ∆n = 10−4 [5].

Recently, a new scheme for coherent control and index
enhancement was suggested by Yavuz [6]. This scheme is
based on a resonant four level system involving two Ra-
man transitions optically pumped into the ground state
and driven by two far off-resonant control fields forming
two Λ-systems with the same probe field. The disper-
sive and absorption characteristics in such a system as
functions of two-photon detuning essentially interchange
so that the maximum resonant refractive index is accom-
panied by vanishing absorption. Similar to the previ-
ous proposals involving resonant driving the effect was
attributed to interference and an index on the order of
10 for alkali vapors with densities (1017 cm−3) was pre-
dicted. Undesirable gain in the vicinity of vanishing ab-
sorption was also present.

We study a similar but simpler system. It represents
itself as a mixture of two three-level atomic species each
driven by a corresponding far-detuned coherent field at
one atomic transition and probed by the same weak
field at a adjacent transition in the vicinity of two-
photon resonance. This system was used in a proof of
principal experiment which showed an enhancement of
∆n = 2.2·10−7 [7]. In this work, we analyze the phys-
ical mechanisms responsible for index enhancement in
the case of far off-resonant driving and its limitations.
We present a simple physically intuitive picture in the
decaying dressed state basis [8]. We then extend this
analysis to include inhomogeneous broadening. In or-
der to understand the limitations of refractive index en-
hancement in general and in this two lambda scheme,
we give a proper treatment of collisional broadening to
show that any given mixture has a maximum possible
index enhancement. We then give a detailed analysis of
the proposed system in a cell of Rb atoms with natural
abundance (72% 85Rb and 28% 87Rb) and compare to
the experimental results from [7]. An upper limit due
to the dipole-dipole broadening at high atomic density
of the refractive index enhancement in such a system is
estimated as ∆n ≃ .2.

FIG. 1. (Color online) Mixture of two three-level Λ systems.
The initially populated level is indicated by the dots.

II. THREE-LEVEL COHERENTLY DRIVEN

SYSTEM: DENSITY MATRIX FORMALISM

We consider a mixture of two atomic species with the
density of atoms for each species Ns1 and Ns2 being free
parameters. Each of them is represented as a three-level
system, labeled by si ∈ {s1, s2}, with one excited state
and two ground state sub-levels labeled |ai〉, |bi〉 and |ci〉,
correspondingly (see Fig. 1). The system, driven by a
pair of coherent fields with frequencies ωsi and Rabi fre-
quencies Ωsi, is probed by a weak field with frequency ωpr

and Rabi frequency αsi. The driving field Rabi frequen-
cies Ωsi = dacsi Esi/(2h̄) are defined by the applied electric
field Esi and the dipole moment of the transition dacsi . The
Rabi frequencies of the probe field αsi = dabsi Epr/(2h̄) in
each system may be different because the dipole moment
of the probed transition in s1-system can be different
from the dipole moment of the probed transition in s2-
system. All-fields are far off-resonance from the atomic
transitions so that one-photon contributions are negligi-
ble, implying ∆si ≫ Ωsi. The frequencies of the fields are
chosen in such a way that they result in one two-photon
transition in each three-level system involving one pho-
ton from the probe field and one photon from the corre-
sponding driving field. So each three-level system forms
a Λ scheme with the same probe and corresponding driv-
ing field (see Fig. 1). Each three-level system is initially
prepared in one of the two ground state sublevels via op-
tical pumping as indicated in Fig. 1. So the first scheme
exhibits two-photon absorption for the probe field while
the second scheme provides two-photon gain.
The index of refraction and absorption coefficient can

be found if the complex susceptibility is known. In our
system the total complex susceptibility is equal to the
sum of individual contributions from each of the three-
level systems. The complex susceptibility itself can be
calculated if the optical coherence excited by a weak
probe field is known:

χsi =
3

8π2
γsi
r Nsiλ

3
pr

σsi
ab

αsi
, (1)
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where γsi
r = 4

3
(dab

si )
2

4πǫ0h̄
(2π)3

λ3
pr

= 8π2(dabsi )
2/(3ǫ0h̄λ

3
pr) is the

radiative decay rate of the probed transition, λpr is the
wavelength of the probe, and σsi

ab is the coherence of the
probed transition.
We use density matrix formalism and the rotating wave

approximation to calculate optical coherence induced by
a weak probe field applied to a↔b transition in a three-
level system driven off-resonance by a field applied to an
adjacent transition a↔c. This formalism allows for in-
cluding dephasing rates γsi

αβ at α↔β transitions, where

{α, β} = {a, b, c}. Similar to [6] we assume that driv-
ing fields do not disturb an initial population distribu-
tion, which implies either sufficiently short interaction
time tintΩ

2
si/∆si ≪ 1 or sufficiently strong optical pump-

ing through some additional levels (not indicated in the
Fig. 1).
The slowly varying amplitude of the optical coherence

induced by a weak probe field αsi ≪ Ωsi, γ
si
ab is found to

be:

σs1
ab =

(

δs1 − iγs1
cb

)

αs1

(δs1 +∆s1 − iγs1
ab) (δs1 − iγs1

cb)− |Ωs1|2
, (2)

for s1-system presented on Fig. 1 (left), while for s2-
system presented on Fig. 1 (right) it is found to be:

σs2
ab = − |Ωs2|2

(

∆s2 + iγs2
ac

)

−1
αs2

(δs2 +∆s2 − iγs2
ab) (δs2 − iγs2

cb)− |Ωs2|2
. (3)

In these equations, we introduced the following param-
eters for si-system: ∆si = ωsi

ab − ωsi
cb − ωsi and δsi =

ωsi + ωsi
cb − ωpr are the one- and the two-photon detun-

ings for si-drive field, respectively.

Finally, we can write down the expression for complex
susceptibility of the system:

χ (ωpr) =
3λ3

pr

8π2

(

Ns1γ
s1
r

(

δs1 − iγs1
cb

)

(δs1 +∆s1 − iγs1
ab) (δs1 − iγs1

cb)− |Ωs1|2
− Ns2γ

s2
r |Ωs2|2

(

∆s2 + iγs2
ac

)

−1

(δs2 +∆s2 − iγs2
ab) (δs2 − iγs2

cb)− |Ωs2|2

)

. (4)

In the following sections, individual contributions are dis-
cussed and physical insights are given.

III. DRESSED-STATE ANALYSIS: EFFECTIVE

TWO-LEVEL SYSTEMS

The slowly varying amplitude of the optical coherence
induced by a weak probe field in a Λ-configuration is in-
versely proportional to a quadratic polynomial in terms
of the two-photon detuning δsi. Zeros of this polynomial
correspond to the two main contributions to the optical
coherence. Expanding the coherence into Lorentzians de-
fined by each zero gives the decaying dressed states as has
been previously discussed in [8].
For the case of a far-detuned driving field, ∆si ≫

Ωsi, γ
si
ab, γ

si
cb, these resonance contributions are far-

detuned as well and associated with one- and two-photon
resonances. This is clearly seen for s1 after expanding
Eq. 2 in terms of the small parameter ξsi = |Ωsi|2/∆2

si:

σs1
ab =

αs1(1 − ξs1)

δs1 −∆s1(1 − ξs1)− i[γs1
ab(1− ξs1) + γs1

cbξs1]

+
αs1ξs1

δs1 −∆s1ξs1 − i[γs1
cb(1− ξs1) + γs1

abξs1]
. (5)

If ∆s2 ≫ γs2
ac as well, a similar expression can be found

for s2 with the exception that the two photon amplitude
is now negative and therefore provides gain due to the
population in level |c2〉; while the one photon amplitude
is different since the feature would no longer be present

in the absence of a control field:

σs2
ab =

αs2ξs2
δs2 −∆s2(1− ξs2)− i[γs2

ab(1− ξs2) + γs2
cbξs1]

+
−αs2ξs2

δs2 −∆s2ξs2 − i[γs2
cb(1− ξs2) + γs2

abξs2]
. (6)

Furthermore, our probe field ωpr is tuned to the vicin-
ity of two-photon resonance (δsi ≪ ∆si) therefore the
contribution from the one photon-resonance of the sec-
ond system can always be neglected, while the one photon
contribution of the first system can be neglected when
γs1
ab/∆s1 ≪ ξs1.
When the low frequency coherence decays slower than

the optical one γsi
ab ≫ γsi

cb, the contribution from the two-
photon resonance can be nearly as large as the contribu-
tion from the one-photon resonance. This would simply
require ξsi ≥ γsi

cb/γ
si
ab. Hence, both of our three level

schemes behave as effective two level schemes with sus-
ceptibilities on the same order as the ones for the original
transition. The presence of the drive fields allow for the
control of the strength, width, and position of the reso-
nances. This, in turn, leads to the manipulation of the
atomic responses of the individual systems (see Fig. 2).
We will use this flexibility combined with appropriate
mixing of the species to obtain enhanced refractive index
without absorption.
At first, we take an approach similar to [6]. It is based

on the absorption and amplification resonances having
the same magnitude and width; while being separated by
the full width at half maximum (FWHM). This arrange-
ment results in the absorption being compensated by
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FIG. 2. (Color online) An equivalent representation of a
mixture of two three-level sub-system driven by coherent off-
resonant fields.
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FIG. 3. (Color online) Combined real (solid) and imaginary
(dashed) parts of the susceptibility from two three-level sys-
tems. Where the x-axis is normalized to γs1

ab = γs2
ab = γab,

and the y-axis is normalized to η = 3Ns1λ
3
prγ

s1
r /(8π2) =

3Ns2λ
3
prγ

s2
r /(8π2) = 1. With Ωs1 = Ωs2 = 2γab, ∆s1 =

∆s2 = 20γab, and γs1
cb = γs2

cb = 0.016γab. Resonances have
equal strength and width, but are shifted by FWHM. Ob-
tained maximum at zero absorption is 0.5η.

nearby gain. Furthermore, at the point of no absorption
the maximum(minimum) of the real part of the complex
susceptibility associated with the absorption resonance
adds up with the maximum(minimum) of the real part
of the complex susceptibility associated with the gain res-
onance. We demonstrate this (see Fig. 3) by calculating
the atomic response from a mixture of two three-level
sub-systems for the case of ξsi ≈ γsi

cb/γ
si
ab. Numerical val-

ues of the parameters used are listed in the caption to
the figure. Although this arrangement provides a high
value of refractive index with no absorption, the disad-
vantage of such an approach can easily be seen in Fig. 3.
Namely, non-compensated gain is present in close prox-
imity to the point of enhanced refractive index. In order
to avoid undesirable gain in the system, we suggest an
alternative to the previously outlined approach. This is
done at the expense of a reduced enhancement of the re-

-0.3 -0.2 -0.1 0.1 0.2 0.3
∆ HΓabL
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-0.2

0.2

0.4

0.6

0.8

Χ

FIG. 4. (Color online) Combined real (solid) and imaginary
(dashed) parts of the susceptibility from two three-level sys-
tems. With Ωs1 = 4γab and Ωs2 = 1.5γab, and all other
parameters the same as in Fig. 3. Amplification is weaker
and narrower than absorption. The relative shift is adjusted
to get zero absorption and no gain. Obtained maximum at
zero absorption is 0.33η.

fractive index. In this approach a narrower amplification
resonance is superimposed on top of a broader absorption
resonance as previously suggested in [9]. The amplifica-
tion resonance is positioned at the maximum of the real
part of the complex susceptibility associated with the ab-
sorption resonance. The magnitude of the amplification
resonance is chosen to compensate present absorption
in the narrow region without providing gain. For such
an arrangement, the amplification resonance provides no
contribution to the refractive index enhancement at the
point of no absorption. In order to demonstrate the ap-
proach, we present the atomic response of the mixture of
two three-level systems in Fig. 4 for the parameters listed
in the caption of the figure.
As an alternative for the species providing absorption,

instead of a three level system we can just use a two
level atom that provides absorption. This is natural since
we want the absorption feature to be both stronger and
wider than the gain feature, and the effective two level
transition will always be weaker and narrower than the
original two level transition. The only reason this is not
always ideal is it eliminates one of knobs we can turn to
match the transitions. Since the same probe field will
address both the two level absorption transition and the
far-detuned lambda scheme, it is necessary for the one
photon detuning of our gain system to match the dif-
ference in transition frequencies between the two transi-
tions i.e., ∆s2 ≈ ωs2

ab − ωs1
ab. Since we also need the one

photon detuning to be much larger than the linewidth
of the optical transition then for this implementation to
be appropriate we need ωs2

ab − ωs1
ab ≫ γsi

ab, but since the
control field Rabi frequency is proportional to ∆s2, we
need the difference to be small enough such that a rea-
sonably sized control field Rabi frequency can still satisfy
ξs2 > γs2

cb/γ
s2
ab. If either of these conditions are not sat-

isfied we are forced to use a far-detuned lambda scheme
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for both absorption and gain.
So far, we have been discussing the atomic response of

a pair of three-level systems. This discussion has demon-
strated that refractive index with no absorption is pos-
sible to obtain in the presented system. The maximum
value for the refractive index is limited by the value for
the original two-level system with the main difference
that it is achieved with no absorption or amplification in
the vicinity of maximum value. Therefore in order to get
the maximum value of refractive index enhancement the
original two level resonant susceptibility has to be maxi-
mized by choosing an appropriately high concentration.

IV. EFFECT OF INHOMOGENEOUS

BROADENING

It has been shown in the previous section that the two
photon resonant feature is equivalent to an effective two
level atomic system with the amplitude, frequency, and
width of the transition controlled by the driving field.
Furthermore, the electromagnetic response of this effec-
tive system can be as strong as the resonant response of

an actual two level system. This was shown under the as-
sumption of homogeneous broadening, when values of the
Rabi frequency Ωsi and one-photon detuning ∆si are well
defined by intensity and frequency of the driving field.
In the case of inhomogeneous broadening of the probed
transition the frequency of the driving field defines only
the mean value of one-photon detuning ∆0 while vari-
ance is defined by inhomogeneous broadening. Namely,

∆si = ∆0 +∆inh with
〈

∆2
inh

〉

−〈∆inh〉2 =
(

γinh
ab

)2
, where

〈· · · 〉 is averaging over the inhomogeneous profile. For the
case of inhomogeneous broadening of the c↔b transition
we only have a mean value of the two photon detuning δ0
while the varying detuning is given by δsi = δ0+δinh with
〈

δ2inh
〉

− 〈δinh〉2 =
(

γinh
cb

)2
. Therefore, the two-photon

transition probability, frequency, and width are also not
well defined.

The inhomogeneous profile in both solids and gases will
be Gaussian, but in order to easily deal with the analytic
expressions we will approximate with a Lorentzian pro-
file. If we start with the coherence given by Eq. (2) or
Eq. (3), we can integrate over the Lorentzian distribu-
tions of the one and two photon detunings:

σinh
ab =

∫

∞

−∞

d∆inh
γinh
ab /π

∆2
inh + (γinh

ab )2

∫

∞

−∞

dδinh
γinh
cb /π

δ2inh + (γinh
cb )2

σab(∆inh, δinh). (7)

In the limit examined in Section III, ∆0 > γsi
ab, γ

si
cb,Ωsi,

these integrals can be solved analytically which shows
that the inhomogeneous profile can be taken into consid-
eration in all the equations we derive simply by replac-
ing the homogeneous linewidths with the total linewidth
that includes the inhomogeneous broadening i.e., γsi

ab →
γsi
ab+γinh

ab +γinh
cb and γsi

cb → γsi
cb+γinh

cb . Except for system
2 where we also have to replace γsi

ac → γsi
ac − γinh

ab . It is
important to keep in mind this is not a change in the
linewidth of the a↔c transition, just in how the decoher-
ence of this transition comes into Eq. (3), and Eq. (6) is
still valid when ∆s2 ≫ γinh

ab .

Therefore, one can see that the quantity that matters
is the total linewidth. Thus all previous discussion could
be repeated here with γsi

ab being replaced by the total
linewidth. This makes our final statement to sound as
follows: electromagnetic response of an effective two-level
system, which is fully controlled by a weak off-resonance
driving field, is as strong as the resonant electromagnetic
response of the actual two-level a↔b transition without
a driving field being present regardless of the broadening
if the total linewidth is considered. Broadening of the
transition beyond the natural linewidth weakens the re-
sponse of the system as well as the intensity required to
reach the maximal obtainable value.

V. COLLISIONAL BROADENING

Electromagnetic response of an atomic system can be
increased by improving the γsi

r /γ
si
ab ratio and by having

more atoms per cubic wavelength Nsiλ
3
pr. The second ap-

proach seems to be the easiest but it leads to a decrease
of the aforementioned ratio due to atomic interaction in
dense media. The large estimates for achievable refrac-
tive indexes in previous works were due to not considering
the effect of increasing density on the ratio γsi

r /γ
si
ab. Ac-

cording to Lewis [10], the collisional contribution to the
linewidth is proportional to concentration N, namely the
HWHM is:

Γsi
coll ≃ fsicreλprN

√

gsig /g
si
e , (8)

with gsig and gsie to be the degeneracies of the ground
and excited states, respectively; re is the classical ra-
dius of the electron, and fsi is the oscillator strength
of the transition. This broadening comes from reso-
nant dipole-dipole interaction between induced optical
dipoles. Where in Eq. (8) we have used the total pop-
ulation N = Ns1 + Ns2, since atoms with similar tran-
sition frequencies will be identical with regard to colli-
sions. For example take the 85Rb D1 line, Eq. (8) gives
Γcoll = .365·10−13MHz·cm3·N and [11] measured the
self broadening as Γcoll = .375(±.12)·10−13MHz·cm3·N
therefore this equation gives an accurate estimate.
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FIG. 5. (Color online) The peak real part of the susceptibility
for the D2 line of 85Rb as a function of absolute temperature.

For a Doppler broadened gas, the inhomogeneous
broadening additively contributes to the total broadening
in our scheme. The Doppler contribution is given by the
half width at half maximum (HWHM) of the Maxwell
distribution for each species:

Γsi
D =

√

2kT ln2

msic2
ω0. (9)

Where k is Boltzmann’s constant, T is the absolute tem-
perature of the gas, msi is the mass of the atomic species,
c is the speed of light, and ω0 = 2πc/λpr is the transition
frequency.

In a hot gas cell the density will be determined by
the temperature of the cell, so both the inhomoge-
neous Doppler broadening and the homogeneous colli-
sional broadening are dependent on the density. Since we
want a large resonant refractive index we are interested
in high gas densities. The susceptibility of the effective
two level system will always be constrained by the orig-
inal two level susceptibility of the a↔b transition given
by:

χsi
max =

3

8π2

Nsiλ
3
prγ

si
r

.5γsi
r + Γsi

D + Γsi
coll

. (10)

Since the linewidth and total atomic response grow lin-
early with concentration, eventually with increased den-
sity the susceptibility will saturate. This happens when
Γsi
coll ≫ .5γsi

r + Γsi
D.

Consider the D2 line of 85Rb with Γcoll =
.515·10−13cm3MHz·N, when the collisional broadening
becomes much larger than the other broadening terms
the two level susceptibility saturates at 750K or a density
of N≈ 6·1017cm−3 (see Fig. 5). This leads to a maximum
real part of the resonant susceptibility of .885 or a refrac-
tive index of 1.37. Therefore there is no way to enhance
the refractive index of Rubidium past ∆n = .4.

VI. RATIO OF HYPERFINE COHERENCE TO

OPTICAL COHERENCE

The main limitation for our effective 2 level transition
to have as high a susceptibility as the original transi-
tion, is the need for a strong control field Rabi frequency
|Ωsi|2 > ∆2

siγ
si
cb/γ

si
ab. Therefore to minimize the needed

intensity, we need as small hyperfine decoherence as pos-
sible γsi

cb ≪ γsi
ab.

At low densities the main contribution to the hyperfine
decoherence will be due to time of flight in our control
beams, since as atoms leave the interaction region the
coherence decreases. This decoherence rate can be de-
scribed as [12]:

Γsi
TF =

√
2ln2

2πd

√

2kT

m
, (11)

where d is the 1/e diameter of the beam. While at high
densities the main contribution to the hyperfine broad-
ening is the decay of hyperfine population due to spin-
exchange collisions between two atoms. This self broad-
ening, like collisional broadening is linearly proportional
to the density. For example for 85Rb we can estimate the
decoherence as Γsi

SB = 2π·2.83·10−16N·MHz [13].

The time of flight decoherence can be decreased by
including a neutral buffer gas. Then as our atomic species
is leaving the beam area it will repeatedly collide with
the buffer gas atoms leading to a longer path length in
the beam. With the background gas, the time of flight
decoherence rate given by Eq. (11) will be replaced by
[10]:

Γsi
TF =

(

4.81

d

)2

D0
P0

PBG
, (12)

where D0 is the diffusion coefficient measured at a ref-
erence pressure of P0, and PBG is the buffer gas pres-
sure. The buffer gas will also broaden both transitions
due to collisional broadening, while even at high buffer
pressures, collisions with the buffer gas will only have a
negligible effect on γsi

cb, but will have a noticeable ad-
dition to the optical coherence that scales linearly with
buffer gas pressure. At high buffer gas pressures this ef-
fect can significantly reduce the maximum susceptibility
possible.

For example consider the Rb D2 line, we can express
the buffer gas contribution to the collisional decoherence
is Γsi

BG = 2π·(4.735MHz/Torr)·PBG with PBG measured
in Torr [14]. D0 = .21cm2/s for P0 = 760 Torr [15], giv-
ing for d = 1mm, Γsi

TF = 2π·.369MHz·Torr/PBG. For
this case the effect of the buffer gas on the decoherence
ratio is shown in Fig. 6. Since the collisional broadening
increases as the buffer gas pressure is increased, for max-
imum refractive index enhancement it is better to use a
low pressure buffer gas as can be seen in Fig. 7.
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FIG. 6. (Color online) The ratio of hyperfine to optical deco-
herence rates for the D2 line of 85Rb plotted as a function of
temperature for the case where there is no buffer gas (solid),
with a Neon buffer gas at 10Torr (dashed), and at 300Torr
(dot-dashed).
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FIG. 7. (Color online) The maximum real part of the 2 level
susceptibility for Rb D2 line plotted as a function of the buffer
gas pressure. Plotted at a temperature of 550K.

VII. IMPLEMENTATION IN GAS

Alkali metals such as Lithium, Rubidium, Potassium
have been good test systems for demonstrating many co-
herent effects. To demonstrate refractive index enhance-
ment, one needs to find two transitions with frequency
differences in the MHz to GHz range. This is possible if
a mixture of isotopes is considered. Of the three alkali
atoms with stable isotopes however, only Rubidium has
a comparable ratio of naturally occurring isotopes (28%
of 87Rb and 72% of 85Rb) and large enough hyperfine
splitting. Thus as a physical example, let us consider a
mixture of Rb vapors at natural abundance.

Rb atoms have two suitable transitions called D1 at
794.8 nm and D2 at 780.2 nm. The D1 and D2 transi-
tions have common ground levels and differ in the excited
state. The excited level structure for the D1 and D2
transitions has a separation less than 0.8GHz thus for

one-photon detunings much larger than this separation
the value of effective far-detuned dipole moment can be
used. Numerical values for π-polarized light are 1.727ea0
and 2.44ea0 for D1 and D2 transitions correspondingly.
A stronger dipole moment guaranties a stronger atomic
response and therefore lager susceptibilities. A stronger
dipole moment also implies a lower intensity requirement
for the control fields to reach the needed Rabi frequency.
Therefore the D2 transition seems to be the optimal
choice from all the accounts. The natural linewidth of
the Rb D2 absorption line is 2π·6.067 MHz, although the
radiative decay rate is 2π·5.12MHz.
In order to implement refractive index enhancement

with vanishing absorption while maintaining no nearby
regions of gain in a Rb gas it is necessary to implement
system 1 in 85Rb and system 2 in 87Rb. Since at natural
abundance the density of 85Rb is nearly three times larger
than 87Rb and we need the effective absorption transi-
tion to be stronger than the effective gain transition. This
choice also determines the one photon detuning for sys-
tem 1 since if we want the same probe field to address
both transitions then the difference in transition frequen-
cies ωab(

87Rb)−ωab(
85Rb) = 2π·.39GHz determines the

difference in one photon detunings. The ground state
of Rb has 2 hyperfine levels separated by 2π·3.036GHz
and 2π·6.835GHz for 85Rb and 87Rb isotope respectively.
We assume that the probe field is applied to the lower
of the two hyperfine levels and the control fields to the
upper. First it tells us that we need ∆si > 2π·8GHz in
order to avoid one photon resonance, therefore we will
take ∆s2 = 2π·10GHz, implying ∆s1 = 2π·10.385GHz.
Except for the transition frequencies all other proper-

ties of interest for 85Rb and 87Rb including the dipole
moments and the decoherence rates are essentially the
same, when the slight mass difference is neglected. The
decoherence rate of the optical transition has four con-
tributions: γsi

ab = .5γsi
r +Γsi

coll+Γsi
D+Γsi

BG. The radiative
decay rate is fairly unaffected by density and is given by
γsi
r = 2π·5.12MHz. As discussed in Section V, we can

take the ideal density for Rb to be N = 6·1017cm−3; un-
fortunately, at this density γsi

ab = γsi
ac = 197GHz which

violates our condition to avoid the one photon absorption
of ∆si ≫ γsi

ab, γ
si
ac, since having such a large one photon

detuning would lead to a unachievable Rabi frequency.
Say for our control fields we are limited to focusing a

100mW beam into a diameter of 1mm, this would give
us Rabi frequencies of 2π·150MHz, so we take Ω1 =
2π·150MHz and Ω2 = 2π·135MHz. Implying the max
control field ratio ξsi we can achieve is 2.25·10−4. The
decoherence ratio is equal to this ξsi at a temperature of
T = 450K, or a density of N = 3.3·1014cm−3 so at nat-
ural abundance we have Ns1 = .72N and Ns2 = .28N.
For a fixed ξsi, a smaller buffer gas pressure is bet-
ter so we will take PBG = 10Torr. This buffer gas
will add 2π·47MHz to the optical decoherence, and the
time of flight broadening is Γsi

hyp,BG = 2π·37kHz. At

this density the hyperfine self broadening is Γsi
hf,self =

2π·93kHz, so γsi
cb = 2π·130kHz. The collisional broaden-
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FIG. 8. (Color online) The real (solid) and imaginary
(dashed) part of the susceptibility as a function of the de-
tuning, plotted for the scheme without gain and with Ω1 =
2π·150MHz described in the text.

ing is Γsi
coll = 2π·17MHz, and the Doppler broadening is

Γsi
D = 2π·315MHz, therefore γsi

ab = 2π·382MHz. Giving a
ratio of γsi

cb/γ
si
ab = 3.4·10−4.

With these values for the detunings and Rabi frequen-
cies the susceptibility is plotted in Fig. 8. There is a
particular frequency where we have vanishing absorption
and a significant resonant susceptibility Reχ = .0095.
At the same time we have no regions of nearby gain so
that the probe field will remain stable at that frequency.
Therefore in a hot Rb gas we have a maximum refractive
index enhancement on the order of ∆n ≈ 4.7·10−3.
When it is possible to use strong control fields we

can achieve the maximum possible susceptibility increase.
Consider focusing a 10W beam into a 1mm diameter,
then the Rabi frequencies are Ωs1 = Ωs2 = 2π·1.5GHz.
This allows us to use larger one photon detunings to
∆s1 = 2π·20GHz, ∆s2 = 2π·20.27GHz. Which gives
ξs1 = .0055, allowing for a higher ratio of γsi

ab/γ
si
cb. Tak-

ing T = 600K, gives us N = 4·1016cm−3 which leads to
γsi
ab = 2π·4.667GHz and γsi

cb = 2π·71MHz. Then the
change in index is ∆n = .18.
Since the isotope shift for Rubidium ωab(

87Rb) −
ωab(

85Rb) = 2π·.39GHz is smaller than our linewidths
it would not be possible to use the two level transition
rather than the effective two level transition for absorp-
tion as discussed at the end of Section III. To implement
such a system, we would need isotope shifts on the order
of 10GHz, which are only possible when the masses of
the two isotopes are significantly different compared to
the isotope mass. For example such a system could be
implemented in Lithium.

VIII. EXPERIMENTAL REALIZATION

A proof of principal experiment to demonstrate res-
onant enhancement of refractive index in hot Rb gas
was performed by Yavuz [7]. The same two lambda
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FIG. 9. (Color online) The real (solid) and imaginary
(dashed) part of the susceptibility as a function of the de-
tuning, plotted for the scheme with Ω1 = Ω2 = 2π·1.5GHz as
described in the text.
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FIG. 10. (Color online) The expected refractive index en-
hancement for experiment described in [7] plotted as a func-
tion of two photon detuning, using the experimental numbers
as reported in the text.

systems in 85Rb and 87Rb at natural abundance using
the D2 line and a 10Torr Neon buffer gas was imple-
mented. The Rb cell was kept at 363K so the Rb den-
sity is N = 2.4·1012cm−3, the optical broadening should
be γsi

ab = 2π· 334MHz, and the hyperfine broadening
should be γsi

cb = 2π·16kHz. The laser power is given
as a 100mW focused in a 2.4mm diameter spot size,
implying that Ωsi < 2π·63MHz. Based on the exper-
imental results of both the gain and absorption being
roughly equal in height and width with a two photon
HWHM of 125kHz we can assume that Ωs1 = 2π·34MHz
and Ωs2 = 2π·58MHz. The control fields in the ex-
periment are taken such that ∆s1 = 2π·15.6GHz and
∆s2 = 2π·16GHz. With an applied pump field inten-
sity of 1.77W/cm2, numerical simulations show that for
a pump field with a bandwidth of about 500MHz the
population difference for both systems would be close to
1 as needed, with the largest deviation in system 2 with
σs2
cc − σs2

aa = .93.
The theoretical curve for the resonant refractive index
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with these parameters is plotted in Fig. 9. The theory
predicts a change in index of ∆n = 1.7·10−5. The theory
also shows that there is a background index due to the
one photon feature of n = 1 + 4·10−6, since ξs1 < γs1

cb/γ
s1
ab.

The reported refractive index change of ∆n = 2·10−7

is two orders of magnitude less than what was possible in
the experiment [7] due to issues with the cross pumping
of the 87Rb and 85Rb populations. As explained in [7],
this could be due to the frequency width of the pump
fields being larger than the separation between the hy-
perfine level of 87Rb and 85Rb which would reduce the
population difference between levels |ci〉 and |bi〉 and thus
significantly reduce the RI enhancement.

IX. CONCLUSION

We have given a simple model for how to implement re-
fractive index enhancement without absorption in Rb gas
while avoiding any nearby regions of gain. This is done
by implementing a far detuned Λ system in two different
atomic species evenly mixed in a hot gas. In the decaying
dressed states basis the whole system can be presented
as a superposition of two effective two-level schemes with
positions, widths, and amplitudes of the resonances de-
termined by the driving fields. It allows for a simple,
analytic, and intuitive understanding of the susceptibil-
ity for the total system. Thus a variety of absorption,
amplification, and dispersion profiles may easily be en-
gineered. In particular, maximum refractive index with
vanishing absorption results from the simple summation
of susceptibilities of the effective absorbing and ampli-

fying two-level schemes whose resonances are positively
and negatively tuned with respect to the probe field fre-
quency. Engineering a larger width for the absorptive
resonance allows one to eliminate any amplification re-
gion in the vicinity of the enhanced index and vanish-
ing absorption. Proper tuning also allows for the strong
increase or decrease of refractive index under vanishing
absorption.

We have shown that with reasonable beam intensities
this scheme can be implemented in 85Rb and 87Rb at
natural abundance for refractive index enhancement on
the order of ∆n ≃ 5·10−3. This can be done while main-
taining vanishing absorption and with no nearby regions
of gain. Potentially higher resonant refractive indexes
with vanishing absorption could be obtained with much
stronger beam intensities or in solids (in particular, in
rare-earth and/or transition metal ions doped dielectric
crystals or stoichiometric crystals including such ions)
[9, 16]. The further analysis of the limitations of reso-
nant index enhancement requires careful studies of opti-
cal line self-broadening with an increase of the density,
and the inclusion of local field effects [17]. Along with
the achievement of high refractive index, it would also
be very beneficial for a number of applications to provide
for its temporal or spatial modulation. For example, it
would allow for the production of controllable photonic
structures in a homogeneous media simply by applying
optical fields [18].

This research was supported by NSF grant No.
0855688. The authors are grateful to Deniz Yavuz for
useful discussions.
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