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We examine spinor Bose-Einstein condensates in optical superlattices theoretically using a Bose-
Hubbard Hamiltonian which takes spin effects into account. Assuming that a small number of
spin-1 bosons is loaded in an optical potential, we study single-particle tunneling which occurs
when one lattice site is ramped up relative to a neighboring site. Spin-dependent effects modify
the tunneling events in a qualitative and a quantitative way. Depending on the asymmetry of the
double well different types of magnetic order occur, making the system of spin-1 bosons in an optical
superlattice a model for mesoscopic magnetism. We use a double-well potential as a unit cell of a
one-dimensional superlattice. Homogeneous and inhomogeneous magnetic fields are applied and the
effects of the linear and the quadratic Zeeman shifts are examined. We also investigate the bipartite
entanglement between the sites and construct states of maximal entanglement. The entanglement
in our system is due to both orbital and spin degrees of freedom. We calculate the contribution of
orbital and spin entanglement and show that the sum of these two terms gives a lower bound for
the total entanglement.

PACS numbers: 03.75.Mn,03.75.Lm,03.75.Gg

I. INTRODUCTION

Ultracold atoms can be trapped via the ac-Stark ef-
fect in optical lattices, which are created by counter-
propagating laser-beams; in case there are only a few
atoms per site they build up optical crystals. These sys-
tems offer a unique combination of experimental and the-
oretical accessibility [1]. They can be manipulated with a
very high degree of accuracy and versatility so that they
serve as quantum simulators, i.e. they can be used to sim-
ulate complex problems in many-body physics. Ultracold
atoms in optical lattices offer robust quantum coherence,
a unique controllability and powerful read-out tools like
time-of-flight measurements [2, 3] or fluorescence imag-
ing [4].

Trapping ultracold atoms in conventional magnetic
traps leads to frozen spin degrees of freedom, such that
the atoms behave effectively as spinless particles. If the
atoms are trapped by optical means only, the atoms keep
the extra spin degree of freedom and the Bose-Einstein
condensate becomes a spinor condensate. The spinor de-
gree of freedom on alkaline gases corresponds to the mani-
fold of degenerate Zeeman hyperfine levels. The ground-
state properties of spinor Bose-Einstein condensates in
single traps were investigated in [5, 6].

We study the behavior of spin-1 atoms in optical super-
lattices, in particular an optical lattice which is formed
by overlapping two standing-wave laser fields with a com-
mensurate wavelength ratio of 2. The resulting lattice is
an array of optical traps with double-well structure. We
model the case when each double-well potential is filled
with a small number of spin-1 bosons. Spin-1 bosonic
atoms in a double-well potential can be described by a
variant of the two-site Bose-Hubbard Hamiltonian [7].

This model allows to examine the interplay between the
kinetic energy (embodied by the tunneling strength be-
tween the sites) and the particle interaction (covered by
the on-site interaction, i.e. the interaction within the
wells). Furthermore, it is possible to include an energy
offset between the sites, and the spin-1 Bose-Hubbard
model contains additionally a term which incorporates
spin-dependent interactions. This term penalizes high-
spin configurations on individual lattice sites in the case
of antiferromagnetic interaction between the atoms (e.g.
for 23Na) and low-spin configuration in the case of ferro-
magnetic interactions (e.g. for 87Rb).

The two-site Bose-Hubbard model for spinless bosons
can be used to describe the transfer of single Cooper
pairs in small Josephson junctions, i.e. the physics of
“Cooper-pair staircases” [8–10]. With ultracold atoms
in optical superlattices this model has been realized and
was shown to give rise to a “single-atom staircase” [11–
15]. This is achieved by monitoring the particle number
in either of the wells for different values of the energy
offset. In the case of small tunneling strength, the dif-
ference of the number of atoms in the two wells does
not change smoothly when the energy offset is varied,
but is characterized by a step-like behavior. Jumps from
one plateau to the next signal the tunneling of a single
atom. In this work, such single-atom staircases are ex-
amined for spinor condensates. Depending on the energy
bias different types of magnetic order occur, and the sys-
tem of spin-1 bosons in an optical superlattice becomes
a model for mesoscopic magnetism. A specific example
of how this mesoscopic magnetism can be observed in
experiments is presented in Fig. 1. This figure shows
the difference between bosonic staircases for two spin-1
bosons for configurations with different total spins. If
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the total spin is Stot = 2, the spins of the two atoms are
parallel and for antiferromagnetic interactions, as in the
case of 23Na, being in the same well costs extra energy.
Therefore the Stot = 2 configuration switches later (i.e.
at larger energy offset) to the state with both atoms in
the same well. In the ferromagnetic case (like 87Rb), the
curves for Stot = 0 and Stot = 2 will be exchanged.
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FIG. 1. (Color online) Two spin-1 bosons with antiferromag-
netic ordering in a double-well potential. Here nR is the occu-
pation number of the right well, and ǫ characterizes the energy
offset between the two wells (t/U0 = 0.05 and U2/U0 = 0.1).
Depending on the total spin of the system, bosonic staircase
transitions occur at different bias voltages. Note that both
the states with Stot = 0 (red, solid line) and Stot = 2 (blue,
dashed line) have symmetric orbital wavefunctions with re-
spect to particle exchange. The difference in the occupation
numbers arises due to spin-dependent interactions and not
due to a different orbital symmetry of the states. Thus, a
measurement of the spin-dependent bosonic staircases pro-
vides a demonstration of mesoscopic magnetism.

Spin-1 atoms allow also stronger quantum correlations
between the wells compared with the case of spinless
bosons. For spinless bosons it has been noted that par-
ticle fluctuations between the left and the right well lead
to entanglement between the wells (see e.g. [16, 17] and
references therein). In addition to this orbital entangle-
ment, spin-1 atoms allow spinor entanglement. In this
work the quantum correlations between the wells are ex-
amined for different values of the energy offset and differ-
ent ratios of the tunneling strength relative to the on-site
interaction. We give a lower bound for the entanglement
between the wells by estimating the amount of orbital
and spinor entanglement separately. At this point, we
consider entanglement mainly as a theoretical character-
ization of the many-body state of the system.
The paper is organized as follows: in Section II the

two-site Bose-Hubbard model for spin-1 atoms is intro-
duced and given explicitly for a small number bosons. In
Section III the physics of the bosonic staircases is dis-
cussed and in Section III C the effect of magnetic fields
is included. In Section IV the bipartite entanglement for
the two-site Bose-Hubbard model is examined. The total
entanglement between the sites depends on orbital and
spin degrees of freedom. We obtain a lower bound of

the total entanglement, which is given by the sum of the
orbital entanglement and the spin entanglement.

II. TWO-SITE BOSE-HUBBARD

HAMILTONIAN FOR SPIN-1 ATOMS

The atoms we have in mind are alkali-metal atoms like
23Na and 87Rb. Degenerate gases of alkali-metal atoms
are weakly interacting systems, but due to the confining
lattice of counter-propagating laser beams some of the
atoms are forced to be very close to each other and be-
come thus strongly interacting. Spin-1 bosonic atoms in
a double-well potential can be described by a variant of
the two-site Bose-Hubbard Hamiltonian [7, 18]:

H0 =
U0

2

∑

i=L,R

ni(ni − 1)− t
∑

σ

(L̂†
σR̂σ + R̂†

σL̂σ)

+ε (nL − nR) +
U2

2

∑

i=L,R

(

~S2
i − 2ni

)

, (1)

where L̂σ (L̂†
σ) and R̂σ (R̂†

σ) are annihilation (cre-
ation) operators for atoms in the hyperfine state σ ∈
{−1, 0, 1} in the left or right well, nL =

∑

σ L
†
σLσ(

nR =
∑

σ R
†
σRσ

)
is the atom number at the left (right)

site. The annihilation and creation operators obey the

canonical commutation relations [Li, L
†
j] = [Ri, R

†
j ] = δij

and [Ri, L
†
j] = [Li, R

†
j ] = 0. ~SL =

∑

σσ′ L†
σ
~Tσσ′Lσ′ is the

total spin on the left site and the total spin on the right

site is ~SR =
∑

σσ′ R†
σ
~Tσσ′Rσ′ , where ~Tσσ′ are the usual

spin-1 matrices.
The on-site repulsive interaction is described by the

first term in Eq. (1) and parameterized by U0. The
second term embodies the spin-symmetric tunneling be-
tween the wells and t is the hopping matrix element be-
tween the lattice sites; ε characterizes the difference in
on-site energy between the sites. The term proportional
to U2 describes spin-dependent interactions: it penalizes
nonzero spin configurations on individual lattice sites in
the case of antiferromagnetic interactions (e.g. 23Na) and
favors high-spin configurations in the case of ferromag-
netic interactions (e.g. 87Rb).
The parameters can be controlled by adjusting the in-

tensity of the laser beams; it is possible to move from
regimes of strong tunneling (U0 ≪ t) to regimes of very
weak tunneling (t ≪ U0). For bulk lattices it has been
shown theoretically [18] and experimentally [19] that the
system can be in an Mott-insulating regime (for t≪ U0)
and in a superfluid phase, where the kinetic energy dom-
inates (for U0 ≪ t), and that it is possible to switch from
one regime to the other by tuning the laser strength.
Whereas the ratio of U0/t can be changed, the ratio

U0/U2 is fixed for all lattice geometries. U2 is given by the
difference of the scattering length of two spin-1 bosons in
the case that their spins couple to the total spin two, and
the scattering length in the case that their spins couple
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to the total spin zero. This leads to an estimated ratio
of U2/U0 = 0.04 for 23Na [7].
The Hamiltonian (1) conserves the particle number,

the z-projection of the total spin, i.e. (~SL + ~SR)z, and

the total spin (~SL+ ~SR)
2. In each well the bosonic angu-

lar momenta couple, where symmetry constraints require
ni + Si to be even, and the resulting spins of both wells

couple to a total angular momentum ~Stot = ~SL + ~SR.

A. Two spin-1 bosons

Since the hopping term in Eq. (1) conserves the abso-

lute value of the total spin Stot = |~SL + ~SR|, the Hilbert
space decomposes in orthogonal subspaces which do not
mix, i.e.

H = H(Stot = 0)⊕H(Stot = 1)⊕H(Stot = 2) .

In the case of two spin-1 bosons, the Hilbert space is
seven-dimensional.

|E1〉 = |{2, 0}, {0, 0}, 0〉,
|E2〉 = |{1, 1}, {1, 1}, 0〉,
|E3〉 = |{0, 2}, {0, 0}, 0〉,
|E4〉 = |{1, 1}, {1, 1}, 1〉,
|E5〉 = |{2, 0}, {2, 0}, 2〉,
|E6〉 = |{1, 1}, {1, 1}, 2〉,
|E7〉 = |{0, 2}, {0, 2}, 2〉,

using the notation |{nL, nR}, {SL, SR}, Stot〉. These ba-
sis vectors belong to three orthogonal subspaces:

H = {E1, E2, E3}
︸ ︷︷ ︸

Stot=0

⊕ {E4}
︸ ︷︷ ︸

Stot=1

⊕ {E5, E6, E7}
︸ ︷︷ ︸

Stot=2

.

To examine the ground-state properties of this system the
Hamiltonian needs to be calculated and diagonalized for
each subspace separately. To calculate the off-diagonal
elements of the Hamiltonian it is necessary to write the
elements of the whole system as product of the single-well
wavefunctions: E.g.

|{2, 0}, {2, 0}, 2〉=
|nL = 2, SL = 2 , S1z = 0〉 ⊗ |nR = 0, SR = 0, S2z = 0〉

and

|{1, 1},{1, 1}, 2〉
=

∑

m=−1,0,1

C
(2,0)
(1,m),(1,−m)|1, 1,m〉 ⊗ |1, 1,−m〉

=
1√
6
(|1, 1, 1〉 ⊗ |1, 1,−1〉

+ 2|1, 1, 0〉 ⊗ |1, 1, 0〉+ |1, 1,−1〉 ⊗ |1, 1, 1〉)

where we have chosen the Sz = 0 component for con-
venience, because the energy does not depend on the

Sz component. The single-well wavefunctions need to
be written in terms of single-particle creation operators.
For two spin-1 bosons this can be done using the standard
Clebsch-Gordan coefficients.
The diagonal elements are given by

〈E1|H |E1〉 = 2ǫ+ U0 − 2U2,

〈E3|H |E3〉 = −2ǫ+ U0 − 2U2,

〈E5|H |E5〉 = 2ǫ+ U0 + U2,

〈E7|H |E7〉 = −2ǫ+ U0 + U2,

〈E2|H |E2〉 = 〈E4|H |E4〉 = 〈E6|H |E6〉 = 0 .

Due to the conservation of the total angular momen-
tum the Hamiltonian is block diagonal. The only non-
vanishing tunneling elements are

〈E1|H |E2〉 = 〈E2|H |E3〉 = −
√
2t,

〈E5|H |E6〉 = 〈E6|H |E7〉 = −
√
2t.

B. Higher bosons numbers

The Hilbert space for three spin-1 bosons is given by
the direct sum of the following subspaces:

H = {E1, E2, E3, E4, E5, E6} ⊕ {E7, E8}
⊕ {E9, E10, E11, E12}.

The subspace {E1, E2, E3, E4, E5, E6} belongs to |~SL +
~SR| = 1, the subspace {E7, E8} belongs to |~SL + ~SR| =
2 and he subspace {E9, E10, E11, E12} belongs to |~SL +
~SR| = 3. The basis vectors are given by

|E1〉 = |{3, 0}, {1, 0}, 1〉,
|E2〉 = |{2, 1}, {2, 1}, 1〉,
|E3〉 = |{2, 1}, {0, 1}, 1〉,
|E4〉 = |{1, 2}, {1, 2}, 1〉,
|E5〉 = |{1, 2}, {1, 0}, 1〉,
|E6〉 = |{0, 3}, {0, 1}, 1〉,
|E7〉 = |{2, 1}, {2, 1}, 2〉,
|E8〉 = |{1, 2}, {1, 2}, 2〉,
|E9〉 = |{3, 0}, {3, 0}, 3〉,
|E10〉 = |{2, 1}, {2, 1}, 3〉,
|E11〉 = |{1, 2}, {1, 2}, 3〉,
|E12〉 = |{0, 3}, {0, 3}, 3〉,

again using the notation |{nL, nR}, {SL, SR}, Stot〉.
The Hamiltonian is block diagonal in the basis given

above as in the case of two bosons. The Hamiltonians be-
longing to |~SL+ ~SR| = 2 and |~SL+ ~SR| = 3 are quite sim-
ilar to the spinless case and the case of two spin-1 atoms.
To calculate the off-diagonal elements of the Hamiltonian
we need to know how n spin-1 bosons couple to a total

spin ~S with a z-projection Sz. For three spin-1 bosons
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this is done in Appendix A. The off-diagonal elements

for |~SL + ~SR| = 2 and |~SL + ~SR| = 3 are

〈E7|H |E8〉 = −t,
〈E9|H |E10〉 = 〈E11|H |E12〉 = −

√
3t,

〈E10|H |E11〉 = −2t .

The diagonal elements are given by

〈E7|H |E7〉 = 〈E10|H |E10〉 = U0 + ǫ+ U2,

〈E8|H |E8〉 = 〈E11|H |E11 = U0 − ǫ+ U2,

〈E9|H |E9〉 = U0 + 3ǫ+ 3U2,

〈E12|H |E12〉 = 3U0 − 3ǫ+ 3U2 .

The Hamiltonian belonging to the Hilbert space |~SL +
~SR| = 1 exhibits a richer structure and differs from the
spinless case. This is because the term −t∑σ(L

†
σRσ +

R†
σLσ) describes tunneling between several basis vectors,

e.g. between |E1〉 and |E2〉 as well as between |E1〉 and
|E3〉. Because the energy does not depend on the Sz

projection we can set Sz = 0. The basis vector |E1〉 is
given by

|{3, 0}, {1, 0}, 1〉= |3, 1, 0〉 ⊗ |0, 0, 0〉

=

[√

2

5
L̂†
−1L̂0

†L̂†
1 −

√

1

10

(

L̂†
0

)3
]

|0〉,

and the basis vector |E2〉 is given by

|{2, 1}, {2, 1}, 1〉
=

∑

m=−2,...,2

∑

n=−1,0,1

C
(1,0)
(1,m),(1,n)|2, 2,m〉 ⊗ |1, 1, n〉

=

√

3

10
|2, 1,−1〉 ⊗ |1, 1, 1〉 −

√

4

10
|2, 1, 0〉 ⊗ |1, 1, 0〉

+

√

3

10
|2, 1, 1〉 ⊗ |1, 1,−1〉

=

[

−
√

2

15

(

L̂†
0

)2

R̂†
0 +

√

3

10
L̂†
1L̂

†
0R̂

†
−1

+

√

3

10
L̂†
−1L̂

†
0R̂

†
1 −

√

2

15
L̂†
−1L̂

†
1R̂

†
0

]

|0〉.

Now we can calculate the corresponding non-diagonal el-
ement of the Hamiltonian:

〈E1|H |E2〉 = −t 〈E1|
∑

σ

(L̂†
σR̂σ + R̂†

σL̂σ)|E2〉 = −
√

5

3
t.

The basis vector |E3〉 is given by

|{2, 1}, {0, 1}, 1〉= |2, 0, 0〉 ⊗ |1, 1, 0〉

=

[√

2

3
L̂†
−1L̂

†
1R̂

†
0 −

1√
6

(

L̂†
0

)2

R̂†
0

]

|0〉 ,

and the corresponding non-diagonal element of the
Hamiltonian is

〈E1|H |E1〉 = −
√

4

3
t.

Note that the off-diagonal elements of the Hamiltonian
depend on the spin configurations, also, the off-diagonal
elements do not depend on the strength of the spin-
dependent interactions U2. Similar calculations lead to
the remaining off-diagonal elements:

〈E2|H |E4〉 = − t

3
,

〈E2|H |E5〉 = 〈E3|H |E4〉 = −2
√
5t

3
,

〈E3|H |E5〉 = −2t

3
,

〈E4|H |E6〉 = 〈E1|H |E2〉 = −
√

4

3
,

〈E5|H |E6〉 = 〈E1|H |E3〉 = −
√

5

3
.

The diagonal elements are given by

〈E1|H |E1〉 = 3U0 + 3ǫ− 2U2,

〈E2|H |E2〉 = U0 + ǫ+ U2,

〈E3|H |E3〉 = U0 + ǫ− 2U2,

〈E4|H |E4〉 = U0 − ǫ+ U2,

〈E5|H |E5〉 = U0 − ǫ− 2U2,

〈E6|H |E6〉 = 3U0 − 3ǫ− 2U2 .

Higher boson numbers lead to analogous expressions
which are used in the following but are not given here.

III. BOSONIC STAIRCASES

The two-site Bose-Hubbard model may be used to
model “Cooper-pair staircases” [8–10] relevant for small
Josephson junctions. In the case of ultracold atoms the
same effect gives rise to “single-atom staircases” [11–15].
Here we present such staircases for spin-1 atoms.

A. General treatment

The Hilbert decompose into different subspaces accord-
ing to the total spin of the system. Different subspaces
are not mixed by ramping up the energy difference be-
tween the double wells and behave in a different way.
In the case of two bosons this is shown in Fig. 1. The
different widths of the steps centered at ǫ = 0 corre-
sponds to different values of total spins per site. At
ǫ = 0.5, the state |{1, 1}, {1, 1}, 2〉 is energetically lower
than the state |{0, 2}, {0, 2}, 2〉, which makes the step
broader for Stot = 2. On the contrary, at ǫ = 0.5
the state |{1, 1}, {1, 1}, 0〉 is energetically higher than the
state |{0, 2}, {0, 0}, 0〉, which makes the step narrower for
Stot = 0.
In general, depending on the sign of U2, states with

high single-well angular momenta get penalized or fa-
vored. If U2 > 0 (like e.g. for 23Na) nonzero spin con-
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figurations get penalized. In the case of 87Rb, U2 is neg-
ative and spin-dependent interactions lead to the oppo-
site effect: high-spin configurations are favored and the
corresponding steps are broader. Therefore, in the ferro-
magnetic case, the curves for Stot = 0 and Stot in Fig. 1
will be exchanged.

The exact position of the steps can be calculated in
the “atomic limit”, i.e. t = 0. The step positions depend
generally linearly on U2. For some spin configurations,
e.g. odd atom number, lowest possible total spin, and
antiferromagnetic interactions, the step positions do not
depend on spin-dependent interactions.

For higher boson numbers, the richer structure of the
off-diagonal elements means that the variance of the par-
ticle number depends on the total spin and the energy
offset. In the case of three bosons (Fig. 2) the step at
ǫ = 0 is not shifted due to symmetry reasons, whereas
the steps at ǫ = 1 and ǫ = −1 are shifted linearly. In
the same time the steps belonging to Stot = 3 are not as
sharp as the steps belonging to Stot = 1, i.e. the curve
of the variance of nL is broader in the case of Stot = 3.

-2 -1 0 1 2
Ε�U0

0.5

1.0

1.5

2.0

2.5

3.0
<n2>

Stot=1
Stot=3

-0.4 0 0.4
0

0.1

0.2

D n2

FIG. 2. (Color online) Bosonic staircase for three spin-1
bosons with antiferromagnetic ordering in a double-well po-
tential (t/U0 = 0.05 and U2/U0 = 0.1): Stot = 1 (red, solid
line) and Stot = 3 (blue, dashed line). Inset: Variance of the
particle number in the left well for the step around ǫ = 0.

The staircases for different total spins may be used to
arrange spin-1 atoms in a two-dimensional superlattice
according to their spin degrees of freedom (see Fig. 3).

B. Beyond ground-state analysis

The gap between the ground state and the first excited
state in the energy spectrum depends strongly on the
tunneling between the sites (see Figs. 4 and 5). For finite
temperatures the density matrix describing the system is
thus highly mixed for small tunneling parameters, and
the ground-state behavior only dominates if tunneling is
sufficiently strong.

(a) (b)

(c) (d)

S = 0

S = 2

S = 0

S = 2

FIG. 3. (Color online) A possible way to separate the Stot = 2
spin component from the Stot = 0 spin component in the case
of antiferromagnetic interactions between the atoms: the po-
tentials in x- and y-direction are manipulated separately. In
a first step (b), the energy offset between the double wells is
lifted until the bosons combining to the total spin Stot = 0
separate while the bosons belonging to Stot = 2 still remain
in the same site. (c) Next, the wells are separated by a large
potential barrier and tunneling is suppressed. (d) An addi-
tional laser is switched on and the bosons coupling to Stot = 2
distribute in the resulting double well. The switching is as-
sumed to happen adiabatically such that the system can be
regarded to be in the ground state at every instant.
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-1
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2

3

Ε�U0

E

FIG. 4. (Color online) Energy spectrum of two spin-1 bosons
in a double well with strong tunneling (t/U0 = 0.5 and
U2/U0 = 0.1): Stot = 0 subspace (red, solid lines), Stot = 2
(blue, dashed lines), and Stot = 1 (dotted line).

C. Magnetic field included

The effect of a magnetic field can be included in the
model (1) by adding a term to the Hamiltonian which de-
scribes the coupling of the spins to the magnetic field [20].

The first contribution of a magnetic field ~B = (0, 0, B) is
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FIG. 5. (Color online) Energy spectrum of two spin-1 bosons
in a double well with weak tunneling (t/U0 = 0.05 and
U2/U0 = 0.1). Color code as in Fig. 4.

a regular Zeeman shift of the energy levels:

H = H0 + p
∑

i=L,R

∑

σ

miσn̂iσ = H0 + p Stot
z

where p = gµBB and n̂iσ is the particle number operator
for the ith site which gives the number of bosons in the
mth hyperfine state. The linear Zeeman shift changes
the overall state considerably. The energy eigenvalues
belonging to Stot 6= 0 split into multiplets because the hy-
perfine levels are no longer degenerate (see Fig. 6). For

-1.0 -0.5 0.0 0.5 1.0
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0

1

2

Ε�U0

E

FIG. 6. (Color online) Linear Zeeman shift of the energy levels
in the energy spectrum of two spin-1 bosons (B/U0 = 0.05,
t/U0 = 0.05 and U2/U0 = 0.1). The energy levels of Fig. 5
split into spin multiplets. The red arrows denote ground state
level crossings. Color code as in Fig. 4.

a given tunneling strength there is a critical magnetic
field strength which leads to ground-state level crossings.
Such level crossings correspond to spin-flip transitions,
i.e. the ground-state energy is continuous, but the ex-
pectation values of the particle number of single sites
and of the magnetization are not. This means that the
overall ground state of the system does not belong to the
same z-projection of the total spin for all values of the
energy offset ǫ. Figure 7 shows the critical value of the
magnetic field in the case of two bosons.

0.5 1.0 1.5 2.0
t�U0

0.01

0.02

0.03

0.04

0.05

0.06

p �U0

0 0.05 0.1
0

0.0025

0.005

FIG. 7. (Color online) Critical magnetic field p = gµBB
above which the staircase for two bosons shows a discontin-
uous behavior signifying spin-flip transitions (U2/U0 = 0.1).

However, spin non-conserving collisions are negligible
over the lifetime of the condensate, and the total mag-
netization is a conserved quantity on the time scale of
the experiment [21, 22]. For a given magnetization the
properties of the system are not altered by the linear Zee-
man effect, the whole spectrum is merely shifted. Only if
one is interested in comparing different magnetizations,
the linear Zeeman effect has to be taken into account.
In a series of experiments with a given magnetization, it
is therefore necessary to include higher-order contribu-
tions in the magnetic field. The quadratic Zeeman effect
arises because the hyperfine spins characterizing ultra-
cold atoms are mixtures of electron and nuclear spins.
Since the magnetic field couples approximately only to
the electron spin, the Zeeman effect is nonlinear in the
field but can typically be described by a sum of linear
and quadratic terms.
For each of the subspaces belonging to different mag-

netizations Stot
z there is a separate effective Hamiltonian

Hq = H0 + q
∑

i=L,R

∑

σ

m2
iσ n̂iσ . (2)

The magnitude of the quadratic Zeeman shift is given by
q = q0B

2, where e.g. q0 = h× 390 Hz/G2 for Na [21].
In the case of two bosons the system with magnetiza-

tion Stot
z = 0 possesses the most interesting structure,

because the Hilbert space is composed of states with dif-
ferent total spin. For Stot

z = 2 the quadratic Zeeman shift
does not alter the staircase since it leads to a homoge-
neous shift of all the energy levels. The staircases at dif-
ferent magnetic fields are shown in Fig. 8. For Stot

z = 0,
the step positions depend in a non-linear way on the mag-
netic field strength. It is no longer possible to read them
off in the atomic limit (i.e. t = 0), because the exis-
tence of the quadratic Zeeman shift leads to additional
non-diagonal elements in the Hamiltonian. Note that the
quadratic Zeeman effect does not eliminate the difference
of the two staircases, which is the main manifestation of
mesoscopic magnetism.



7

-1.0 -0.5 0.5 1.0
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q �U0=0.2

q �U0=0.0
q �U0=0.1

q �U0=0.2

8S tot
z=0

S tot
z=2

FIG. 8. (Color online) Two spin-1 bosons with antiferromag-
netic ordering in a double-well potential (t/U0 = 0.05 and
U2/U0 = 0.1). Dashed lines: Stot

z = 0 for different mag-
netic fields q = q0B

2 (short dashes q/U0=0.2, long dashes
q/U0=0.1 and medium sized dashes q/U0=0). Solid line:
Stot

z = 2. In this case the staircase does not depend on the
magnetic field. The difference of this staircase to the ones
with Stot

z = 0, which is the main manifestation of mesoscopic
magnetism, persists in the presence of the quadratic Zeeman
effect.

Due to the fact that the quadratic Zeeman shift does
not commute with the operator of the total spin Stot,
the eigenstates of the Hamiltonian given in Eq. (2) are
no longer eigenstates of Stot. For B 6= 0, the ground state
of the system is a superposition of different eigenstates of
Stot, i.e. states with different Stot hybridize (see Fig. 9).
For certain values of the energy offset ǫ (e.g. ǫ/U0 = 1
and ǫ/U0 = −1 for four bosons) the appearance of a
magnetic field changes the ground state strongly. This
reflects the specific spin configurations.

FIG. 9. (Color online) Expectation value 〈S2
tot〉 of the system

for four bosons for different magnetic fields q = q0B
2 (Stot

z =
0, t/U0 = 0.05 and U2/U0 = 0.1).

The quadratic Zeeman shift changes also the overall
spectrum for a given magnetization qualitatively, such

that in the case of thermal occupation of the double well
the density matrix of the system changes considerably.
For q = 0 the ground state is nearly degenerate with
the first excited state, whereas the gap widens for finite
values of q.
Additionally one can include inhomogeneous magnetic

fields,

H = Hq +∆B · (SLz − SRz) ,

where ∆B describes the strength of the field gradient.
The magnetic field offset ∆B changes the Hamiltonian if
Stotz 6= 0. For some configurations, e.g. two bosons in
a double well, ∆B leads merely to an overall shift of ǫ
i.e., an inhomogeneous magnetic field is equivalent to an
energy offset ǫ. In general this is not the case and ∆B
is an additional tool to reshape the staircases depending
on the spin configuration of the system.

IV. ENTANGLEMENT FOR SPIN-1 BOSONS

Entanglement is a unique feature of quantum mechan-
ical systems. Understanding entanglement deepens our
understanding of quantum mechanics and is therefore
of fundamental interest. Moreover, entanglement is a
resource for quantum computation and correlates sepa-
rated systems stronger than all classical correlations can
do. For bipartite pure states entanglement is well un-
derstood and the different entanglement measures are
equivalent. In the following we will use the entanglement
of formation (EOF) [23] as an entanglement measure.
The EOF is the number of Einstein-Podolsky-Rosen pairs
asymptotically required to prepare a given state by local
operations and classical communication. The entangle-
ment of formation between two qudits (D-dimensional
objects) in a pure state is given by the von Neumann
entropy of the reduced density matrix of each single qu-
dit [24]. To calculate the EOF, consider a system con-
sisting of two parts labeled A and B. Any pure state |Ψ〉
of the system can be written in the Schmidt decomposi-
tion [25]

|Ψ〉 =
D∑

i

ci|ψA
i 〉 ⊗ |ψB

i 〉 ,

where {ψA
1 , . . . , ψ

A
D} and {ψB

1 , . . . , ψ
B
D} are complete sets

of orthonormal states of the respective subsystems. The
system is entangled iff there is more than one non-
vanishing coefficient ci. These coefficients ci are posi-
tive, unique and invariant under local operations and can
therefore be used to quantify the entanglement between
A and B. The von Neumann entropy of the reduced
density matrix of each single qudit is given by

E(Ψ) = S(TrB|Ψ〉〈Ψ|) = S(TrA|Ψ〉〈Ψ|)

= −
D∑

1

c2i log2 c
2
i ,
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where S indicates the entropy. It ranges from zero to
log2D. The entanglement of formation of two qudits
with D > 2 thereby exceeds the entanglement of forma-
tion of two qubits, i.e. higher-dimensional objects con-
tain more entanglement and violate all Clauser-Horne-
Shimony-Holt-inequalities more strongly than qubits.
In the following we calculate the EOF in a double well

and examine how much the two sites are entangled. At
this point, we consider the EOF mainly as a theoretical
characterization of the many-body state of the system.
The EOF for typical parameters is shown in Fig. 10.

The maximal entanglement exceeds the maximal entan-
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Ε�U0
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2.0

2.5
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<n R>

FIG. 10. (Color online) Entanglement of formation (EOF)
between two wells for two bosons with antiferromagnetic in-
teractions (t/U0 = 0.1 and U2/U0 = 0.1) for the total spin
Stot = 0.

glement between two qutrits of log2 3 ≈ 1.585. This is
due to particle fluctuations. The total amount of entan-
glement stems from orbital and spin degrees of freedom.
Magnetic fields have a strong effect on the entangle-

ment of formation. Figure 11 shows the EOF of four
bosons at Stot

z = 0. For q > 0, the contribution of the
spin degrees of freedom to the entanglement of formation
is suppressed already by small magnetic fields. This is
somewhat surprising, because the system is constrained
to Stot

z , i.e. the state with the strongest spin entangle-
ment of all states with a given total spin. For q < 0,
this contribution is initially reduced but then remains
constant as a function of q.

A. Two spin-1 bosons

For two bosons and in the case of Stot = 0 a possible
orthonormal basis is given by

{ψ1, ψ2, ψ3}
= {|{2, 0}, {0, 0}, 0〉, |{1, 1}, {1, 1}, 0〉, |{0, 2}, {0, 0}, 0〉}

using the notation |{nL, nR}, {SL, SR}, Stot〉. The de-
composition

|Ψ〉 =
3∑

i

ci|ψi〉

FIG. 11. (Color online) EOF between two wells for four parti-
cles in the presence of a magnetic field (Stot

z = 0, t/U0 = 0.05
and U2/U0 = 0.1). For q > 0, even small fields will elimi-
nate the contribution of the spin degrees of freedom to the
entanglement.

is not a Schmidt decomposition, because the vector |ψ2〉
is a superposition of orthonormal states:

|{1, 1}, {1, 1}, 0〉= − 1√
3
|1, 1, 0; 1, 1, 0〉

+
1√
3
| 1, 1, 1; 1, 1,−1〉+ 1√

3
|1, 1,−1; 1, 1, 1〉,

using the notation |nL, SL, SLz;nR, SR, SRz〉. The entan-
glement of formation of |ψ2〉 is given by

E(|ψ2〉) = 3
1

3
log2 3 .

The EOF of |Ψ〉 is given by

E (|Ψ〉)

= −c21 log2 c21 − c23 log2 c
2
3 − 3

(

c2
1√
3

)2

log2

(

c2
1√
3

)2

= −
3∑

i

c2i log2 c
2
i + c22 log2 3

= −
3∑

i

c2i log2 c
2
i +

3∑

i

c2iE(|ψi〉)

= Eorbital + Espin. (3)

The total entanglement between the left and the right
well decomposes in an orbital part and a spin part. The
orbital part stems from the coefficients which distinguish
different orbital wave functions. The spin part origi-
nates from the EOF of the individual basis vectors, each



9

weighted with the coefficient c2i . The coefficients ci de-
pend on the tunneling strength t, on the on-site inter-
action U0, on the spin-dependent interaction U2 and the
energy offset ε.

-1.0 -0.5 0.0 0.5 1.0
Ε�U0
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FIG. 12. (Color online) EOF between two wells for two bosons
for very weak tunneling and antiferromagnetic interactions
(t/U0 = 0.001 and U2/U0 = 0.1) for the total spin Stot = 0.

In the limit of weak tunneling t ≪ U0 the Hamiltonian
is diagonal in the basis {ψ1, ψ2, ψ3} and the ground state
of a symmetric double-well potential (i.e. ε = 0) is given
by

|Ψ0〉 = |ψ2〉 = − 1√
3
|1, 1, 0; 1, 1, 0〉

+ 1√
3
|1, 1, 1; 1, 1,−1〉+ 1√

3
|1, 1,−1; 1, 1, 1〉 , (4)

which leads to an entanglement of E(|ψ2〉) = log2 3, see
Fig. 12.
In the limit of strong tunneling (i.e. U0 ≪ t), the

ground state of the system is

|Ψ0〉 =
1

2
|ψ1〉+

1√
2
|ψ2〉+

1

2
|ψ3〉. (5)

For this state the orbital entanglement is given by
Eorbital = −2 1

4 log2
1
4− 1

2 log2
1
2 = 3/2 and the spin entan-

glement is given by Espin =
(

1√
2

)2

log2 3 ≈ 0.792. The

total entanglement is therefore E(|Ψ2〉) ≈ 2.292. This
is not the maximum amount of entanglement that can
be obtained for this system (see Fig. 13). The maximal
entanglement is not the sum of the maximal qutrit entan-
glement and the maximal orbital entanglement, because
the orbital motion leads to particle number fluctuations
and reduces the spin entanglement (see Fig. 14). The
maximal orbital entanglement is realized in the limit of
strong tunneling, the maximal spin entanglement corre-
sponds to the maximally localized state, i.e. |ψ2〉.

B. Three spin-1 bosons

The EOF between the two sites is presented in Fig. 15
for t/U0 = 0.1 and in Fig. 16 for very weak tunneling. In

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t�U0

1.6

1.8

2.0

2.2

EOF

U2�U0 = 0.01
U2�U0 =-0.2

U2�U0 = 0.2

2.29

2.31

0 4 8

FIG. 13. (Color online) EOF between two symmetric wells
(ε = 0) for different values of U2, i.e., different spin interac-
tions (solid line U2/U0 = 0.2, dotted line U2/U0 = 0.01, and
dashed line U2/U0 = −0.2).

0 2 4 6 8 10
t�U0

0.5

1.0

1.5
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FIG. 14. (Color online) EOF, Espin and Eorbital between two
symmetric wells for U2/U0 = 0.1.

contrast to the case of two bosons, in the weak-tunneling
case the system is not entangled for large intervals of the
energy offset ǫ.

-3 -2 -1 0 1 2 3
Ε�U0
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1.0

1.5

EOF

<n R>

FIG. 15. (Color online) EOF between two wells for three
bosons with antiferromagnetic interactions (t/U0 = 0.1 and
U2/U0 = 0.1) for the total spin Stot = 1.

To quantify this effect, we analyze the EOF again in

detail. The spins ~SL and ~SR couple to a total spin, for
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FIG. 16. (Color online) EOF between two wells for three
bosons with antiferromagnetic interactions (t/U0 = 0.005 and
U2/U0 = 0.1) for the total spin Stot = 1.

which three absolute values are possible, Stot ∈ {1, 2, 3}.
It is obvious that Eq. (3) is applicable for Stot = 2 and

Stot = 3. The interesting case is Stot = 1. Each state
with the quantum number Stot = 1 can be written as

|Ψ〉 =
6∑

i

ci|ψi〉. (6)

Only two of the basis vectors contain true spin entangle-
ment:

|ψ2 =〉|((2, 1),(2, 1), 1)〉 = α|2, 2, 0; 1, 1, 0〉
+ β|2, 2, 1; 1, 1,−1〉+ γ|2, 2,−1; 1, 1, 1〉

|ψ4〉 = |((1, 2),(1, 2), 1)〉 = α|1, 1, 0; 2, 2, 0〉
+ β|1, 1, 1; 2, 2,−1〉+ γ|1, 1,−1; 2, 2, 1〉

with α = −
√

2
5 , β = γ =

√
3
10 . Any superposition of

|ψ2〉 and |ψ3〉 can be written as

c2|ψ2〉+c3|ψ3〉

=
√

c22α
2 + c23|L〉 ⊗ |1, 1, 0〉R

+ c2β|2, 2, 1; 1, 1,−1〉+ c2γ|2, 2,−1; 1, 1, 1〉 (7)

where |L〉 is the normalized function

1/
√

c22α
2 + c23 (c2α|2, 2, 0〉L + c3|2, 0, 0〉L), which is

orthogonal to the other vectors appearing in Eqs. (7)
and (6). The decomposition Eq. (7) is therefore a
Schmidt decomposition and the full entanglement of
formation of |Ψ〉 can be calculated:

E(|Ψ〉) = −c21 log2 c21 −
(
c22α

2 + c23
)
log2

(
c22α

2 + c23
)

−
(
c22β

2
)
log2

(
c22β

2
)
−
(
c22γ

2
)
log2

(
c22γ

2
)

−
(
c24α

2 + c25
)
log2

(
c24α

2 + c25
)
−
(
c24β

2
)
log2

(
c24β

2
)

−
(
c24γ

2
)
log2

(
c24γ

2
)
− c26 log2 c

2
6 . (8)

It is possible to decompose the entanglement into differ-
ent contributions and to generalize the expressions for

Eorbital and Espin in Eq. (3). To calculate the orbital en-
tanglement we construct the orbital wave function and
use this to get the EOF of the reduced density matrix.
The orbital wave function is

|Ψ〉orbital =

c1|3, 0〉+
√

c22 + c23|2, 1〉+
√

c24 + c25|1, 2〉+ c6|0, 3〉,

where the quantum numbers refer to |nL, nR〉. So the
orbital entanglement of formation between the left and
the right well is given by

Eorbital =− c21 log2 c
2
1 − (c22 + c23) log2(c

2
2 + c23)

− (c24 + c25) log2(c
2
4 + c25)− c26 log2 c

2
6 (9)

The spin wave function is given by

|Ψ〉spin =
√

c21 + c25|{1, 0}, 1〉+ c2|{2, 1}, 1〉

+
√

c23 + c26|{0, 1}, 1〉+ c4|{1, 2}, 1〉, (10)

where the quantum numbers refer to |{SL, SR}, Stot〉.
The EOF of these orthonormal basis vectors is
E(|{1, 0}, 1〉) = E(|{0, 1}, 1〉) = 0 and E(|{2, 1}, 1〉) =
E(|{1, 2}, 1〉) = −α2 log2 α

2−β2 log2 β
2−γ2 log2 γ2. The

EOF due to spin entanglement is therefore

Espin = c22E(|ψ2〉) + c24E(|ψ4〉). (11)

Note that

(
c22α

2 + c23
)
log2

(
c22α

2 + c23
)
+
(
c22β

2
)
log2

(
c22β

2
)

+
(
c22γ

2
)
log2

(
c22γ

2
)

≤ c23 log2
(
c22 + c23

)
+
(
c22
)
log2

(

1 +
c23
c22

)

+ c22 log2 c
2
2 − c22E(|ψ2〉)

=
(
c22 + c23

)
log2

(
c22 + c23

)
− c22E(|ψ2〉), (12)

where log(1 + dz) ≤ d log(1 + z) for d ≥ 1 and z ≥ 0
has been used. Because of Eq. (12) the entanglement of
formation is bounded from below:

E(|Ψ〉) ≥ Eorbital + Espin (13)

C. Arbitrary number of bosons

Let Ψ be a wave function which describes the state of
N bosons. This wave function can be written in terms
of a basis, which is ordered according to the occupation
numbers NL and NR, the spin in the left well SL and in
the right well SR, and the total spin Stot;

|Ψ〉 =
D∑

n=1

cn|φn〉, (14)
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FIG. 17. (Color online) EOF, Espin, Eorbital and Espin +
Eorbital between two symmetric wells for three bosons with
antiferromagnetic interactions (U2/U0 = 0.1) in a symmetric
double-well potential (ε/U0 = 0).

where
∑

n c
2
n = 1 and D ≥ N is the dimension of the

basis. We can rearrange this sum by sorting it according
to the occupation numbers:

|Ψ〉 =
N∑

m=0

|ψm〉,

where |ψm〉 is the part of the wave function belonging
to NL = m. If N(m) is the number of basis vectors
belonging to NL = m, |ψm〉 is given by

|ψm〉 =
N(m)
∑

i=1

c(m)i|φ(m)i〉, (15)

where
∑N(m)

i=1 c(m)2i ≤ 1 and c(m)i denote the coeffi-
cients ci which belong to NL = m. Now it is possible
to generalize Eqs. (9) and (11) and to define the orbital
EOF

Eorbital = −
N∑

m=0

N(m)
∑

i=1

c(m)2i log2

N(m)
∑

i=1

c(m)2i (16)

and the spin EOF

Espin =

D∑

n=1

c2nE(|φn〉). (17)

It is not necessary to to specify which basis vectors in
Eq. (14) belong to which angular momentum configura-
tion like in Eq. (10), because the total spin entanglement
entropy can be written as a sum over all basis vectors.
In this section we prove that Eq. (13) is true for any

number of bosons in a double well:

E(|Ψ〉) ≥ Eorbital + Espin . (18)

E(|Ψ〉) decomposes in a sum over m: E(|Ψ〉) =
∑N

mE(|ψm〉). It is possible to write down the EOF for

each |ψm〉 in the following way:

E(|ψm〉) = (19)

−
∑

j

(
∑

i

α(m)2ijc(m)2i

)

log2

(
∑

i

α(m)2ijc(m)2i

)

,

which defines a basis for each vector φ(m)i:

|φ(m)i〉 =
∑

k

∑

l

a(m)ika(m)il|Lk〉 ⊗ |Rl〉

=
∑

j

α(m)ij |L,R〉j ,

where
∑

j α
2
ij = 1. To prove Eq. (18) for any number of

bosons, it is necessary and sufficient to show that Eq. (18)
is true for each E(|ψm〉), i.e.,

∑

j

(
∑

i

α2
ijc

2
i

)

log2

(
∑

i

α2
ijc

2
i

)

(20)

≤
(
∑

i

c2i

)

log2

(
∑

i

c2i

)

+
∑

i

c2i
∑

j

α2
ij log2 α

2
ij .

The term on the left-hand side can be rearranged,

∑

j

(
∑

i

α2
ijc

2
i

)

log2

(
∑

i

α2
ijc

2
i

)

=
∑

j

∑

i

(
α2
ijc

2
i

)
log2

(
α2
ijc

2
i

)

+
∑

j

∑

i

(
α2
ijc

2
i

)
log2

(∑

n α
2
njc

2
n

α2
ijc

2
i

)

, (21)

as well as the term on the right-hand side,

(
∑

i

c2i

)

log2

(
∑

i

c2i

)

+
∑

i

c2i
∑

j

α2
ij log2 α

2
ij

=

(
∑

i

c2i

)

log2

(
∑

i

c2i

)

−
∑

i

c2i log2 c
2
i

+
∑

i

∑

j

(
α2
ijc

2
i

)
log2

(
α2
ijc

2
i

)
.

Note that due to Jensen’s inequality

∑

j

(
α2
ijc

2
i

)
log2

(∑

n α
2
njc

2
n

α2
ijc

2
i

)

≤ c2i log2

(∑

j

∑

n α
2
njc

2
n

c2i

)

= c2i log2

(
∑

n

c2n

)

− c2i log2 c
2
i ,

Eq. (20) is fulfilled and therefore Eq. (18).
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D. Comparison with the entanglement of particles

The amount of entanglement shared between two par-
ties might be lowered by superselection rules [26]. In case
two parties share N particles and a particle superselec-
tion rule applies, the extractable bipartite entanglement,
i.e. the degree of entanglement one can entangle two ini-
tially not entangled quantum registers located at A and
B, is given by the entanglement of particles [27]

EP (|ΨAB〉) ≡
∑

n

Pn E
(

|Ψ(n)
AB〉

)

,

where |Ψ(n)
AB〉 is |ΨAB〉 projected onto the subspace of

fixed local particle number, i.e. n particles for one party
and n− 1 for the other.
The entanglement of particles for two bosons in a dou-

ble well is given by Espin in Eq. (3). For three bosons the
case Stot = 2 and Stot = 3 is trivial, but the case Stot = 1
is more interesting and will be examined. To calculate
EP we write down the projection obeying local particle
superselection rules. The projections onto nL = 3 and
nL = 0 are trivial and do not contribute to EP . The pro-
jection onto nL = 2 leads to Eq. (7) with P2 = c22 + c23.
The entanglement contained in this state is given by

E
(

|Ψ(2)
LR〉

)

= −c
2
2α

2 + c23
c22 + c23

log2
c22α

2 + c23
c22 + c23

− c22β
2

c22 + c23
log2

c22β
2

c22 + c23
− c22γ

2

c22 + c23
log2

c22γ
2

c22 + c23

and thereby contributes

P2 E|Ψ(2)
LR〉 = −

(
c22α

2 + c23
)
log2

(
c22α

2 + c23
)

−
(
c22β

2
)
log2

(
c22β

2
)
−
(
c22γ

2
)
log2

(
c22γ

2
)

+
(
c22 + c23

)
log2

(
c22 + c23

)

to EP . A comparison with Eq. (8) shows, that the equa-
tion

E(|Ψ〉) = Eorbital + EP (22)

holds for three bosons. This equation is also true for
higher boson numbers. The contribution of the state (15)
to EP is given by

Pm E|Ψ(m)
LR 〉 =

−
∑

j

(
∑

i

α(m)2ijc(m)2i

)

log2

(
∑

i

α(m)2ijc(m)2i

)

+

(
∑

i

c(m)2i

)

log2

(
∑

i

c(m)2i

)

A comparison with Eq. (16) shows that Eq. (22) holds
indeed for all boson numbers.
The necessity to take a superselection rule into account

may arise due to several reasons. In some cases the phase
between states with different local particle occupation

numbers is not well defined [28]. Consider the bipartite
state

|ψθ〉AB =

√

1

2

(
|1, 0〉+ eiφ|0, 1〉

)
. (23)

In case there is no shared reference frame and no tunnel-
ing between the two parties the phase is experimentally
not accessible and the state is indistinguishable from an
incoherent mixture

ρAB =
1

2
(|1, 0〉〈1, 0|+ |0, 1〉〈0, 1|) . (24)

Whenever one is concerned with the occupation number
of massive particles, the detailed properties of the system
determine which LOCCs (local operations and classical
communication) are allowed: if tunneling is forbidden
LOCCs will conserve the local particle number. In this
case a local particle number superselection rule must be
taken into account. A more trivial example is the case of
a superselection rule for the total particle number [29].
In our model (1) the phase is well-defined due to the

finite tunneling amplitude. The amount of orbital entan-
glement Eorbital depends directly on the particle fluctua-
tions caused by the tunneling between the sites. In the
absence of tunneling, the orbital entanglement vanishes
and the superselection rule for the local particle number
is effectively enforced.

E. Creation of entanglement structures

In the case of two spin-1 bosons in a double well the

state of total spin zero (Stot = |~SL + ~SR| = 0) is singled
out. First, it can be separated from the Stot = 2 state
due to a different particle distribution within the double
well in the vicinity of the single-particle tunneling res-
onance (i.e. ǫ/U0 = 0.5). Secondly, it represents the
two-qutrit singlet state and thereby contains the maxi-
mal qutrit entanglement of log2 3. This distinguishes the
qutrit entanglement from qubit entanglement, where the
singlet state and the triplet (Stot)z = 0 state contain the
same amount of entanglement.
This can be used to create specific entanglement struc-

tures in 2D optical superlattices (see Fig. 3).

V. CONCLUSION

We have analyzed the two-site Bose-Hubbard model
for spin-1 atoms explicitly for small numbers of bosons.
Starting from the explicit form of the Hamiltonian, we
have discussed the physics of the bosonic staircases. We
have also studied the effect of magnetic fields. In the fol-
lowing we have examined the bipartite entanglement for
the two-site Bose-Hubbard model. We have analyzed the
contribution of orbital and spin degrees of freedom and
derived a lower bound of the total entanglement, which is
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the sum of the orbital entanglement and the spin entan-
glement. We compared the entanglement of particles and
thereby elucidated the meaning of orbital entanglement
and of superselection rules for the local particle number.
The staircases for different total spins establish a cor-

respondence of the spatial motion and the spin configu-
ration. Because the Stot = 0 singlet state of two bosons
does contain more entanglement than the other eigen-
states of the system this correspondence can be used to
construct an entanglement witness in the system: in case
one detects the typical spatial behavior of the Stot = 0
state one can conclude to have its entanglement. With
the help of fluorescence imaging it is also possible to de-
populate doubly-occupied sites in the lattice and thereby
to build a spin filter.
We have discussed entanglement between the sites, not

the entanglement between the individual atoms. Even
for an occupancy of one, i.e. one atom per site, these
are different quantities, because the bosons are indistin-
guishable. Recently it was proposed to measure the en-
tanglement between (spinless) bosons in an optical lat-
tice [29] by standard time-of-flight measurements. Such
measurements do not preserve the information about the
entanglement between the individual sites. There are
other possibilities to examine these systems experimen-
tally. First, it is possible to estimate the entanglement
by measurements of the atom positions, because these
correspond to specific spin configurations, as we have
demonstrated. These atom positions can be determined
by standard time-of-flight measurements or direct fluo-
rescence detection of individual sites [4]. Furthermore
it is possible to detect the spin configurations directly
in a non-demolishing way with the help of the quantum
Faraday effect [30]. Furthermore, it may be possible to
relate the entanglement to additional observable experi-
mental quantities, such as magnetization fluctuations in
one of the wells, in analogy to what has been discussed
for non-interacting particles [31]. We plan to explore this
question in future work.
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Appendix A: Coupling of n spin-1 bosons

The coupling of two spin-1 atoms is given in standard
textbooks. The coupling of n spin-1 atoms to a total spin
~S with a z-projection Sz in terms of n single spins Siz is

calculated by the diagonalization of the ~S2.

For three spin-1 atoms we give the connection of the
basis vectors ordered according to Siz and the basis vec-
tors ordered according to S and Sz:

|S = 3, Sz = 3〉 = |0−1, 00, 31〉 ,
|S = 3, Sz = 2〉 = |0−1, 10, 21〉 ,
|S = 3, Sz = 1〉 = (2 |0−1, 20, 11〉+ |1−1, 00, 21〉)/

√
5,

|S = 3, Sz = 0〉 =
√

2

5
|0−1, 30, 01〉+

√

3

5
|1−1, 10, 11〉 ,

|S = 3, Sz = −1〉 = (2 |1−1, 20, 01〉+ |2−1, 00, 11̂〉)/
√
5,

|S = 3, Sz = −2〉 = |2−1, 10, 01〉 ,
|S = 3, Sz = −3〉 = |3−1, 00, 01〉 ,
|S = 1, Sz = 1〉 = (− |0−1, 20, 11〉+ 2 |1−1, 00, 21〉)/

√
5,

|S = 1, Sz = 0〉 = −
√

3

5
|0−1, 30, 01〉+

√

2

5
|1−1, 10, 11〉 ,

|S = 1, Sz = −1〉 = (− |1−1, 20, 01〉+ 2 |2−1, 00, 11〉)/
√
5
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