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The entanglement properties of two-mode field from a lasieed collective three-level atomic system are
investigated by taking into account the spontaneously igée@ coherence. Under some conditions, it is found
that the entanglement between the two cavity modes can bdisamtly enhanced by the collectivity of the
atoms compared to the case of independent atoms when thigeglhaseA¢ = w. Moreover, the sponta-
neously generated coherence can also greatly enhancetémglement in comparison to the case without this
coherence.

PACS numbers: 42.50.Gy, 42.50.Dv, 42.50.Pq, 37.30.+i

I. INTRODUCTION SGC arising from radiative decay of the trion into the spin
states has been confirmed in charged GaAs quantum dots [14].

Many theoretical and experimental studies of collective ef

fects in the interaction of atoms with a laser field have been |, recent years, continuous variable (CV) entangled light
carried out since the early work by Dicke [1]. Collective 55 attracted much interest because of a potential apipfisat
atomic systems have been proved to have various advantag@s,yantum information science, such as CV quantum telepor-
over single (or independent) atomic systems. For examplggtion [15, 16], long-distance quantum communicationg,[17
due to_the collectivity, the intensity o_f superr2ad|ant flesr quantum dense coding [18], and quantum computation [19].
cence in a sample of atoms is proportional to/" and super- _pye tg the relative simplicity and high efficiency in the gen-
fluorescence can be enhanced via d_ecay |.nter_ference [2]. TRRation, manipulation, and detection, a variety of physica
complete dressed-state population inversion in the slyeng gystems presenting CV entanglement have been investigated
drlventW(_)-IeveI atomic system can be achieved [3] Thexnde pyip theoretically and experimentally [20-30]. Nondegen-
of refraction and the group velocity may be modified stronglyerate parametric oscillator [21-23] and nondegenerate fou
and rapidly [4]. Studies also showed that compared to thg,aye mixing [24-28] are some conventional sources of the
case of the independent atoms, the quantum squeezing agg,-mode entangled light. Howerver, most of the previous
non-classical correlations of the radiation field of the@ol  |\5/ks to enhance the entanglement of two cavity modes were

tive systems can be enhanced [S]. Very recetently, such sygqyried out in the independent atomic systems without SGC.
tem has been exploited to cool three-level atomic enserBble [ | js natural to ask whether or not we can take advantage of

and collective spontaneous decay and superradianc can be e effects of collectivity and SGC on the generation of en-

hibited via the ensemble’s Stark interaction with a vacuuMgnglement. In the recent past, with the collective intéoas
electromagnetic field [7]. of two-level atomic ensembles, the generation of atomic en-

On the other hand, recently, the spontaneously generatd@nglement can be achieved and the generation of the robust
coherence (SGC) has attracted considerable interest. fThe édwo-mode entanglement has also been proposed [31]. There-
fects of SGC on electromagnetically induced transparencyore, taking the SGC into account, it is thus of interest & di
dark states, |asing Withoutinversion’ coherent populmiap- cuss the entanglement of the radiation field with the atomic
ping, resonance fluorescence, transient processes, sgieezcollectivity.
spectra, etc., have been extensively studied [8]. For in-
stance, it has been shown that this kind of coherence can
change the steady-state response of the medium, modify sig- In this paper, we investigate the entanglement of cavity-
nificantly the absorption or spontaneous emission spetta o field generated from a laser-driven V-type collective ami
near-degenerate system [9], and can enhance Kerr nonline@nsembles inside a two-mode cavity with SGC. After deriv-
ity [10]. The existence of such coherence effects depends ofg the master equation of the cavity field in the dressetésta
the nonorthogonality of the two dipole matrix elements. Onepicture of the driven atoms, the influences of the atomic col-
of the possibilities is to use sodium dimers, which can be-modlectivity and SGC on the field entanglement are discussed in
eled as a five-level molecule in which transitions with pietal detail. It shows that when SGC is present the dressed-state
and antiparallel dipole moments can be selected [11, 12]. ARopulations in a collection of atoms are different from #os
alternative solution is to engineer atomic systems witlajpelr ~ of independent atomic systems. Moreover, under some condi-
dipole moments in the bad cavity limit [13]. Experimentally tions the entanglement of the cavity field can be signifigantl

enhanced compared to the case without SGC or the atomic

collectivity and can be vary rapidly with the relative phase

between two driven fields in the presence of SGC when the
*Electronic addresgyaox @hy. ccnu. edu. cn number of involved atoms is large.



1. MODEL AND MASTER EQUATION where

Lip= Z /ij(2ajpa; — a;ajp — pa;aj) (5)

We consider a collection of V-type three-level atoms inside =13

a two-mode cavity with one ground stag, and two excited
stateg1) and|2) (see Fig. 1). The two dipole-allowed tran-
sitions|1) <+ [3) and|2) <+ |3) are driven independently by Lap = 7Ss1,pS13] + 72[S52, 23]

two strong laser field having the same frequengywith Rabi + n([951, pSas] + [S32, pSi3]) + Hec. (6)
frequencie$?; and(); and phase; and¢., respectively. At
the same time, the transitiofs) « |3) and|2) < |3) are
coupled to two cavity modes denoted by annihilation opera
torsa; andas with frequenciesy; andws.

Wherex; and~; are the damping rates of the cavity modes
and the atom respectively. Here, The coefficignt p, /7172

is a measure of the amount of coherence, the so-called SGC,
induced by dissipation between the < |3) and|2) « |3)

-3 atomic transitions. The degree of the coherence, measyred b
| 1> 0, I:——} A the coefficient), depends explicitly on the mutual polarization

d_____ e of the transition dipole moments with = cos 6, wheref is
K S x ; A, the angle between the two dipole moments. Thus,0 when
i Ap— |2> the transition dipole moments are orthogonal to each other,
4 andp attains its maximal value gf = +1 when the dipole
moments are parallel or antiparallel to each other.
Since the two dipole-allowed transitions are driven by two

g o, g, Q, strong laser field, it is convenient to work in the dressedest
picture [32]. We introduce collective dressed states, wwhie

the eigenstates of the Hamiltonian (2):

~ 1+ siné 1 —sind cos

1) =——1 2 3

= s 6 s 6

12) = =201 + 20 12) 4 sin)3),
FIG. 1: Schematic diagram of the atomic levels. Two lasedsiel 1—sing 14+ sing W
having the same frequenay;, drive the|1) — |3) transition with |§,> = —7sm|1> 4 +sin |2) — €os |3), )
detuningA; and the|2) — |3) transition with detuning\., respec- 2 2 V2

tively. Two non-degenerate cavity modes of frequenciegndw;
couple to the driven transition with detuningsandd. from the laser
frequency.

Where we assum@\;=—Ay,=A, Q; = Qy = Q for sim-
plicity and sinf = s = A/Qq, cosf = ¢ = \/§Q/Qo
with Qy = VA2 +202. We also apply the transformation
S;3 = S;3¢'%i and drop the tilde afterward. By defining the

In the rotating frame with respect to the laser frequengy ~ collective dressed operatoft,s = |&) (3| (a, 8 = 1,2,3),

the Hamiltonian of the cavity-atom system is given by taking advantage of Eq. (7) in the master Eq. (4) and neglect-
ing terms that oscillate with frequenci@g and larger in a sec-
H=Hy+V (1) ular approximation, one arrives at the following masteraequ
tion in the dressed-state representation [33]:
where
_ . d . . o -
Hy = A1511+A2522+(Qlez¢1 513—1—926“152 SQ3+H.C.) (2) %P = - ZQO[RH — Rss, p] - Z[V, p]
st it . —{X1([R11, R11p] + [Ra3, R31p])
V = glalSlge +QQCL2S23€ + H.c. ( ) + Xg([R33,R33p~] + [R31,R13ﬁ])
HereA; = wjz —wr, 61 = w1 —wr, anddy = wp — wy, + X3([Ros, R32p] + [Ro1, Ri2p))
wherew;s being the atomic transition frequencies from the + X4[Roz, Ra2p) + X5[Ri2, Ro1/|
excited stategj) to ground stateé3) andg, are coupling con- + Xo[Rso, Rasp] + Yi[Rar, Raoj
stants between the cavity fields and the atoms. The collec- 6L7ts2, [TasPl T LT, Ta2f
tive atomic operators;; are defined as;; = S5, [i),.,. (J] + Y7 [Raz, Bu1p] + Ya[Raz, Rasp)
(4, j=1, 2, 3), which describe the atomic populations ot ;j + Y5 [R33, Roap| + Y3[R11, R3]
and transitions fo¥ # ;j and obey the commutation relation + Y5 [Rss, R11p| + H.e.} + Lgp, 8)
[Sij, Siryr] = 84 Sijr — 0ijr Sivje o
By taking into account the damping of the cavity field and Where
the atoms, the density ope_ramof the system is governed by X1 = oy, Xo = a_c, X3 = fc2,
the following master equatigh = 1):
X, =2fs% X5 = 204.5%, Xg = 205,
d

Ep = _Z[H7 p] + pr+ Lap7 (4) }/1 = ﬂ+562,}/2 - ﬂ*SCQa}% - h'027 (9)



and

s =[y1(1£5)* +72(1 F 5)° + 2¢ cos Ag/8,
Bt =[Fn(l£s) £1(lFs)
+n(1+s)e™"B? — (1 - 5)e'2]/4,
f=c(n + 72 — 2ncos Ag) /4,
h=[=c(n +12)
—n(1+ 8% — (1 —5)%29) /8. (10)

with A¢ = ¢ — ¢, andV is the interaction of the dressed
atom with the cavity modes, which can be easily obtained by — (Vi + Y

taking advantage of Eq. (7) in the Eq. (3).
We assume an intense pumping field, i€y >

{N912,v/Ngi12}, and a high quality cavity such that
Nv1,2 > k1,2, the atomic subsystem achieves its steady state (Va4 Yy
on a time scale faster than the cavity field. Thus, the atomic 2 2
variables can be eliminated to arrive at a master equation fo ['13 =(5X1 + 3X»

the cavity field:

d
5P = > {=idislalay, ps) + Ajalpra; — prajal)
Jj=1,2
+ (Bj + 1) (a jﬁfaT' —ala;pr)}
+ Y {Cj(alal.py —alpral)
J#3' =12
—i—D(faTa;—apfa )} + H.c., (11)
Where
2 2 2 4
91 2 Dy3 25*D12 ) 2¢* Doy
A =8 + +
'8 {( 9 (Fw( 61)  fi2(=61) f12(01)
(1= 5)? ( c*Da; 282D32) 2¢'Dag ] 7
Fi3(61)  fa3(d1) f23(—01) |
2 2 2 4
Ay _9i [(1+ )2( i D3, Qj D3 >+ 22 Do3
8 Fi5(=02)  f33(—02) f35(02)

+(1 _ 8)2 ( 02D13 282D12) 204D21 |
Fi5(02)  fi2(d2) ) fia(=02) ]

_M _ 2802D23 2802D12 )
@ = {(1 S)<f23(52) T Fa0)

2SC2D32 2802D21
— 1+ (fzs(—52) - f12(—52)>

(1 + 8)262D31 (1 — 5)262D13‘|

Fi3(—02) Fi3(62)
9192 2s¢? D3y 25¢2Dgy )
Cp =292 | (1 _ +
=02 |09 (s + o
2SC2D23 2802D12 )
o Fnmon T o
(1 + 8)262D13 (1 — S)2CQD31
Fys(—61) Fy5(61) ’
=Cy, D5 = (4, (12)

with
d12 = (02 = 01)/2, Dap = (RapRsa)
Flg(:téj) = F13 + 2(290 + 6j),
J12(£65) = T2 Fi(Qo £ 05),
f23(£6;) = Laz F (20 £ 65),
and

T =3(2X1 + X3

-

) = (2X1 — X3)(RY) — R3,)
)(Rigl + R22) (3X2 — X5 — XI)R3S3
) — (Vs — Yo+ Y3 — YRS,
Tog =(5X3 + 2X5) — (X3 — 2X2)(R22 R33)
— (Y2 = Y5') (RS, + R33) — (3X1 — X2 — X3) R},
) ( —Y1+Ys;— Y3 )Rlla
) — ( Xo)(Ri) — R33)
)(RY) + R33) — 2(X3 — X2 — X1) Ry
)= (Y1 =Y + Yo — Y5 )R5,. (13)

- (Y3 Y5
—(Y34Y;

Further, B; (B3) can be obtained fromi;(A4;) by replac-
ing Dqg with Dg,, respectively. HereRfj = (Rj;)s(U =
1,2, 3) are the steady-state collective atomic populations in
the dressed states and we have ch@senr/4 for simplicity

in Eq. (13).

lll. STEADY-STATE COLLECTIVE ATOMIC
POPULATION IN THE DRESSED-STATE PICTURE

To determine the coefficients in Eq. (12) we should obtain
the steady-state atomic population in the dressed-stetig i
In the absence of the cavity modes, the solution for the gtead
state density operator of the system can be written in the fol
lowing form

N N
ps=2""> > PIPy'IN,n,m)(m,n,N|  (14)

n=0m=n

Here,|N, m,n) are eigenstates of the operatdis, + Roo,

Ry; and Ry; + Rgs + R33 with eigenvaluesn, n and N,
respectively, and/ is a normalization constant which is ob-
tained by the requiremeftr {ps} = 1 [34]. The matrix ele-
ments of the collective operators can be obtained from the se
of relations

Ri1|N,n,m) =n|N,n,m),
Roo |[N,n,m) = (m —n)|N,n,m),
Riz[N,n,m) =/ (n+1)(m —n)[N,n+1,m),
)=
) =

Rig|N,n,m) =+/(n+1)(N —m)|N,n+1,m+1),

Roz |N,n,m) =+/(m —n+1)(N —m)|N,n,m+1).
(15)

It is easy to determing which is given by



Ad(units of )

FIG. 2: The dressed steady-state populations (a) versusutinber
N of the atoms withy; = 1/4 andp = 1 (b) the strengtlp of SGC
with 41 = 1/4 (c) the relative phasé&¢ with N = 50 andp = 1.
Here,0 = 7/4in (a) (b) (c). All parameters are normalizedg

1— PN (1 — PN*2) — (P P)N T — P (1 — PNVH2)

Z = (1—P)(1—-P)(1 - PP

(16)
The dressed steady-state atomic populations then yield

N N
R =2Y Y aPpEy.

n=0m=n

N N
Ry, =27 Y (m—-n)P'Py",

n=0m=n

R33 = N — R}, — RS, (17)

By using detailed balance [3], the coefficie'sand P, are
given by

A1+ 72 — 2ncos Ag)
s2[(1+ 5)2’71 +(1- 8)272 + 2¢2n cos Ag] ’
s2[(1 = 5)°y1 + (1 + 5)°y2 + 2c?n cos Ag)]

P, = . (18
2 (v + v2 — 2ncos Ag) (18)

P =

4

From Eq. (18), itis evident that the relative phds¢ appears
only in the terms related to the paramefeso if SGC is ab-
sent p = 0) the dressed steady-state populations are indepen-
dent of the relative phas&¢. Hence, without the SGC terms,
phase control of the system dynamics is impossible. We de-
coupled the involved multiparticle correlators approxieha
asD.s = RS, (1 + R3,) which is valid for a large sample,
i.e., N > 1[35, 36]. For the single-atom case, the dressed

steady-state atomic population reduceRf) = 42—,

RS, = trpirry

According to Eq. (17), the dressed steady-state atomic pop-
ulations are shown in Fig. 2, which are influenced by the num-
ber N of the atoms, the strengthof SGC and the ratio of two
spontaneous emission ratgs'y,. We can see from Fig. 2 (a)
that in a collection of atomsN > 1), the dressed steady-
state populatiorR?, /N (R5,/N, RS;/N), contributed aver-
agely per atom, increase (decrease) quickly with the iserea
ing numberN of the atoms. WherV >> 1 the population
RP /N ~ 1 (R5,/N =~ 0, R33/N = 0) which means that the
population is trapped in the collective dressed sthteLike-
wise, from Fig. 2 (b) it is revealed that in a collection of mt®
the dressed steady-state populatitfh /N increases with the
increase of the strengthof SGC for bothV = 1 andN = 50.

On the contraryR$; /N is small and decreases slowly. When
p — 1, however,Ry| /N is trapped in the collective dressed
state|1) for N = 50 but reaches only 0.7 fa¥ = 1.

On the other hand, the dressed steady-state population de-
pends strongly on the ratig; /v2. Fig. 2 (c) shows that in
the case ofy; /72 = 1/4 the dressed steady-state popula-
tion against the relative phagep exhibits jumps between the
collective dressed statés) and|2). Furthermore, the range
of trapping in|1) and|2) becomes wider on increasing the
numberN of atoms. In the limit ofy; /2 < 1, such as
v /72 = 1/50, however, we can see the population is almost
trapped in the collective dressed stdte Moreover, the range
of trapping in|1) becomes wider on decreasing the ratio of
~1/72. In the opposite limit ofy; /v2 > 1, the population is
almost trapped in the collective dressed staje In a word,
the relative phasA¢ leads to interference effects that are tem-
pered by the relative decay rates for the two excited dressed
states. Physically, whepn < ~- the decay rates;3 and~s;
for the dressed state decfly) «» |3) are much smaller than

723 ands; for the dressed state decay «» |3). As aresullt,
the atom is hardly populated in the dressed stite

IV.  ENTANGLEMENT PROPERTIES OF THE CAVITY
FIELD

Now we consider the properties of the entanglement of the
cavity field generated in the system. The master equation (11
is of a form characteristic for a system composed of two field
modes coupled to a multimode squeezed vacuum [37]. Thus
the cavity-field state should be a two-mode Gaussian state
(TMGS) and the quantum statistical properties of a TMGS
are determined by its correlation matrix [38] which takes th
standard form:
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FIG. 3: The entanglement parametéiin (a) and (c), logarithmic negativiti’x in (b) and (d) as a function of the relative phase. Here

v =1/4,0 = /4, Q = 500, 6 = 250, k = 0.0325, ¢ = 10 and (a) (b)p = 1, (c) (d)p = 0. The dash-dotted, dashed, and solid curves
correspond taV = 1, 10, and50, respectively. All parameters are normalizedyto The inset on the right below is the mean photon number
of the cavity modes witliV = 50 andp = 1.

ni 0 ¢y O the definition oft ando in Eq. (20), we obtain [25, 39]
0 n1 0 c_

77 ler 0ome 0 49 T =2n1a% + 2n /(12—40—a2—i (21)
0 c_ O ) - 1 2 CI,2 )

wherea? = /(2ns — 1)/(2n1 — 1). Plugging the expres-
sion of a2 into Eq. (21), one can find that the entanglement
conditionY < 0 is reduced to

States whose standard form fulfils = n. are said to be

symmetric. Here, for the cavity field governed by Eq. (11), it

is not difficult to find thatn, = (ala,) +1/2, na = (alas) +

1/2ande; = —c_ = c = [{a1a2)]. T=4[Vim 12— 1/2) | <0, (@2)
For TMGS, to quantify entanglement between the modes,

we will use Duan’s criterion [39] and logarithmic negativ-  Eor a TMGS with the correlation matrix cast in the< 2

ity [40, 41]. The Duan'’s criterion states that Ny Nio o o
block formo = T , the logarithmic negativity y
. Niy Na
. N is given by [40, 41
T = (A% +((80)%) —a® — 5 <0, (20) SOVenBYL0. 4]
En = max[0, — In 2d], (23)
where the operators = aX; — 1Xo, & = aV1 + 1Ys where
anda is a state-dependent real number. Here, the quadra-
ture operators of the two cavity modes are definedas= 5
(e~ + a}‘eiel)/ﬁ andY; = —i(aqe " — ag‘eiez)/ﬁ Ao — 1/ (Ao)” — 4Deto

d:

with 6; being the phase angles of the modes. On substituting 2 ’ (24)



with Ao = Det N1+ DetNo—2DetNyo. Therefore,aTMGS  conveniently controlled by the relative phase. As seen from

is entangled if and only il < 1/2, which is equivalent to

[mr4mxm—wm—8mm+wmmwdmrwﬂa%
Since(ny + 1/2)(na + 1/2) — ¢ > 0, it is evident the en-

Figs. 3 (a) and 3 (b), in the casef/y, = 1/4 the entangle-
ment maximizes a\¢ = (2k + 1)x(k € {0,1,...}) which

is much bigger than the corresponding value when- 0.

That is to say, compared to the case without SGC, the entan-
glement can be considerably enhanced by the coherence. In

tanglement condition of Eq. (25) is the same as Eq. (22). AS g¢t these parameters in our case satisfy the conditian tha

result, both of Duan'’s criterion and logarithmic negatiare
identical to determine inseparability of a TMGS.

Especially, if we choose = 1, then the sum of the vari-

ances/(Aa)?) + ((Ad)?) reduces to the variance

V = ((X1—X2)%) = (V1 + ¥2)®) = n1 + 1z — 2¢, (26)

{10:], Q0 £ 6|} > {12, Ny}, then from the inset on the
right below it is clear that the difference bewteen the mean
photon number of the cavity modés|a;) and (a}a,) is al-
most invisible. Sincdala;) ~ (alas), the entanglement pa-
rametersY and E will depict the same properties of field
entanglement, which is in agreement with Eq. (27).

which characterizes the normal two-mode squeezing and can
be measured experimentally by using the technique of bal-

anced homodyne detection. In this case,= no = 7, the
entanglement parametéfsand £y are simplified as

YT =4(n—c)— 2,
En = max[0, —In2(72 — ¢)], (27)

Obviously, both of the parametef§ and £y are equiva-

lent to quantify the entanglement between the two modes for

(aja1) = (abas).

In order to calculate the parametéfsand Ey, it is nec-
essary to have available the cavity-field correlation fioms

n1, ny ande. Using the master equation (11) we can derive

equations of motion for the correlation functions

d 1 . 1
—(ala;) = = (z; + 2}){ala;) + yj(alad) + Sej + e,
dt 2 2

d

E<G1G2> = y2<a1a1> +un <G§G2> + (21 + z2)(a1a2) + eo,
(28)

Wherexj = Aj—Bj—FLj—Z'512, Y; = Cj—Dj, e; = AJ+A;

andey = Cy + C». The set of the differential equations (21) FIG. 4: The steady-state entanglement, quantified by ltgait

can be easily solved for arbitrary initial conditions.

negativity F'y, as a function of (a) the relative phagep (b) the

Now we turn our attention to the generation of a stationarystrength p of SGC wittv = 50. The dash-dotted, dashed, and solid

entanglement between the cavity modes. Firstly, we ilaistr

curves correspond to (@) = 0.3, 0.7, and1, (b) A¢ = 0, 0.58,

the role of the SGC on entanglement creation. The source Gi"d7. respectively. The other parameters are same as FIG. 3.

SGC has an obvious interpretation that spontaneouslyesnitt

photons on one of the atomic transitiofi$ « |3) drives

In order to show the influence of the SGC on entanglement

the other transitiorj2) <+ |3). This coherence can occur between the cavity modes further, in Fig. 4 (a) we plot the

for the case of nonorthogongb (# 0) dipole moments of

logarithmic negativityFy as a function of the relative phase

the atomic transitions. The degree of the coherence, mea\¢ on increasing value g for N = 50. It shows that the
sured by the value of, will modify the dressed steady-state entanglement becomes bigger with the increase of the value

populations. By assumingy = ¢go = ¢, kK1 = Ko = K,

of p. In Fig. 4 (b) the logarithmic negativityyy versus the

andd; ~ d» = ¢ for simplicity, we plot the the depen- strengthp of SGC with different value ofA¢ are plotted. By
dence of the entanglement with different number of atomsghoosing appropriate relative phade, it can be seen that

which is measured by of the negativil§y and the logarith-
mic negativityE'y respectively, on the relative phage) for
bothp = 1 (Figs. 3 (a) (b)) and» = 0 (Figs. 3 (c) (d)).

the entanglement becomes larger quickly with the incrdase t
value ofp.
Furthermore, we can demonstrate the influence of the num-

It is obvious the same properties of field entanglement aréer of atoms on entanglement between the cavity modes with
demonstrated in Figs. 3 (a) and 3 (b), 3 (c) and 3 (d), remaximum SGC from Figs. 3 (a) and 3 (b). In the case of

spectively. It shows that when SGC is absent=f 0) the
entanglement is independent of the relative phageand is
very small. However, when SGC is maximal £ 1) the en-
tanglement is dependent on the relative phaseso it can be

p = 1, the entanglement can be enhanced significantly by in-
creasing the numbe¥ of atoms. In the limitN" — oo, the
system exhibits jumps between the maximally entangled stat
and unentangled state.



Physically, the entanglement of the cavity modes in theceffe
tive NPDC process arises from the two-photon couplings be-
tween the dressed atom and the cavity modes. It is evident tha
the magnitude of entanglement attains maximal value when
the dressed steady-state population differg@ge- R5;, max-
imizes. In order to show explicitly how the population diffe
enceRf, — R3, affects the amount of the steady-state entan-
glement, one can easily derive the the correlation funstion
(ala), (aas) and(aias) from master equation (29) in such
an effective NPDC process, which take the form

\ F2
. . . (alar) = (afas) = E =)

A¢(unlts of TE) <a1 a,2> = ﬁ, (32)

o
-
N
w
»~

FIG. 5: The steady-state entanglement, measured by lbgudt  \hereF = dy (RS, — RS,) and we assume > F.

negativity En, as a function of the relative phages. The dash- It is easy to verify that the logarithmic neqativi reads
dotted, dashed, and solid curves correspong te= 1/4, 1/20, and y fy 9 gativityy

1/50, respectively. HerelN = 50 andp = 1. The other parameters K do(RS, — RS

are same as FIG. 3. Ey=-In P In[1 + M]v (33)

rom which one can easily check thaly is greatest when the

Finally, the amount of the generated entanglement depen pulation differenc®?, — RS, approach its maximum.

also on the r_atio of the spontaneous emission raigs.. From Fig. 2, we can see that in a collection of atoms
_Fr(_)m Fig. 5, in the case ¥ = 50, the entanglement max- (N > 1), the dressed steady-state population difference
imizes atA¢ = (2k + 1) and gradua_llly be trapped in the (RS, ~RS,)/N ~ 1 even atvery big detuning{ — v/22), in
maximally entangled state by decreasing the valug df. contrast to the independent atoms case Viithy — RS;)/N ~

Now we pr(_)ceed to explain the physical orgin of the Pro-g g (see Fig. 2 (a)). The reason is that, with the help of the
cess responsible for entanglement of the cavity modes. As w;

. o Stomic collective interactions, the atomic collectivitgrein-
shall see, the physics of the process can be quantitatixely e ' &

) : . ; crease(R?; — R3;)/N, which leads to the significant en-
plained by the level of the stationary population of the awom hancer;e}'llt of thgeg)éntanglement. That is to sgay the growth
system. In the present collective system, under the Situati '

. of the atomic numbeV leads to the increase of the effec-
Fhatg|5l| ,éfio + 01} > {012, N}, the master equation (11) ;¢ atom-cavity coupling which in turn results in the inase
IS reducedto of the two-mode entanglement. Similarly, from Fig. 2 (b)),
d_ . g g n L with the increase of the value ¢f the dressed population
2 Pr ~ = o1z + di(Byy — Rsz)Hajar + azaz, py] differenceR?, — RS, becomes lager for both/ = 50 and
+ido(RS — RS lalfal + il + Lps, (29 N = 1. _SpeC|f|caIIy, by setting successwa)t_(),o.zl,o.&
ido(Riy = Rip)laraz + araz, pyl + Lypy, (29) we obtain(Ry, — R$;)/N = 0.06,0.93,0.98 in the case

where of N = 50 and (R{, — R5;)/N =~ 0.28,0.39,0.53 in the
2 4 2 4 2 4 case of N = 1, respectively. Evidently, the strength of SGC
d 1 (0487 (A-s)c n (1+5)°s can modify Ry, — Rj3, dramatically forN = 50. By con-
8\ 2Qp—46 200+ 6 Qo—0 trast, the increase trend &y} — R3; is not significant for
2 5 A N = 1. Therefore, the entanglement of the cavity field can be
(L—s)"s 2¢Q enhanced greatly by adopting collective atomic system with
Qo+ Q2 —02 )’ strong SGC.
) 9 9 On the other hand, in a collection of atoms the dressed
dy =< (1+5) + (1-5) steady-state population against the relative phesexhibits
8 \2Q0—0 20+ jumps between the collective dressed stafgsand |2) in
25(1—s)  2s(1+5) the casg ofyl/';Q =1/4 a_nd_ the dressed population differ-
s =3 ) (30) ence(Ry, — R35)/N maximizes atA¢ = (2k + 1)7 (see
0 0 Fig. 2 (c)). Inthe case of; /v2 = 1/50 (y2/71 = 1/50), the
A choice of 615 = —di (RS, — RS,) simplifies the mas- population is almost trapped in one of the collective drésse

ter equation further and leaves only the parametric am_p“fystates|i> (|2)). Therefore, the dressed population difference
; b ; . — R33)/N can remain approximately the value-pt for
ing term, which is responsible for entanglement between the* 11 — £33

modes. Then the system reduces to a nondegenerate paraniét-< 72 SO the entanglement maximizes/ab = (2k + 1)m
ric down-conversion (NPDC) with its Hamiltonian and is grqdually trapped in the maX|maIIy entan_gled state an
the trapping range becomes wider on decreasing the ratio of

Vo = —do(R5, — RS)(alad + ayay). (31)  ~1/72, Which coincides with Fig. 5.



8

V. CONCLUSIONS the entanglement in comparison to the case in the absence of

SGC.

In conclusion, the generation of the entanglement of two-
mode field in a collective three-level atomic system is inves
tigated by taking into account the SGC. Under the condition
that the couplings between the cavity modes and the dressed
atoms are far from resonance, the system can reduce to an ef-
fective NPDC which is responsible for the entanglement of This work is supported by the National Natural Science
the cavity modes. It is found that the entanglement betweeRoundation of China (Grant Nos. 60878004 and 11074087),
the cavity modes can be significantly enhanced by the colledhe Ministry of Education under project SRFDP ( Grant No.
tivity of the atoms compared to the case of independent atom®00805110002), the Natural Science Foundation of Hubei
when the relative phasA¢ = w. On the other hand, the Province (Grant No. 2010CDA075) and the Natural Science
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spontaneously generated coherence can also greatly enharoundation of Wuhan City (Grant No. 201150530149).
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