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Quantum entangled ground states of two spinor Bose-Einstein condensates
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1State Key Laboratory of Low Dimensional Quantum Physics,

Department of Physics, Tsinghua University, Beijing 100084, China

We revisit in detail the non-mean-field ground-state phase diagram for a binary mixture of spin-
1 Bose-Einstein condensates including quantum fluctuations. The non-commuting terms in the
spin-dependent Hamiltonian under single spatial mode approximation make it difficult to obtain
exact eigenstates. Utilizing the spin z-component conservation and the total spin angular momen-
tum conservation, we numerically derive the information of the building blocks and evaluate von
Neumann entropy to quantify the ground states. The mean-field phase boundaries are found to
remain largely intact, yet the ground states show fragmented and entangled behaviors within large
parameter spaces of interspecies spin-exchange and singlet-pairing interactions.

PACS numbers: 03.75.Mn, 03.75.Gg

I. INTRODUCTION

Ultracold atomic quantum gases with spin degrees of
freedom provide exceptionally clean and idealized test-
ing beds for studying quantum magnetism [1, 2]. Optical
trapping from ac Stark shifts of off-resonant laser fields
are capable of equal confinement for all atomic pseudo-
spin components which facilitates research into exciting
spinor physics with atomic quantum gases. As is often
employed in studying a trapped Bose gas, when treat-
ing the condensate, we first take a mean-field (MF) ap-
proximation assuming only one eigenvalue of the single-
particle density matrix is macroscopic, being of order N .
Second quantization is then limited to the condensate
mode. Such a simple scenario already allows for many
interesting quantum many body phenomena[3].

Two popular atomic species often employed in ex-
perimental research on spinor Bose-Einstein condensates
(BECs) [3–9], are 87Rb and 23Na atoms. Within each
species, their interactions are dominated by the density-
dependent interaction in comparison to the much weaker
spin-dependent interactions. As a result, single-spatial
mode approximation (SMA), whereby the spatial depen-
dence of the condensate wave function is determined in-
dependent of the spin degrees of freedom, was introduced
[6] and remains reasonable as long as the number of atoms
is not too large [10]. Within the MF approximation, the
ground state of a spinor Bose-Einstein condensate (BEC)
is found to be ferromagnetic, polar, or cyclic phases, etc,
determined by the spin-dependent interactions and the
total (hyperfine-)spin F of the atom. Further theoret-
ical work armed with full quantum calculations reveal
interesting many-body states [6, 7, 9, 11], beyond the
scope of those from MF approximations. For spin-1 con-
densates, the exact eigenstates will contain paired spin
singlets [6, 7, 11], which become more complex for higher
spin condensates. For example, the spin-2 case involves
spin singlets which can be formed by either two or three
atoms [7, 9]. A general procedure exists for more de-
tailed information of the building blocks of eigenstates
determined by their associated generating functions [12].

More generally, we can always resort to the means of
numerics to diagonalize the ground-state single-particle
density matrix, which then reveals fragmented ground
states if more than one eigenvalues are being of order
N [13].

Several groups have recently studied spinor conden-
sate mixtures [17–24], which also display non-MF fea-
tures, such as anomalous quantum fluctuations for each
spin components and quantum entangled ground states.
This is first discovered in spinor condensates with more
than one orbitals, for instance, the case of pseudo spin-
1/2 condensates [14–16] for which Kuklov and Svistunov
[14] predicted that in the ground states all atoms will
have to condense into two orthogonal spatial orbitals or
more due to the conservation of the total spin. This
could result in a condensate ground state being a maxi-
mally entangled many-body state. Shi et al. replaced the
two orbitals with two different atomic species, a ground
state with entangled order parameter follows [16]. Under
MF approximation, we have previously elaborated the
ground-state phase diagram for a condensate mixture of
two spin-1 BECs [18]. The interesting phases are named
appropriately as FF, AA, PP, CC, and MM phases, dis-
tinguishing different structures and interaction parame-
ter spaces. Furthermore, we provide many beyond MF
results based on a full quantum spin-dependent Hamil-
tonian [19], which contains non-commuting terms, for-
bidding a simple derivation of the exact eigenstates. For
two special cases, commutations are restored among the
generally non-commuting terms. First, when the inter-
species singlet pairing interaction is ignored (γ = 0), the
Hamiltonian is then simply composed of three operators
which obey the angular momentum algebra. Making use
of the eigenstates of single spin-1 condensates, we directly
construct the eigenstates of a binary spin-1 mixture using
the angular momentum coupling representation. Second,
when the interspecies anti-ferromagnetic spin-exchange
interaction is strong enough, the ground state will be
forced to develop entanglement between the two species
[19], a result consistent with what is discovered in a spin-1
condensate placed inside a double well [25]. Other inter-
esting features are discussed for γ = 0 revealing fragmen-
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tation and quantum entanglement [20, 21, 23].

II. THE MODEL HAMILTONIAN

In this revisit we hope to understand quantum entan-
glement between two spin-1 condensates when both in-
terspecies spin-exchange and singlet-pairing interactions
are present. Our study is based on the same model sys-
tem of a binary mixture of spin-1 condensates confined
in optical traps. The corresponding field operators that
annihilates a boson of species 1 and species 2 at posi-
tion r are described respectively by Ψ̂MF

(r) and Φ̂MF
(r),

where MF = −1, 0, 1 denoting the three Zeeman hyper-
fine states. The SMA is adopted for each of the two
species, employing two spatial mode functions ψ(r) and
φ(r) respectively, and the field operators are expanded

as Ψ̂MF
(r) = âMF

ψ(r) and Φ̂MF
(r) = b̂MF

φ(r), with

âMF
and b̂MF

respectively the annihilation operators for
an atom in the spin component MF . In the absence of
external magnetic field, the spin-dependent Hamiltonian
for a binary mixture of spin-1 condensates then becomes
the following

Ĥs =
1

2
C1β1

(

L̂2
1 − 2N̂1

)

+
1

2
C2β2(L̂

2
2 − 2N̂2)

+
1

2
C12βL̂1 · L̂2 +

1

6
C12γΘ̂

†
12Θ̂12, (1)

under the SMA [19]. The interaction coefficients are
C1 =

∫

dr|ψ(r)|4, C2 =
∫

dr|φ(r)|4 , and C12 =
∫

dr|ψ(r)|2|φ(r)|2. β1 (β2) is intra-species spin-exchange
interaction parameter of species 1 (2). β and γ denote
inter-species spin-exchange and singlet-pairing interac-
tion parameters, respectively. The singlet pairing op-

erator becomes Θ̂†
12 = â†1b̂

†
−1 − â†0b̂

†
0 + â†−1b̂

†
1, and two

angular momentum like operators L̂1 =
∑

ij â
†
iFij âj and

L̂2 =
∑

ij b̂
†
iFij b̂j obey the usual angular momentum al-

gebra [6, 26]. They commute with atom number opera-

tors N̂1 =
∑

i â
†
i âi and N̂2 =

∑

i b̂
†
i b̂i. In the above, Fij

denotes the (i, j) component of the spin-1 matrix F.

III. GROUND-STATE PHASE DIAGRAM

As presented in the earlier study of [19], for the spin-
dependent Hamiltonian of Eq. (1), the first three terms
commute with each other, but they do not commute with
the fourth term. This shows the ground state determined
will depend on the interaction parameters. As a result,
we resorted to the special cases of no interspecies singlet-
pairing interaction (γ = 0) and C1β1 = C2β2 = C12β/2
[19]. For the first case of γ = 0, it has already at-
tracted much attention due to the appearance of frag-
mented ground states and the associated entanglement
between two species and exotic atomic number fluctua-
tions [19–21].

In this study, we will discuss the general case of the
full spin-dependent Hamiltonian of Eq. (1). Whenever
the ground state depends on the interaction parameters,
we have to perform a full quantum calculation numeri-
cally, usually this amounts to a full exact numerical di-
agonalization for each atom numbers N1 and N2. Be-
fore discussing the numerical results, we want to point
out that there still exist two conserved quantities: the
total spin angular momentum and its z-component, as
L̂2 = (L̂1 + L̂2)

2 commutes with the spin-dependent
Hamiltonian. As a result, we can elaborate spin struc-
tures from building blocks derived by generating function
of the maximum spin states |l, lz = l〉, where we have
used quantum numbers l and lz to denote the common
eigenstates of the angular momentum operators L̂2 and
L̂z.
We recall the suitable generating function Gg(x, y, z)

for a binary mixture of two spin-1 condensates derived
earlier in Ref. [19]. From this generating function, we
have figured out all six building blocks for constructing
the eigenstate |l, l〉, which is given by

|l, l〉 =
∑

C({ui}, {vi}, {wi})
(

Â
(1)†
1

)u1
(

Â
(2)†
0

)u2
(

B̂
(1)†
1

)v1

×
(

B̂
(2)†
0

)v2(
Γ̂
(1,1)†
0

)w1
(

Γ̂
(1,1)†
1

)w2 |vac〉, (2)

where the six building blocks are

Â
(1)†
1 = â†1,

Â
(2)†
0 = â†20 − 2â†1â

†
−1,

B̂
(1)†
1 = b̂†1,

B̂
(2)†
0 = b̂†20 − 2b̂†1b̂

†
−1,

Γ̂
(1,1)†
0 = Θ̂†

12,

Γ̂
(1,1)†
1 =

1√
2

(

â†1b̂
†
0 − â†0b̂

†
1

)

, (3)

and ui ,vi, and wi satisfy the constrains

u1 + 2u2 + w1 + w2 = N1,

v1 + 2v2 + w1 + w2 = N2, (4)

u1 + v1 + w2 = l,

and additionally w2 = 0, 1. Spin states |l, lz 6= l〉 of
other magnetization can be constructed by simply ap-
plying (L̂l−lz

− on the state |l, l〉 as L̂l−lz
− |l, l〉 ∝ |l, lz 6= l〉

(un-normalized).
In most numerical studies, we assume each species con-

tain 100 atoms (N1 = N2 = N = 100). Due to the SO(3)
symmetry of our model, we restrict the Hilbert space into
the subspace of zero magnetization with lz = 0 [27]. In
Fig. 1, we summarize the extensive numerical results.
Since the total spin angular momentum is conserved, we
can use the eigenvalue of the operator L̂2 to distinguish
different phase, which is then accompanied by the infor-
mation of the building blocks. A total of three constrains
exist for the allowed values of ui, vi, and wi (i = 1, 2).
Only three are needed for a solution, we choose the three
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as u2, v2 and w1, which are determined numerically from

evaluating the associated expectation values of Â
(2)†
0 Â

(2)
0 ,

B̂
(2)†
0 B̂

(2)
0 , and Γ̂

(1,1)†
0 Γ̂

(1,1)
0 , respectively.

From extensive numerical results we construct the
ground-state phase diagram as shown in Fig. 1. Per-
haps not surprisingly, it is almost the same as the MF
approximation studied in Ref. [18]. Each phase is then
labeled the same as before [18], albeit that the meanings
can be different due to the non-commuting operators in
the spin-dependent Hamiltonian Eq. (1). In Tab. I, we
summarize the properties for the four special phases: FF,
AA, PP, and CC. The remaining MM phase still denotes
the phase whose parameters evolve continuously across
the phase boundaries.

〈L̂2〉 〈Â
(2)†
0 Â

(2)
0 〉 〈B̂

(2)†
0 B̂

(2)
0 〉 〈Γ̂

(1,1)†
0 Γ̂

(1,1)
0 〉

FF = 2N(2N + 1) = 0 = 0 = 0
AA = 0 ∼ 0 ∼ 0 ∼ N(N + 2)
PP = 0 ∼ N(N + 1) ∼ N(N + 1) ∼ 0
CC1 = N(N + 1) ∼ N(N + 1) ∼ 0 ∼ N(N + 2)
CC2 = 0 ∼ N(N + 1) ∼ N(N + 1) ∼ N(N + 2)
CC3 = N(N + 1) ∼ 0 ∼ N(N + 1) ∼ N(N + 2)

TABLE I: The expectation values for the special operators in
the ground state within different phases.

IV. ENTANGLED GROUND STATES

To quantify entanglement between the two species, we
numerically computed the von Neumann entropy S(ρ̂1) =
−Tr(ρ̂1 log2N+1 ρ̂1), where ρ̂1 = Tr2ρ̂ is the reduced den-
sity matrix resulting from partial tracing of the ground-
state density matrix ρ̂ over the basis of species 2. The
amount of entanglement is then shown as density plots
over the phase diagram of Fig. 1, with a legend shown
on the right, the black (white) color refer to low (high)
entanglement.
In the absence of interspecies singlet-pairing inter-

action (γ = 0), the spin-dependent Hamiltonian of
Eq. (1) contains only three operators commuting with
each other. As a result we can use quantum numbers l1,
l2, l, and lz to quantify its eigenstate |l1, l2, l, lz〉, with
〈L̂2

1〉 = l1(l1 + 1), 〈L̂2
2〉 = l2(l2 + 1), 〈L̂2〉 = l(l + 1) and

〈L̂z〉 = lz. In the ground states, we have l = l1 + l2
for ferromagnetic interspecies spin-exchange interaction
(β < 0); and l = |l1 − l2| for anti-ferromagnetic inter-
species spin-exchange interaction (β > 0), while the value
of l1 and l2 are determined by the three interaction pa-
rameters.
In Fig. 2, we display the expectation values of the

intra- and interspecies single-pairing number operators
in the ground state, divided by their corresponding max-
imum values shown in Tab. I. In addition, we show the
total spin angular momentum and the von Neumann en-
tropy. First, when (β1 < 0, β2 < 0), irrespective of the
interspecies spin-exchange interaction, atoms in the same
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FIG. 1: (Color online). The ground-state phase diagram and
the corresponding von Neumann entropy distribution at fixed
values of C1β1 and C2β2. Blue solid lines denote continuous
phase transition boundaries. Red solid lines denote discon-
tinuous phase transition boundaries between two phases with
fully determined total spin angular momentum l. The green
solid line denotes the discontinuous phase transition boundary
between the phase CC3 and the MM phase. The black dash-
dotted lines correspond to C12γ = 0, which serve as guides for
the eye. The von Neumann entropy of the ground states are
painted by gray scale density plots, where black (white) color
refer to low (high) entanglement respectively. The three sub-
plots denote fixed intra-specie spin exchange interaction pa-
rameters of (C1β1, C2β2)/|C1β1| =: (a) (−1,−2) ; (b) (1, 2);
and (c) (−1, 2). The red dashed lines are four lines con-
necting the points OAA(−32, 6), OCC(32, 6), OFF(32,−6) and
OPP(−32,−6) in the parameter space of (C12γ,C12β)/|C1β1|.

species will not pair into a singlet, but atoms in different

species will pair into singlets with 〈Γ(1,1)†
0 Γ

(1,1)
0 〉 close to

reaching its maximum values N(N + 2) when the inter-
species spin-exchange interaction is anti-ferromagnetic.
The corresponding total spin angular momentum L̂2 is
equal to its maximum value 2N(2N + 1) with a rela-
tively low von Neumann entropy when the interspecies
spin-exchange interaction is ferromagnetic. The total
spin angular momentum L̂2 is equal to 0 with the von
Neumann entropy S(ρ̂1) = 1 for anti-ferromagnetic inter-
species spin-exchange interaction. Second, when (β1 >
0, β2 > 0), in the two limits of large ferromagnetic or anti-
ferromagnetic interspecies spin-exchange interaction, the
ground state is the same as above in the previous case.
In the other limit with low interspecies spin-exchange in-
teraction, atoms in the same species tend to pair into
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singlets giving rise to no entanglement between the two
species. This implies the ground state can be written

as a product state: Z−1/2(Â
(2)†
0 )N/2(B̂

(2)†
0 )N/2|vac〉. For

the remaining phase, we call it the MM phase, which can
show higher (lower) entanglement compared to the FF
phase between the two species when β > 0 (β < 0). For
the final case when (β1 < 0, β2 > 0), the ground state
show similar properties as that in the second case.
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FIG. 2: (Color online). LEFT: The ground-state normalized
expectation values of intra- and interspecies singlet-pairing

number operators Â
(2)†
0 Â

(2)
0 /N(N + 1), B̂

(2)†
0 B̂

(2)
0 /N(N + 1),

Γ̂
(1,1)†
0 Γ̂

(1,1)
0 /N(N + 2), denoted by blue solid, red dash-dot,

and black dash-dot-dot lines, respectively. RIGHT: The nor-
malized total spin angular momentum L̂2/2N(2N + 1) and
von Neumann entropy of the ground state, denoted by blue
solid and red dash-dot lines, respectively. The three subplots
denote zero interspecies singlet-pairing interaction (γ = 0)
and fixed intra-species spin-exchange interaction parameters
(C1β1, C2β2)/|C1β1| =: (a) (−1,−2) ; (b) (1, 2); and (c)
(−1, 2).

The most attractive phase when γ = 0 is the entangled
ground state denoted by ψ00

AA [19],

ψ00
AA =

1√
2N + 1

N
∑

m=−N

(−)N−m|N,m〉1 ⊗ |N,−m〉2, (5)

which show high entanglement with S(ρ̂1) = 1 be-
tween the two species. As demonstrated in Fig. 1
by numerical calculations, however, there remain other
phases which show larger entanglement between the two
species. This shows that the state ψ00

AA is not a max-
imal entangled state, in contrast to previously studied
case of two pseudo spin-1/2 condensates [16]. This is
not a surprise [28]. Due to the redundant degrees of

freedom in the spin-1 case, the total spin angular mo-
mentum of each species can take other values besides
the largest value of N . To demonstrate the entangle-
ment between the two species, we show their correspond-
ing expectation values and von Neumann entropy along
four lines connecting the points OAA(−32, 6), OCC(32, 6),
OFF(32,−6) and OPP(−32,−6) in the parameter space
of (C12γ, C12β)/|C1β1|. The four lines are marked as red
dashed lines in the Fig. 1(a).

In Fig. 3, we illustrate the ground-state proper-
ties of two ferromagnetic condensates with intraspecies
spin-exchange interactions at (C1β1, C2β2)/|C1β1| =
(−1,−2). First of all, we consider the AA phase. When
γ = 0, the spin-dependent Hamiltonian contains three
operators commuting with each other, and the ground
state can be expressed as ψ00

AA for large enough anti-
ferromagnetic interspecies spin-exchange interaction, and
show high entanglement between the two species. When
γ 6= 0, although the fourth term of the spin-dependent
Hamiltonian does not commute with the other three, we
find that the ground state not only show similar expecta-
tion values of the operators, it also contain similar entan-
glement between the two species, over a large area in the
phase diagram demonstrated in Fig. 1(a). For γ < 0,
irrespective of its value, the ground state falls into the
AA phase. For γ > 0, the ground state is still classi-
fied as the AA phase, as long as C12γ does not exceed
a critical value, which increases in proportion to the in-
terspecies spin-exchange interaction parameter C12β. In
the first column of Fig. 3, we evaluate the properties of
the AA phase, where the ground-state expectation value
of intra- and interspecies singlet-pairing number opera-
tors are close to 0, 0, and N(N + 2), respectively. The
total spin angular momentum is exactly equal to 0, and
the von Neumann entropy is close to 1.

When interspecies singlet-pairing interaction exceeds
a critical value, the ground state changes into the MM
phase. As long as C12γ > 0, it tries to decrease the in-
terspecies singlet-pairing interaction. In the first column
of Fig. 3, we follow the line of OAAOCC and illustrate
the phase transition from the AA phase into the MM
phase. In the MM phase, as long as we increase C12γ
accordingly, atoms in different species will continuously
avoid to pair into singlets, while atoms in species 1 will
try to pair into singlets. Atoms in species 2 first try to
pair into singlets and then avoid to pair. Meanwhile, the
total spin angular momentum first increases and then de-
creases. For a relatively large area of the MM phase, we
find the two species show high entanglement compared
to the AA phase.

As interspecies singlet-pairing interaction is increased,
the ground state will fall into the CC1 phase, where its
total spin angular momentum L̂2 will be equal to N(N+
1), and atoms in the species 1 (2) will pair (not pair)
into singlets. At the same time the expectation value of

Γ
(1,1)†
0 Γ

(1,1)
0 will be near to its maximum N(N +2). The

ground-state von Neumann entropy in the CC1 phase
remains at a low value.
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FIG. 3: (Color online). TOP: The ground-state normalized expectation values of intra- and interspecies singlet-pairing number

operators Â
(2)†
0 Â

(2)
0 /N(N + 1), B̂

(2)†
0 B̂

(2)
0 /N(N + 1), Γ̂

(1,1)†
0 Γ̂

(1,1)
0 /N(N + 2), denoted by blue solid, red dash-dot, and black

dash-dot-dot lines, respectively. BOTTOM: The normalized total spin angular momentum L̂2/2N(2N +1) and Von Neumann
entropy of the ground state, denoted by blue solid and red dash-dot lines, respectively. From left to right, we illustrate
the corresponding expectation values and Von Neumann entropy along four direct lines connecting four points OAA(−32, 6),
OCC(32, 6), OFF(32,−6) and OPP(−32,−6) in the parameter space of (C12β,C12γ)/|C1β1|. The intraspecies spin-exchange
interactions are fixed at (C1β1, C2β2)/|C1β1| = (−1,−2). The four lines are marked as red dashed lines in the Fig. 1(a).
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FIG. 4: (Color online). The same as that in Fig. 3, but with different intraspecies spin-exchange interactions fixed at
(C1β1, C2β2)/|C1β1| = (1, 2).

Going along the line OCCOFF, with decreasing in-
terspecies spin-exchange interaction, the ground state
changes from the CC1 phase, to the MM phase, and fi-
nally to the FF phase. Atoms of species 1 will become
unpaired continuously, while the total spin angular mo-
mentum increases from N(N + 1) in the CC1 phase to
its maximum 2N(2N +1) in the FF phase. The ground-
state entanglement between the two species in the CC1
and the FF phase are almost at the same level. While in
the MM phase, the entropy first increases to near 1 and
then decreases.

We then follow the line OFFOPP. With decreasing
interspecies singlet-pairing interaction, the ground state
covers the FF, MM, and PP phases successively. In the
PP phase, atoms in the same/different species will all try

to pair into singlets. The ground-state expectations val-
ues for intra- and interspecies singlet-pairing number op-
erators will reach close to their corresponding maximum,
meanwhile the two species show higher entanglement. In
the MM phase, the expectations values for operators or
the von Neumann entropy change continuously to con-
nect the FF phase and the PP phase.

Lastly, we consider the line OPPOAA. As long as
the interspecies spin-exchange interaction increases, the
ground state will be changed continuously from the PP
to the MM, and to the AA phase. From the fourth col-
umn of Fig. 3, we find that in the whole line of OPPOAA,
the two species show a relatively high entanglement with
the von Neumann entropy S(ρ̂1) remaining higher than
1. Especially so in the MM phase, where the highest
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FIG. 5: (Color online). The same as that in Fig. 3, but with different intraspecies spin-exchange interactions, which are fixed
at (C1β1, C2β2)/|C1β1| = (−1, 2).

entropy reaches 1.4568, which is close to the maximum
entropy of log2N+1((N + 1)(N + 2)/2) ≃ 1.6116.
In Figs. 4 and 5, we illustrate the two

other cases with intraspecies spin-exchange interac-
tions (C1β1, C2β2)/|C1β1| fixed respectively at (1, 2) and
(−1, 2). We find that the ground-state show similar prop-
erties to that in the two ferromagnetic condensates shown
in Fig. 3. The only difference is for the CC2 or CC3
phase. In the CC2 phase, the ground state expecta-
tion values for both intra- and interspecies singlet-pairing
number operators are close to their corresponding maxi-
mum N(N + 1), N(N + 1), and N(N +2). While in the
CC3 phase, they are close to 0, N(N+1), and N(N+2),
respectively. The total spin angular momentum of the
ground state is equal to 0 in the CC2 phase, andN(N+1)
in the CC3 phase. Meanwhile, in the CC2 phase the von
Neumann entropy is less than 1 but larger than that in
the FF phase, while in the CC3 phase, it is close to the
value in the FF phase.
Before conclusion, we hope to stress that the maximal

entangled state in this system is given by

ψME = Z−1/2
(

Γ̂
(1,1)†
0

)N

|vac〉. (6)

It is the eigenstate or the ground state (if γ < 0) of the
γ-term in the Hamiltonian of the Eq. (1), which means
the maximal entangled state ψME is the eigenstate of
two spin-1 condensates with only interspecies spin-singlet
pairing interaction (β1 = β2 = β = 0 and γ 6= 0), with
the corresponding eigenvalue C12γN(N + 2)/6 [29].

V. CONCLUSION

In conclusion, we have studied the ground-state phase
diagram for a binary mixture of two spin-1 condensates

more carefully, going beyond the MF approximation.
When there exists no interspecies singlet-pairing inter-
action, the spin-dependent Hamiltonian contains three
operators commuting with each other. In this special
case, the most interesting phase is the AA phase, where
two species show high entanglement. When interspecies
singlet-pairing interaction is turned on, the added opera-
tors do not commute with the previous three ones, which
forbids us from obtaining exact eigenstates analytically
for the model spin system. In this study, we perform
full quantum diagonalization to find the ground states
numerically. To quantify the ground states, we work
out the building blocks to construct the maximum spin
states, which can be used rightfully to discuss entangle-
ment scales between the two species. We have evaluated
the associated ground-state von Neumann entropy. After
detail calculations, we find that the AA phase can per-
sist for large areas of the parameter space for interspecies
spin-exchange and singlet-pairing interactions. In addi-
tion, there is another interesting phase: the PP phase,
which show similar level of entanglement between the
two species. What’s more, we find that AA phase is not
the maximum entangled state. The ground state with
highest entanglement we found lies in the MM phase.
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