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The entanglement properties of two-mode field from a laser-driven collective three-level atomic system are
investigated by taking into account the spontaneously generated coherence. Under some conditions, it is found
that the entanglement between the two cavity modes can be significantly enhanced by the collectivity of the
atoms compared to the case of independent atoms when the relative phase∆φ = π. Moreover, the sponta-
neously generated coherence can also greatly enhance the entanglement in comparison to the case without this
coherence.
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I. INTRODUCTION

Many theoretical and experimental studies of collective ef-
fects in the interaction of atoms with a laser field have been
carried out since the early work by Dicke [1]. Collective
atomic systems have been proved to have various advantages
over single (or independent) atomic systems. For example,
due to the collectivity, the intensity of superradiant fluores-
cence in a sample ofN atoms is proportional toN2 and super-
fluorescence can be enhanced via decay interference [2]. The
complete dressed-state population inversion in the strongly-
driven two-level atomic system can be achieved [3]. The index
of refraction and the group velocity may be modified strongly
and rapidly [4]. Studies also showed that compared to the
case of the independent atoms, the quantum squeezing and
non-classical correlations of the radiation field of the collec-
tive systems can be enhanced [5]. Very recetently, such sys-
tem has been exploited to cool three-level atomic ensemble [6]
and collective spontaneous decay and superradianc can be in-
hibited via the ensemble’s Stark interaction with a vacuum
electromagnetic field [7].

On the other hand, recently, the spontaneously generated
coherence (SGC) has attracted considerable interest. The ef-
fects of SGC on electromagnetically induced transparency,
dark states, lasing without inversion, coherent population trap-
ping, resonance fluorescence, transient processes, squeezing
spectra, etc., have been extensively studied [8]. For in-
stance, it has been shown that this kind of coherence can
change the steady-state response of the medium, modify sig-
nificantly the absorption or spontaneous emission spectra of a
near-degenerate system [9], and can enhance Kerr nonlinear-
ity [10]. The existence of such coherence effects depends on
the nonorthogonality of the two dipole matrix elements. One
of the possibilities is to use sodium dimers, which can be mod-
eled as a five-level molecule in which transitions with parallel
and antiparallel dipole moments can be selected [11, 12]. An
alternative solution is to engineer atomic systems with parallel
dipole moments in the bad cavity limit [13]. Experimentally,
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SGC arising from radiative decay of the trion into the spin
states has been confirmed in charged GaAs quantum dots [14].

In recent years, continuous variable (CV) entangled light
has attracted much interest because of a potential applications
in quantum information science, such as CV quantum telepor-
tation [15, 16], long-distance quantum communications [17],
quantum dense coding [18], and quantum computation [19].
Due to the relative simplicity and high efficiency in the gen-
eration, manipulation, and detection, a variety of physical
systems presenting CV entanglement have been investigated
both theoretically and experimentally [20–30]. Nondegen-
erate parametric oscillator [21–23] and nondegenerate four-
wave mixing [24–28] are some conventional sources of the
two-mode entangled light. Howerver, most of the previous
works to enhance the entanglement of two cavity modes were
carried out in the independent atomic systems without SGC.
It is natural to ask whether or not we can take advantage of
the effects of collectivity and SGC on the generation of en-
tanglement. In the recent past, with the collective interactions
of two-level atomic ensembles, the generation of atomic en-
tanglement can be achieved and the generation of the robust
two-mode entanglement has also been proposed [31]. There-
fore, taking the SGC into account, it is thus of interest to dis-
cuss the entanglement of the radiation field with the atomic
collectivity.

In this paper, we investigate the entanglement of cavity-
field generated from a laser-driven V-type collective atomic
ensembles inside a two-mode cavity with SGC. After deriv-
ing the master equation of the cavity field in the dressed-state
picture of the driven atoms, the influences of the atomic col-
lectivity and SGC on the field entanglement are discussed in
detail. It shows that when SGC is present the dressed-state
populations in a collection of atoms are different from those
of independent atomic systems. Moreover, under some condi-
tions the entanglement of the cavity field can be significantly
enhanced compared to the case without SGC or the atomic
collectivity and can be vary rapidly with the relative phase
between two driven fields in the presence of SGC when the
number of involved atoms is large.
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II. MODEL AND MASTER EQUATION

We consider a collection of V-type three-level atoms inside
a two-mode cavity with one ground state|3〉, and two excited
states|1〉 and|2〉 (see Fig. 1). The two dipole-allowed tran-
sitions|1〉 ↔ |3〉 and|2〉 ↔ |3〉 are driven independently by
two strong laser field having the same frequencyωL with Rabi
frequenciesΩ1 andΩ2 and phaseφ1 andφ2, respectively. At
the same time, the transitions|1〉 ↔ |3〉 and |2〉 ↔ |3〉 are
coupled to two cavity modes denoted by annihilation opera-
torsa1 anda2 with frequenciesω1 andω2.
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FIG. 1: Schematic diagram of the atomic levels. Two laser fields
having the same frequencyωL drive the|1〉 → |3〉 transition with
detuning∆1 and the|2〉 → |3〉 transition with detuning∆2, respec-
tively. Two non-degenerate cavity modes of frequenciesω1 andω2

couple to the driven transition with detuningsδ1 andδ2 from the laser
frequency.

In the rotating frame with respect to the laser frequencyωL,
the Hamiltonian of the cavity-atom system is given by

H = H0 + V (1)

where

H0 = ∆1S11+∆2S22+(Ω1e
iφ1S13+Ω2e

iφ2S23+H.c.) (2)

V = g1a1S13e
−iδ1t + g2a2S23e

iδ2t +H.c. (3)

Here∆j = ωj3 − ωL, δ1 = ω1 − ωL, andδ2 = ωL − ω2,
whereωj3 being the atomic transition frequencies from the
excited states|j〉 to ground state|3〉 andgl are coupling con-
stants between the cavity fields and the atoms. The collec-
tive atomic operatorsSij are defined asSij =

∑N
k=1 |i〉kk〈j|

(i, j=1, 2, 3), which describe the atomic populations fori = j
and transitions fori 6= j and obey the commutation relation
[Sij , Si′j′ ] = δji′Sij′ − δij′Si′j .

By taking into account the damping of the cavity field and
the atoms, the density operatorρ of the system is governed by
the following master equation(~ = 1):

d

dt
ρ = −i[H, ρ] + Lfρ+ Laρ, (4)

where

Lfρ =
∑

j=1,2

κj(2ajρa
†
j − a†jajρ− ρa†jaj) (5)

Laρ = γ1[S31, ρS13] + γ2[S32, ρS23]

+ η([S31, ρS23] + [S32, ρS13]) + H.c. (6)

Whereκj andγj are the damping rates of the cavity modes
and the atom respectively. Here, The coefficientη = p

√
γ1γ2

is a measure of the amount of coherence, the so-called SGC,
induced by dissipation between the|1〉 ↔ |3〉 and|2〉 ↔ |3〉
atomic transitions. The degree of the coherence, measured by
the coefficientη, depends explicitly on the mutual polarization
of the transition dipole moments withp = cos θ, whereθ is
the angle between the two dipole moments. Thus,p = 0 when
the transition dipole moments are orthogonal to each other,
andp attains its maximal value ofp = ±1 when the dipole
moments are parallel or antiparallel to each other.

Since the two dipole-allowed transitions are driven by two
strong laser field, it is convenient to work in the dressed-state
picture [32]. We introduce collective dressed states, which are
the eigenstates of the Hamiltonian (2):

|1̃〉 = 1 + sin θ

2
|1〉+ 1− sin θ

2
|2〉+ cos θ√

2
|3〉,

|2̃〉 = −cos θ√
2
|1〉+ cos θ√

2
|2〉+ sin θ|3〉,

|3̃〉 = 1− sin θ

2
|1〉+ 1 + sin θ

2
|2〉 − cos θ√

2
|3〉, (7)

Where we assume∆1=−∆2=∆, Ω1 = Ω2 = Ω for sim-
plicity and sin θ ≡ s = ∆/Ω0, cos θ ≡ c =

√
2Ω/Ω0

with Ω0 =
√
∆2 + 2Ω2. We also apply the transformation

S̃j3 = Sj3e
iφj and drop the tilde afterward. By defining the

collective dressed operatorsRαβ = |α̃〉〈β̃| (α, β = 1, 2, 3),
taking advantage of Eq. (7) in the master Eq. (4) and neglect-
ing terms that oscillate with frequenciesΩ0 and larger in a sec-
ular approximation, one arrives at the following master equa-
tion in the dressed-state representation [33]:

d

dt
ρ̃ =− iΩ0[R11 −R33, ρ̃]− i[Ṽ , ρ̃]

− {X1([R11, R11ρ̃] + [R13, R31ρ̃])

+X2([R33, R33ρ̃] + [R31, R13ρ̃])

+X3([R23, R32ρ̃] + [R21, R12ρ̃])

+X4[R22, R22ρ̃] +X5[R12, R21ρ̃]

+X6[R32, R23ρ̃] + Y1[R11, R22ρ̃]

+ Y ∗
1 [R22, R11ρ̃] + Y2[R22, R33ρ̃]

+ Y ∗
2 [R33, R22ρ̃] + Y3[R11, R33ρ̃]

+ Y ∗
3 [R33, R11ρ̃] +H.c.}+ Lf ρ̃, (8)

where

X1 = α+c
2, X2 = α−c

2, X3 = fc2,

X4 = 2fs2, X5 = 2α+s
2, X6 = 2α−s

2,

Y1 = β+sc
2, Y2 = β−sc

2, Y3 = hc2, (9)
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and

α± =[γ1(1± s)2 + γ2(1∓ s)2 + 2c2η cos∆φ]/8,

β± =[∓γ1(1± s)± γ2(1∓ s)

+ η(1 + s)e−i∆φ − η(1 − s)ei∆φ]/4,

f =c2(γ1 + γ2 − 2η cos∆φ)/4,

h =[−c2(γ1 + γ2)

− η(1 + s)2e−i∆φ − η(1 − s)2ei∆φ]/8. (10)

with ∆φ = φ1 − φ2, andṼ is the interaction of the dressed
atom with the cavity modes, which can be easily obtained by
taking advantage of Eq. (7) in the Eq. (3).

We assume an intense pumping field, i.e.,Ω0 ≫
{Nγ1,2,

√
Ng1,2}, and a high quality cavity such that

Nγ1,2 ≫ κ1,2, the atomic subsystem achieves its steady state
on a time scale faster than the cavity field. Thus, the atomic
variables can be eliminated to arrive at a master equation for
the cavity field:

d

dt
ρ̃f =

∑

j=1,2

{−iδ12[a
†
jaj , ρ̃f ] +Aj(a

†
j ρ̃faj − ρ̃faja

†
j)

+ (Bj + κj)(aj ρ̃fa
†
j − a†jaj ρ̃f )}

+
∑

j 6=j′=1,2

{Cj(a
†
ja

†
j′ ρ̃f − a†j′ ρ̃fa

†
j)

+Dj(ρ̃fa
†
j′a

†
j − a†j ρ̃fa

†
j′ )}+H.c., (11)

Where

A1 =
g21
8

[

(1 + s)2
(

c2D13

F13(−δ1)
+

2s2D12

f12(−δ1)

)

+
2c4D21

f12(δ1)

+(1− s)
2

(

c2D31

F13(δ1)
+

2s2D32

f23(δ1)

)

+
2c4D23

f23(−δ1)

]

,

A2 =
g21
8

[

(1 + s)
2

(

c2D31

F ∗
13(−δ2)

+
2s2D32

f∗
23(−δ2)

)

+
2c4D23

f∗
23(δ2)

+(1− s)
2

(

c2D13

F ∗
13(δ2)

+
2s2D12

f∗
12(δ2)

)

+
2c4D21

f∗
12(−δ2)

]

,

C1 =
g1g2
8

[

(1 − s)

(

2sc2D23

f23(δ2)
+

2sc2D12

f12(δ2)

)

− (1 + s)

(

2sc2D32

f23(−δ2)
+

2sc2D21

f12(−δ2)

)

+
(1 + s)

2
c2D31

F13(−δ2)
+

(1− s)
2
c2D13

F13(δ2)

]

,

C2 =
g1g2
8

[

(1 − s)

(

2sc2D32

f∗
23(δ1)

+
2sc2D21

f∗
12(δ1)

)

− (1 + s)

(

2sc2D23

f∗
23(−δ1)

+
2sc2D12

f∗
12(−δ1)

)

+
(1 + s)2c2D13

F ∗
13(−δ1)

+
(1− s)2c2D31

F ∗
13(δ1)

]

,

D∗
1 =C2, D

∗
2 = C1, (12)

with

δ12 = (δ2 − δ1)/2, Dαβ = 〈RαβRβα〉S ,
F13(±δj) = Γ13 ∓ i(2Ω0 ± δj),

f12(±δj) = Γ12 ∓ i(Ω0 ± δj),

f23(±δj) = Γ23 ∓ i(Ω0 ± δj),

and

Γ12 =3(2X1 +X3)− (2X1 −X3)(R
S
11 −RS

22)

− (Y1 − Y ∗
1 )(R

S
11 +RS

22)− (3X2 −X3 −X1)R
S
33

− (Y1 + Y ∗
1 )− (Y ∗

2 − Y2 + Y3 − Y ∗
3 )R

S
33,

Γ23 =(5X3 + 2X2)− (X3 − 2X2)(R
S
22 −RS

33)

− (Y2 − Y ∗
2 )(R

S
22 +RS

33)− (3X1 −X2 −X3)R
S
11

− (Y2 + Y ∗
2 )− (Y ∗

1 − Y1 + Y3 − Y ∗
3 )R

S
11,

Γ13 =(5X1 + 3X2)− (X1 −X2)(R
S
11 −RS

33)

− (Y3 − Y ∗
3 )(R

S
11 +RS

33)− 2(X3 −X2 −X1)R
S
22

− (Y3 + Y ∗
3 )− (Y1 − Y ∗

1 + Y2 − Y ∗
2 )R

S
22. (13)

Further,B1 (B2) can be obtained fromA1(A2) by replac-
ing Dαβ with Dβα, respectively. HereRS

jj ≡ 〈Rjj〉S(j =
1, 2, 3) are the steady-state collective atomic populations in
the dressed states and we have chosenθ = π/4 for simplicity
in Eq. (13).

III. STEADY-STATE COLLECTIVE ATOMIC
POPULATION IN THE DRESSED-STATE PICTURE

To determine the coefficients in Eq. (12) we should obtain
the steady-state atomic population in the dressed-state picture.
In the absence of the cavity modes, the solution for the steady-
state density operator of the system can be written in the fol-
lowing form

ρS = Z−1

N
∑

n=0

N
∑

m=n

Pn
1 P

m
2 |N,n,m〉〈m,n,N | (14)

Here, |N,m, n〉 are eigenstates of the operatorsR11 + R22,
R11 andR11 + R22 + R33 with eigenvaluesm, n andN ,
respectively, andZ is a normalization constant which is ob-
tained by the requirementTr {ρS} = 1 [34]. The matrix ele-
ments of the collective operators can be obtained from the set
of relations

R11 |N,n,m〉 = n |N,n,m〉 ,
R22 |N,n,m〉 = (m− n) |N,n,m〉 ,
R12 |N,n,m〉 =

√

(n+ 1)(m− n) |N,n+ 1,m〉 ,
R13 |N,n,m〉 =

√

(n+ 1)(N −m) |N,n+ 1,m+ 1〉 ,
R23 |N,n,m〉 =

√

(m− n+ 1)(N −m) |N,n,m+ 1〉 .
(15)

It is easy to determineZ which is given by
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FIG. 2: The dressed steady-state populations (a) versus thenumber
N of the atoms withγ1 = 1/4 andp = 1 (b) the strengthp of SGC
with γ1 = 1/4 (c) the relative phase∆φ with N = 50 andp = 1.
Here,θ = π/4 in (a) (b) (c). All parameters are normalized toγ2.

Z =
1− PN+1

2 (1− PN+2
1 )− (P1P2)

N+2 − P1(1− PN+2
2 )

(1− P1)(1− P2)(1− P1P2)
(16)

The dressed steady-state atomic populations then yield

RS
11 = Z−1

N
∑

n=0

N
∑

m=n

nPn
1 P

m
2 ,

RS
22 = Z−1

N
∑

n=0

N
∑

m=n

(m− n)Pn
1 P

m
2 ,

RS
33 = N −RS

11 −RS
22. (17)

By using detailed balance [3], the coefficientsP1 andP2 are
given by

P1 =
c4(γ1 + γ2 − 2η cos∆φ)

s2[(1 + s)
2
γ1 + (1− s)

2
γ2 + 2c2η cos∆φ]

,

P2 =
s2[(1− s)

2
γ1 + (1 + s)

2
γ2 + 2c2η cos∆φ]

c4(γ1 + γ2 − 2η cos∆φ)
. (18)

From Eq. (18), it is evident that the relative phase∆φ appears
only in the terms related to the parameterη so if SGC is ab-
sent (p = 0) the dressed steady-state populations are indepen-
dent of the relative phase∆φ. Hence, without the SGC terms,
phase control of the system dynamics is impossible. We de-
coupled the involved multiparticle correlators approximately
asDαβ = RS

αα(1 + RS
ββ) which is valid for a large sample,

i.e., N ≫ 1 [35, 36]. For the single-atom case, the dressed
steady-state atomic population reduce toRS

11 = P1P2

1+P2+P1P2

,

RS
22 = P2

1+P2+P1P2

.
According to Eq. (17), the dressed steady-state atomic pop-

ulations are shown in Fig. 2, which are influenced by the num-
berN of the atoms, the strengthp of SGC and the ratio of two
spontaneous emission ratesγ1/γ2. We can see from Fig. 2 (a)
that in a collection of atoms (N ≫ 1), the dressed steady-
state populationRS

11/N (RS
22/N , RS

33/N ), contributed aver-
agely per atom, increase (decrease) quickly with the increas-
ing numberN of the atoms. WhenN ≫ 1 the population
RS

11/N ≈ 1 (RS
22/N ≈ 0, RS

33/N ≈ 0) which means that the
population is trapped in the collective dressed state|1̃〉. Like-
wise, from Fig. 2 (b) it is revealed that in a collection of atoms
the dressed steady-state populationRS

11/N increases with the
increase of the strengthp of SGC for bothN = 1 andN = 50.
On the contrary,RS

33/N is small and decreases slowly. When
p → 1, however,RS

11/N is trapped in the collective dressed
state|1̃〉 for N = 50 but reaches only 0.7 forN = 1.

On the other hand, the dressed steady-state population de-
pends strongly on the ratioγ1/γ2. Fig. 2 (c) shows that in
the case ofγ1/γ2 = 1/4 the dressed steady-state popula-
tion against the relative phase∆φ exhibits jumps between the
collective dressed states|1̃〉 and |2̃〉. Furthermore, the range
of trapping in |1̃〉 and |2̃〉 becomes wider on increasing the
numberN of atoms. In the limit ofγ1/γ2 ≪ 1, such as
γ1/γ2 = 1/50, however, we can see the population is almost
trapped in the collective dressed state|1̃〉. Moreover, the range
of trapping in|1̃〉 becomes wider on decreasing the ratio of
γ1/γ2. In the opposite limit ofγ1/γ2 ≫ 1, the population is
almost trapped in the collective dressed state|2̃〉. In a word,
the relative phase∆φ leads to interference effects that are tem-
pered by the relative decay rates for the two excited dressed
states. Physically, whenγ1 ≪ γ2 the decay ratesγ13 andγ31
for the dressed state decay

∣

∣1̃
〉

↔
∣

∣3̃
〉

are much smaller than
γ23 andγ32 for the dressed state decay

∣

∣2̃
〉

↔
∣

∣3̃
〉

. As a result,
the atom is hardly populated in the dressed state|3̃〉.

IV. ENTANGLEMENT PROPERTIES OF THE CAVITY
FIELD

Now we consider the properties of the entanglement of the
cavity field generated in the system. The master equation (11)
is of a form characteristic for a system composed of two field
modes coupled to a multimode squeezed vacuum [37]. Thus
the cavity-field state should be a two-mode Gaussian state
(TMGS) and the quantum statistical properties of a TMGS
are determined by its correlation matrix [38] which takes the
standard form:
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FIG. 3: The entanglement parameterΥ in (a) and (c), logarithmic negativityEN in (b) and (d) as a function of the relative phase∆φ. Here
γ1 = 1/4, θ = π/4, Ω = 500, δ = 250, κ = 0.0325, g = 10 and (a) (b)p = 1, (c) (d)p = 0. The dash-dotted, dashed, and solid curves
correspond toN = 1, 10, and50, respectively. All parameters are normalized toγ2. The inset on the right below is the mean photon number
of the cavity modes withN = 50 andp = 1.

σ =







n1 0 c+ 0
0 n1 0 c−
c+ 0 n2 0
0 c− 0 n2






(19)

States whose standard form fulfillsn1 = n2 are said to be
symmetric. Here, for the cavity field governed by Eq. (11), it
is not difficult to find thatn1 = 〈a†1a1〉+1/2,n2 = 〈a†2a2〉+
1/2 andc+ = −c− = c = |〈a1a2〉|.

For TMGS, to quantify entanglement between the modes,
we will use Duan’s criterion [39] and logarithmic negativ-
ity [40, 41]. The Duan’s criterion states that

Υ = 〈(∆û)2〉+ 〈(∆v̂)2〉 − a2 − 1

a2
< 0, (20)

where the operatorŝu = aX̂1 − 1

a
X̂2, v̂ = aŶ1 + 1

a
Ŷ2

and a is a state-dependent real number. Here, the quadra-
ture operators of the two cavity modes are defined asX̂l =

(ale
−iθl + a†l e

iθl)/
√
2 and Ŷl = −i(ale

−iθl − a†l e
iθl)/

√
2

with θl being the phase angles of the modes. On substituting

the definition ofû andv̂ in Eq. (20), we obtain [25, 39]

Υ = 2n1a
2 + 2n2/a

2 − 4c− a2 − 1

a2
, (21)

wherea2 =
√

(2n2 − 1)/(2n1 − 1). Plugging the expres-
sion of a2 into Eq. (21), one can find that the entanglement
conditionΥ < 0 is reduced to

Υ = 4
[

√

(n1 − 1/2)(n2 − 1/2)− c
]

< 0, (22)

For a TMGS with the correlation matrix cast in the2 × 2

block formσ =

(

N1 N12

NT
12 N2

)

, the logarithmic negativityEN

is given by [40, 41]

EN = max[0,− ln 2d], (23)

where

d =

√

√

√

√∆σ −
√

(∆σ)
2 − 4Detσ

2
, (24)
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with ∆σ = DetN1+DetN2−2DetN12. Therefore, a TMGS
is entangled if and only ifd < 1/2, which is equivalent to

[(n1−1/2)(n2−1/2)− c2][(n1+1/2)(n2+1/2)− c2] < 0.
(25)

Since(n1 + 1/2)(n2 + 1/2) − c2 > 0, it is evident the en-
tanglement condition of Eq. (25) is the same as Eq. (22). As a
result, both of Duan’s criterion and logarithmic negativity are
identical to determine inseparability of a TMGS.

Especially, if we choosea = 1, then the sum of the vari-
ances〈(∆û)

2〉+ 〈(∆v̂)
2〉 reduces to the variance

V = 〈(X̂1 − X̂2)
2〉 = 〈(Ŷ1 + Ŷ2)

2〉 = n1 + n2 − 2c, (26)

which characterizes the normal two-mode squeezing and can
be measured experimentally by using the technique of bal-
anced homodyne detection. In this case,n1 = n2 = n̄, the
entanglement parametersΥ andEN are simplified as

Υ = 4(n̄− c)− 2,

EN = max[0,− ln 2(n̄− c)], (27)

Obviously, both of the parametersΥ and EN are equiva-
lent to quantify the entanglement between the two modes for
〈a†1a1〉 = 〈a†2a2〉.

In order to calculate the parametersΥ andEN , it is nec-
essary to have available the cavity-field correlation functions
n1, n2 andc. Using the master equation (11) we can derive
equations of motion for the correlation functions

d

dt
〈a†jaj〉 =

1

2
(xj + x∗

j )〈a†jaj〉+ yj〈a†1a†2〉+
1

2
ej + c.c.,

d

dt
〈a1a2〉 = y2〈a†1a1〉+ y1〈a†2a2〉+ (x1 + x2)〈a1a2〉+ e0,

(28)

wherexj = Aj−Bj−κj−iδ12, yj = Cj−Dj, ej = Aj+A∗
j

ande0 = C1 + C2. The set of the differential equations (21)
can be easily solved for arbitrary initial conditions.

Now we turn our attention to the generation of a stationary
entanglement between the cavity modes. Firstly, we illustrate
the role of the SGC on entanglement creation. The source of
SGC has an obvious interpretation that spontaneously emitted
photons on one of the atomic transitions|1〉 ↔ |3〉 drives
the other transition|2〉 ↔ |3〉. This coherence can occur
for the case of nonorthogonal (p 6= 0) dipole moments of
the atomic transitions. The degree of the coherence, mea-
sured by the value ofp, will modify the dressed steady-state
populations. By assumingg1 = g2 = g, κ1 = κ2 = κ,
and δ1 ≈ δ2 = δ for simplicity, we plot the the depen-
dence of the entanglement with different number of atoms,
which is measured by of the negativityΥ and the logarith-
mic negativityEN respectively, on the relative phase∆φ for
both p = 1 (Figs. 3 (a) (b)) andp = 0 (Figs. 3 (c) (d)).
It is obvious the same properties of field entanglement are
demonstrated in Figs. 3 (a) and 3 (b), 3 (c) and 3 (d), re-
spectively. It shows that when SGC is absent (p = 0) the
entanglement is independent of the relative phase∆φ and is
very small. However, when SGC is maximal (p = 1) the en-
tanglement is dependent on the relative phase∆φ so it can be

conveniently controlled by the relative phase. As seen from
Figs. 3 (a) and 3 (b), in the case ofγ1/γ2 = 1/4 the entangle-
ment maximizes at∆φ = (2k + 1)π(k ∈ {0, 1, ...}) which
is much bigger than the corresponding value whenp = 0.
That is to say, compared to the case without SGC, the entan-
glement can be considerably enhanced by the coherence. In
fact, these parameters in our case satisfy the condition that
{|δl| , |Ω0 ± δl|} ≫ {δ12, Nγl}, then from the inset on the
right below it is clear that the difference bewteen the mean
photon number of the cavity modes〈a†1a1〉 and〈a†2a2〉 is al-
most invisible. Since〈a†1a1〉 ≈ 〈a†2a2〉, the entanglement pa-
rametersΥ andEN will depict the same properties of field
entanglement, which is in agreement with Eq. (27).

0 1 2 3 4

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

EN

units of 

EN

p

(b)

(a)

FIG. 4: The steady-state entanglement, quantified by logarithmic
negativityEN , as a function of (a) the relative phase∆φ (b) the
strength p of SGC withN = 50. The dash-dotted, dashed, and solid
curves correspond to (a)p = 0.3, 0.7, and1, (b) ∆φ = 0, 0.58π,
andπ, respectively. The other parameters are same as FIG. 3.

In order to show the influence of the SGC on entanglement
between the cavity modes further, in Fig. 4 (a) we plot the
logarithmic negativityEN as a function of the relative phase
∆φ on increasing value ofp for N = 50. It shows that the
entanglement becomes bigger with the increase of the value
of p. In Fig. 4 (b) the logarithmic negativityEN versus the
strengthp of SGC with different value of∆φ are plotted. By
choosing appropriate relative phase∆φ, it can be seen that
the entanglement becomes larger quickly with the increase the
value ofp.

Furthermore, we can demonstrate the influence of the num-
ber of atoms on entanglement between the cavity modes with
maximum SGC from Figs. 3 (a) and 3 (b). In the case of
p = 1, the entanglement can be enhanced significantly by in-
creasing the numberN of atoms. In the limitN → ∞, the
system exhibits jumps between the maximally entangled state
and unentangled state.
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0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

EN

units of 

FIG. 5: The steady-state entanglement, measured by logarithmic
negativityEN , as a function of the relative phase∆φ. The dash-
dotted, dashed, and solid curves correspond toγ1 = 1/4, 1/20, and
1/50, respectively. Here,N = 50 andp = 1. The other parameters
are same as FIG. 3.

Finally, the amount of the generated entanglement depends
also on the ratio of the spontaneous emission ratesγ1/γ2.
From Fig. 5, in the case ofN = 50, the entanglement max-
imizes at∆φ = (2k + 1)π and gradually be trapped in the
maximally entangled state by decreasing the value ofγ1/γ2.

Now we proceed to explain the physical origin of the pro-
cess responsible for entanglement of the cavity modes. As we
shall see, the physics of the process can be quantitatively ex-
plained by the level of the stationary population of the atomic
system. In the present collective system, under the situation
that{|δl| , |Ω0 ± δl|} ≫ {δ12, Nγl}, the master equation (11)
is reduced to

d

dt
ρ̃f ≈− i{δ12 + d1(R

S
11 −RS

33)}[a†1a1 + a†2a2, ρ̃f ]

+ id2(R
S
11 −RS

33)[a
†
1a

†
2 + a1a2, ρ̃f ] + Lf ρ̃f , (29)

where

d1 =
1

8

(

(1 + s)
2
c2

2Ω0 − δ
+

(1− s)
2
c2

2Ω0 + δ
+

(1 + s)
2
s2

Ω0 − δ

+
(1− s)2s2

Ω0 + δ
+

2c4Ω0

Ω2
0 − δ2

)

,

d2 =
c2

8

(

(1 + s)
2

2Ω0 − δ
+

(1 − s)
2

2Ω0 + δ

+
2s(1− s)

Ω0 + δ
− 2s(1 + s)

Ω0 − δ

)

. (30)

A choice of δ12 = −d1(R
S
11 − RS

33) simplifies the mas-
ter equation further and leaves only the parametric amplify-
ing term, which is responsible for entanglement between the
modes. Then the system reduces to a nondegenerate paramet-
ric down-conversion (NPDC) with its Hamiltonian

Veff = −d2(R
S
11 −RS

33)(a
†
1a

†
2 + a1a2). (31)

Physically, the entanglement of the cavity modes in the effec-
tive NPDC process arises from the two-photon couplings be-
tween the dressed atom and the cavity modes. It is evident that
the magnitude of entanglement attains maximal value when
the dressed steady-state population differenceRS

11−RS
33 max-

imizes. In order to show explicitly how the population differ-
enceRS

11 − RS
33 affects the amount of the steady-state entan-

glement, one can easily derive the the correlation functions
〈a†1a1〉, 〈a†2a2〉 and〈a1a2〉 from master equation (29) in such
an effective NPDC process, which take the form

〈a†1a1〉 = 〈a†2a2〉 =
F 2

2(κ2 − F 2)
,

〈a1a2〉 =
Fκ

2(κ2 − F 2)
, (32)

whereF = d2(R
S
11 −RS

33) and we assumeκ > F .
It is easy to verify that the logarithmic negativityEN reads

EN = − ln
κ

κ+ |F | = ln[1 +
|d2(RS

11 −RS
33)|

κ
], (33)

from which one can easily check thatEN is greatest when the
population differenceRS

11 −RS
33 approach its maximum.

From Fig. 2, we can see that in a collection of atoms
(N ≫ 1), the dressed steady-state population difference
(RS

11−RS
33)/N ≈ 1 even at very big detuning (∆ =

√
2Ω), in

contrast to the independent atoms case with(RS
11−RS

33)/N ≈
0.6 (see Fig. 2 (a)). The reason is that, with the help of the
atomic collective interactions, the atomic collectivity can in-
crease(RS

11 − RS
33)/N , which leads to the significant en-

hancement of the entanglement. That is to say, the growth
of the atomic numberN leads to the increase of the effec-
tive atom-cavity coupling which in turn results in the increase
of the two-mode entanglement. Similarly, from Fig. 2 (b)),
with the increase of the value ofp, the dressed population
differenceRS

11 − RS
33 becomes lager for bothN = 50 and

N = 1. Specifically, by setting successivelyp = 0, 0.4, 0.8,
we obtain(RS

11 − RS
33)/N ≈ 0.06, 0.93, 0.98 in the case

of N = 50 and (RS
11 − RS

33)/N ≈ 0.28, 0.39, 0.53 in the
case ofN = 1, respectively. Evidently, the strength of SGC
can modifyRS

11 − RS
33 dramatically forN = 50. By con-

trast, the increase trend ofRS
11 − RS

33 is not significant for
N = 1. Therefore, the entanglement of the cavity field can be
enhanced greatly by adopting collective atomic system with
strong SGC.

On the other hand, in a collection of atoms the dressed
steady-state population against the relative phase∆φ exhibits
jumps between the collective dressed states|1̃〉 and |2̃〉 in
the case ofγ1/γ2 = 1/4 and the dressed population differ-
ence(RS

11 − RS
33)/N maximizes at∆φ = (2k + 1)π (see

Fig. 2 (c)). In the case ofγ1/γ2 = 1/50 (γ2/γ1 = 1/50), the
population is almost trapped in one of the collective dressed
states|1̃〉 (|2̃〉). Therefore, the dressed population difference
(RS

11−RS
33)/N can remain approximately the value of+1 for

γ1 ≪ γ2 so the entanglement maximizes at∆φ = (2k + 1)π
and is gradually trapped in the maximally entangled state and
the trapping range becomes wider on decreasing the ratio of
γ1/γ2, which coincides with Fig. 5.
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V. CONCLUSIONS

In conclusion, the generation of the entanglement of two-
mode field in a collective three-level atomic system is inves-
tigated by taking into account the SGC. Under the condition
that the couplings between the cavity modes and the dressed
atoms are far from resonance, the system can reduce to an ef-
fective NPDC which is responsible for the entanglement of
the cavity modes. It is found that the entanglement between
the cavity modes can be significantly enhanced by the collec-
tivity of the atoms compared to the case of independent atoms
when the relative phase∆φ = π. On the other hand, the
spontaneously generated coherence can also greatly enhance

the entanglement in comparison to the case in the absence of
SGC.
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