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We present an experimental study of the dynamics of a twekBxstem driven by strong non-resonant elec-
tromagnetic pulses as a function of pulse intensity andrilegu We have explored the qualitative and quan-
titative behavior of the transition probability as a fulctiof pulse area for five different temporal profiles:
Lorentzian, Lorentzian squared, hyperbolic secant, tygl&rsecant squared, and Gaussian. The two-level sys-
tem consists of a fine-structure doublet in sodium Rydbextgstcoupled by Raman transitions driven through
far-off-resonance intermediate states. The pulses ateeimicrowave regime and have high fidelity and uni-
form intensity. Experiments show that despite the sintiari the pulse shapes, the behavior of the population
transfer versus intensity depends dramatically on the ¢eafghape and that the spectral properties and area of
the pulse do not adequately describe the response.

PACS numbers: 32.80.Rm 32.30.Bv 32.60.+i 42.50.Hz

I. INTRODUCTION tion of intensity may be important to affecting control, par
ticularly when the goal is to determine the appropriate @uls
shape to minimize or maximize a transition probability for a

A fundamental quantum dynamical process is the evolyd'Ven d?tur_"”g_ffo”? resonance. . . .
tion of a two-level quantum system driven by a strong, time- Despite |ts.3|m|.oI|C|ty, and even after mvokmg t_he rotgtin
dependent, coherent radiation field. This deceptively Emp wave approximation, there are a remarkably limited number

system has been the subject of intense and longstanding the®J Situations for which the dynamics of a two-level system
retical and experimental investigation [1-3]. The goallo$t can be solved In cI(_)sed _form. The _Schrod!nger equation for
paper is to experimentally demonstrate the dramatic eiect  SUCh @ System is written in the field-interaction represena
relatively small changes in pulse shape of non-resonait radin ©€rms of the probability amplitudes nd by as:

ation can have on the intensity dependence of the transition i CA®) Q1) b,

probability in two-level systems. We explore this problem ’ ‘
with “bell-shaped” pulse shapes typified by the hyperbolic
secant which is the only smooth, symmetric coupling pulse

shape for which an analytic solution to two-level dynamics,\here the coupling between the two states is defined by the
has been found [4]. _ , Rabi frequency§2(t) = Q,G(t) and the detuning from reso-

In addition to fundamental interest, the nonperturbatite d nance is given byA(¢). G(t) is the temporal profile, with a
namics of two-level systems has a practical application inyigth scaler, of the driving field. In this Hamiltonian spon-

quantum information science, where precise control of coaneous emission is ignored during the time evolution of the
herent evolution is required. The need to control the evoluy,avefunction

tion of two-level systems driven by near-resonant pulsisgar In general, solutions to Eq. 1 with constant detuning,

in the manipulation of quantum bits in universal quantum t) = A,, show two characteristics: oscillation of the popu-

processors. Examples occur in implementing operations opyions with intensity (Rabi oscillations) and a decreasthi
Josephson-junction, quantum-dot, or trapped ion qubiES®h - ygcijjation amplitude with detuning from resonance [1-3].
the desire to use short intense pulses for fast operatiorisea ¢ e driving field is resonantA(¢) = 0, then the popula-

in conflict Wifch_the desi_re to not excite additional negrb;t_es tion transfer is independent of pulse shape, dependingamly

[5-10]. Judicious choice of pulse shapes could signifigant! ia area

reduce errors due to off-resonant coupling to additiorzaéest

The behavior of two-level systems can also provide insight 5=0q, /OO Gt)dt = Q7 @)

into quantum dynamics of more complex systems. For exam- oo ’

ple, an important general question in the field of coherent co _ .

trol is whether it is possible to use intensity to compengate ©f the pulse, where the integral of the temporal profile.is

detuning in transferring population between quantum stateSyStem initially in statei) has a probability amplitude

and how to understand the nonperturbative regime where the IS

spectral properties of the pulse no longer fully define a sys- bs(t — 00) = —isin (5) 3)

tem’s response [11-14]. Knowledge of the general behavior

of transition probability for different pulse shapes as actu  after any pulse of ares, with periodic maxima and returns to
zero. Robinson [15] showed that temporally symmetric non-
resonant pulses always have finite values of the area, called

return areas and denotéq, for which the population trans-
* cconover@colby.edu fer will vanish.
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In the perturbative limitS < , the transition amplitude, has been shown to hold approximately in a wide variety of

by, is given by situations [15, 17-19], when the pulses are not too strong,
the scaled detuning., 7 is small, and the pulses have smooth
(1) 1 /OO ALt spectra.
bylt = 00) = =i 2 T ) Glt)e di 4 A reasonable question, then, is whether there are general
N (4) trends for the magnitude of the Rabi oscillations and the re-
= _iE—G(Ao)' turn areas as a function of pulse intensity and detuning. The
T

major goal of this paper is to experimentally explore thergua
titative and qualitative features of the population transfue
to different symmetric pulse shapes as a function of pulse in
tensity and detuning from resonance.
More than a decade ago Berman and coworkers [20]
lation is the basis for the energy-time uncertainty prifeip ~ Showed that with detunings that are large compared to the
For strong nonresonant pulses with constant detuning an&Y!Se bandwidth, the qualitative behavior of the solutifmms
lytical solutions to Eq. 1 are known only for a few speciatize different pulse shapes can be dramatically different. hipa
cases. The Rosen-Zener solution [4] for the hyperboliaisec ular they showed that for far-detuned pulses with largeeguls

whereG(A,) is the Fourier transform of the temporal profile
evaluated at the detuning. Whéx,~ > 1 the pulse does not
contain Fourier components that compensate for the degunin
and the probability of transfer to stafeis small. This calcu-

pulseG(t) = sech(rt/T)is areas that Lorentzian and Lorentzian-squared pulses peodu
Rabi oscillations with amplitudes decreasing in magnitude
S A, with pulse area, while Rabi oscillations with hyperbolie se
by(t — oo) = —isin (5) sech( 9 ) ) (5)  cant and hyperbolic secant squared pulses produce constant

amplitude Rabi oscillations and Gaussian pulses prodube Ra
depending only on the area of the pulse dng, whichwe re-  oscillation amplitudes that increase with pulse area. Rexn
fer to as the scaled detuning. Of particular note is the faatt t [15, 21-24] showed that the return areas are systematically
the amplitude of the Rabi oscillations are dependent only oulifferent froms,, = 2nx for different pulse shapes. In partic-
the scaled detuning and not on the Rabi frequency, and that tiular, he predicted;, > 2nn for Lorentzian shaped pulses and
return areas are the same as for a resonant psilse; 2nm. S, < 2nm for Gaussian and other smooth pulse shapes. Prior
Rosen and Zener recognized that & ) is V27 G (A,) for experiments that have looked at Rabi oscillations as aitumct
the hyperbolic secant pulse, and that the solution is ctemgis ©f intensity [10, 25-31] have been insensitive to thesegpuls
with the uncertainty principle argument derived from pertu Shape dependencies either because of the inability togefgci
bation theory. Further, they conjectured that an arbiteary control or measure the pulse shape, fluctuations in the pulse

velope function would produce a transition probability intensity, or because of the short lifetime in the excitedest
We demonstrate the trends predicted by Bereta. [20]
2 and Robinson [15, 21-24] using an effective two-level gyste

(6)  We will show that the behavior elucidated by Berneiral.

[20] is not limited to the large detuning regime, but can be im
) ) ) ) o portant even when the detuning is small. Further, the génera
Their conjecture is known to be invalid in general. For ex-penavior of the solutions is not affected by the precise Hami
ample, the well-known Rabi solution for a square pulse withgnjan and the inclusion of time-dependent detunings tjitou

P; = sin® (g) |@6(A0)

width 7 AC Stark shifts does not affect the overall qualitative heha
02 1 ior. Like Bermanet al. [20] we find that the behavior of the
Py = WOA? sin? <§\/Q§ + A2 T> , (7)  two-level transition probability can be understood in terof

the ratio of the instantaneous energy difference between th

does not obey the Rosen-Zener conjecture. In Eq. 7 the ampfr-_igenstates of Eq. 1 and the rate at which the eigenstates of
tude of the Rabi oscillations tends toward unity for largéRa =d- 1 themselves change as the pulse turns on and off.
rates, no matter what the detuning, and the return areas occu

for
1. EXPERIMENTAL APPROACH AND APPARATUS

[ 1 (A7
Sn,Rabi = {loT = 2nmy[1 - — ( T) <2nm. (8) A. Overview
’ n 2m

However, the square pulse is clearly not experimentallis rea Experimental exploration of the physics defined by Eq. 1
izable and the spectrum has mathematical artifacts from theequires a two-level system where the excited state haga lon
temporal discontinuities. radiative lifetime and the interaction with the electromatic

Failure of the Rosen-Zener conjecture was also shown eXield can be precisely controlled. We chose to make measure-
plicitly by Bambini and Berman for a class of asymmetric ments of Raman transitions between fine-structure doublets
pulses that can be mapped onto the Rosen-Zener solutian [16h Rydberg states. The Hamiltonian for the system is given
With asymmetric pulses, the oscillatory solutions do net re by Eq. 1 when all of the intermediate states are adiabaticall
turn to zero for any finite pulse intensity. However, the Eq. 6eliminated as outlined in Appendix A.




Rydberg states are nearly ideal for the experiments. Firsting is
the states are closely spaced, making possible experiments
with microwave fields, where high-fidelity pulses with pre- T 12m§ 9
cisely measured uniform amplitudes are readily produced. A(E) = Ao +ay (20— 1)20(20+1) &, (109
Second, they have large dipole moments which allows strong
Raman coupling with modest fields. Despite smal1Q
MHz) spacing between the two states they can be efficientl
and selectively detected by ionizing the atoms with a rampe

electric field. Third, Rydberg states have radiative lifets which depends on the same matrix elements and energy dif-
that are long compared to the pulse widths we employ. Fi?erences a€), and A, [35-38], givesal,,/2r = 18.3

nally, Rydberg systems can be accurately modeled with relI'\/IHz/(V/cm)Q, a difference of less than 3% from the measured

auvely simple numerical technigues for comparison with th value. We assume that the accuracy of the parametersin Eq. 9
experimental results. i similar

In the experiments we measurédn; = 0 transitions be-
tween|i) = [23ds 5 [my| = 3) and|f) = [23ds > |m;| = 1)
driven by z-polarized 650 MHz pulses. The quantum defect of C. Rydberg Atom Production and Detection
thend states in sodium i§; = 0.015 [32], and the23d dou-
blet is isolated from any other state by least 7.5 GHz. Raman
coupling is through far-detuneth andn f states. Because of b
their spacing from other states, th&d states have only small
Stark mixing with other angular momentum states for stati

where £ is the static electric field and., is the tensor
olarizability [35]. We measured,,/2r = 18.8 &
.1 MHz/(V/cm)?. Calculation of the tensor polarizability,

Experiments are performed in a vacuum chamber with a
ackground pressure 6fx 10~7 Torr. An atomic beam of
sodium is emitted from a resistively heated oven and passes
cthrough a transmission line perpendicular to the propagati
- . ) f the microwave pulse as diagrammed in Fig. 1a. The atoms
on_ly _for 23d states, similar behavior was seen for dlf'ferentare excited in a stepwise manner, from fisg,, to thesp,
principal quantum numbers. state and then to th23d;/, Rydberg state by 589 nm and
410 nm nanosecond dye lasers pumped, respectively, by the
second and third harmonics of a 20 Hz Nd:YAG laser. The
laser beams are nearly collinear and propagate antipaialle
the atomic beam. The lasers are polarized to excite only the
m; = = i states.

As outlined in Appendix A for Rydberg doublets the two-  About 100 ns after the Rydberg state is populated the mi-
level Hamiltonian of Eq. 1 is defined by three parameterscrowave pulse is applied to the transmission line. Follow-
the zero-field detuning\,, the peak Rabi frequenc@,,  ing the microwave pulse a slow (microsecond timescale) high
and the peak differential AC Stark shift,. These parame- voltage ramp is applied to a capacitively isolated platenef t
ters determine the time-dependent two-photon Rabi fregjuen transmission line. During the ramp the angular momentum

B. Model Parameters

Q(t) = Q,G(t), and the time-dependent detuniddt) =  states adiabatically evolve into Stark states which iorize
A, + AyG(t), whereG(t) is the intensity profile of the pulse. distinct electric fields [39]. Following ionization the eteic
We have measured,/2r = —7.95 + 0.01 MHz using field pushes the free electrons into a microchannel-plate de

time-domain spectroscopy [33]. In order to deternfineand  tector, with the electrons from atoms in tlig, state arriving
A,4, defined in Eq. A10 and Egs. A14 and A9, we computedoefore those from atoms in thig , state as shown in Fig. 1b.

the dipole matrix elements,, = —e(p|z|q) using a Numerov  Using both signals it is possible to determine an absolate tr
algorithm [34] and the known quantum defects of the sodiunsition probability.
Rydberg states [32]. We calculat@d andA 4 using the near- Absolute probabilities were determined by integrating the

est three pairs of states and the nearest four pairpatates area of thed;,, peak after subtracting the small background
in the set of intermediate levels. Adding more intermediatewithout the yellow 3s-3p laser, and normalizing to the total
states does not change the calculated parameters at more trelectron signal. A small ambiguity in the final state digtrib
the 0.1% level, as the matrix elements get smaller and the eition arises because electrons from the two states are net com
ergy denominators get larger for more distant states. We depletely distinguishable, as seen by the overlap of the wings

termine that for 650 MHz pulses of the two peaks in Fig. 1b. We attribute the overlap to some
nonadiabatic evolution during the field-ionization pul3ée
Q. MHz _, presented results are adjusted with the assumption that-a co
o 2'25(\7/7)250 stant fraction of electrons detected in g, peak are from
Ay MHz 9) the d;,, state and vice-versa. We determined the correction
£ =0432——-E% factor using measurements made with no RF pulse, when only
2m (V/em)? the23d;,, state was excited. We measure approximately 5%

of the electrons within the3d; ,, peak under these conditions.
To assess the accuracy of these parameters we measurkssuming that the overlap is independent of the initialesisit
the electric-field dependent change in the spacing of thés essentially an assumption that the field ionization psede
23d m; = 1/2fine structure states. The field-dependent splitincoherent. The assumption affects only the overall sizhef



4

measured population transfer, but not the shape of the pop$chwarz SMEO3) phase locked to a 10 MHz laboratory clock.
lation transfer curves or the fields where maxima and minima& he microwaves were modulated in an 1&Q modulator (Mer-
of the population transfer occur, which are the main coreernrimac Industries IQM-9B-500) using the output of a 1 GS/s ar-
of this paper. bitrary waveform generator (Tektronix AWG520) which was

The experiment is run synchronously with the 60 Hz ACalso phase locked to the 10 MHz clock. This pulse shaper is
electrical line and the experiments are performed at the zercapable of modulating both the phase and the amplitude of
crossing of line currents in the laboratory to reduce theatff the microwave pulses, but for this experiment only ampétud
of magnetic fields, which are mainly from the sodium oven,modulation was used since the Hamiltonian depends only on
in the apparatus. In addition, the transmission line was lothe intensity of the pulses. In practice we are interested in
cated at the center of a long mu-metal box with open endspecificG(¢) and program their square roots into the pulse
which shields the interaction region and reduces the rasidu shaper.

magnetic field in the transmission line to less than 100 mG. A reasonable way to characterize the output pulses is by

In zero magnetic field thev; = +1 states behave identically th
and in our discussion we neglect magnetic field interactions

eir fidelity to the programmed pulse shape, defined as the
absolute square of the overlap

Signal Out (a) 2
Na Oven Microchannel F = ‘/g; (t)gm (t) dt| (12)
— Plates
Ss Electrons

Monitor

Microwave

between the programmed and measured pulse shapes,
andg,,(t). We measured the fidelity of the pulses using a
LeCroy 960 2 GHz bandwidth oscilloscope.

Fidelity of the pulses was improved over a straightforward
implementation by (a) adding a small DC offset to each of the

Capacitor  lonization Ram Beams . .
P P IF ports of the 1&Q modulator which reduced carrier leakage

by 22 dB, enhancing the on/off contrast and (2) filtering the
(b) output with a 1 GHz low-pass filter which reduces the har-
monic output by more than 20 dB. With the steps taken, the
. pulses haveF > 0.995 just before entering the transmission
line.

After shaping, the pulses are attenuated by step attenua-
b tors and their intensity is scanned using a General Micrewav
D1961B voltage controlled attenuator. The attenuator has a
nominal attenuation of 10 dB per volt, but the variation from
Time (ns) the nominal value is significant{1 dB), and the attenuation
was calibrated using the digital oscilloscope. Pulses aare
plified to 1 W using a Minicircuits ZHL 2-12 amplifier which
has a maximum linear output of 29 dBm and a gain of 24 dB.
Measurements of the pulses after the amplifier show no degra-
dation of fidelity.

The design of the transmission line has been described ear-
lier [40]. The version used in these experiments consists of
two parallel brass plates approximately 15 cm long that have
a 50¢2 impedance; the plate separation is 0.762 cm and their
width is 5.72 cm. The signal to the top plate is coupled from
a coaxial cable by a standard SMA connector and passes to a
monitor via a second SMA connector and coaxial cable. The
lower plate is connected to each SMA ground via a 100 pF mi-
crowave capacitor. The capacitors allow the applicaticthef
slowly varying ionization ramp while only minimally affect
ing the transmission of the microwaves. Using a directional
coupler, we have determined that the total reflected power
from the transmission line is less than 5%. The relatively
with peak magnitudé€, and polarizatiort. In this paper, we short length of the transmission line means that except for
consider only functiong(t) with constant(¢). The envelope pulses with durations comparable to the 1 ns round trip time
function ¢(t) determines the Rabi frequency and AC Starkof the low-finesse cavity, that the only effect of reflectioms
shift profiles, withG(t) = |g(t)|?. a small change in the amplitude and phase of the pulse within

To generate the shaped microwave pulses we modulate thke transmission line. We calibrated the field inside thedra
output of a 650 MHz continuous wave oscillator (Rohde & mission line using an Avtech Electrosystems AVX-BP1 probe
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FIG. 1. (Color online) (a) Overview of the experimental afpas
showing the parallel plate transmission line, atomic seuand mi-
crochannel plate detectors. (b) Experimental traces siwpthie sig-
nal from the microchannel plate detector without (blue heal$ a mi-
crowave pulse and following application of a 12.5 ns Gaumspigse
with amplitude of approximately 3.75 V/cm (red, solid). Ttero of
the time-scale is shortly before the peak of the ionizatigiseg

D. Microwave pulses

We generate an electromagnetic field having the form
E(t) = Eolg(t)| cos (wot — (1)) €
1 , ,

= 55(, (g(t)e ™t + g*(t)e' ") € (11)



and the peak field calibration is based on these measurements
We estimate that between the residual nonlinearities imthe
tenuator and amplifier and the calibration of the peak fiedd th
the uncertainty irt,, is less than 5%.

G(t)

I11. RESULTS

Experiments were performed with five different pulse
shapes, (a) Lorentzian, (b) Lorentzian squared, (c) hygierb
secant, (d) hyperbolic secant squared, and (e) Gaussian. Th
temporal intensity profiles

1
Ga(t) = (13a)
(1+(=)7)
1
Gi(t) = —————g (13b)
Tt
(1+(7)
e (T 3
G.(t) = Sech <7> (13c) ol
2t £
Ga4(t) = Sech | = (13d) &
T
Go(t) = e ™(£) (13e)
are shown graphically in Fig. 2(a). Each pulse is generally
bell-shaped, with equal maxima and an are® that the pulse 0.0 05 10 15 20
areas, defined in Eq. 2, is identical for the same peak inten-
sity. At/2m

While all five pulses are quite similar in shape, there are

clearly some differences. A.S can be seen in Flg._ 2(a), EjncferFIG. 2. (Color online) Plots of the five pulse shapes in thdifag-
ences be_tween the Lorentzian squared, hyperbolic secaht, 3and (b) frequency-domain. The shapes are Lorentzian (dalidn-
hyperbolic secant squared pulses are very small. On the othgey) | orentzian squared (dashed, lavender), hyperbetiar (solid,
hand, the Gaussian and Lorentzian have notable differencegy), hyperbolic secant squared (dashed, red), and Gaussitid,
from the hyperbolic secant in their temporal structure. Theyreen).

Gaussian falls to zero comparatively rapidly in the wings of

the pulse, but quite slowly far/r < 1. The Lorentzian, on

the other hand, falls to zero quite slowly in the wings of thejors in the time-domain are reflected in the frequency domain
pulse but relatively quickly for/ < 1. The Lorentzian with the Gaussian having significantly less and the Lorentiz
squared is intermediate between the Lorentzian and hypesignificantly more spectral energy than a hyperbolic secant
bolic secant shapes, while the hyperbolic secant squatee pu pulse at large scaled detunings. Again, for small scaled de-
is intermediate between the hyperbolic secant and the Gauginings the characteristics of the Gaussian and Lorenarian

sian shapes. _ o reversed. A further important distinction is that while fate
In the frequency domain, the five different pulse shapes pulse shapes are smooth in the time domain, the Lorentzian
~ N has a discontinuous derivativeat- = 0.
Ga(B) = \ /gﬂe (142) Because the detuning is fixed at 7.95 MHz by the atomic
_ - 2AAIT\ 2l structure, we adjust the scaled de_tunm(gr by changing t_he
Gy(A) = T = (14b)  length of the pulse, and therefore its spectral bandwidtis T
2w T means that pulses of the same peak intensity but different de
~ __T Ar tunings also have different areas. We performed expergnent
(A) = Sech (14c) , ; .
V2T 2 with pulse widthsr ranging from 12.5 ns to 75 ns. The cor-
~ T [(TAT TAT AT responding scaled detunings, /27 range from 0.1 to 0.6.
Ga(A) = oz (T) Csch (T) Sech (T)(14d) In the frequency domain the corresponding intensity spectr
3 - ary? have bandwidths ranging roughly from 35 MHz to 6 MHz.
G.(A) = e Im (14e) Results of population transfer as a function of intensity
v2m for each pulse shape are shown in Figs. 3-7. The peak field

are shown graphically in Fig. 2(b) versus the scaled detuninstrength<, were scanned from zero to approximately 7 V/cm
At /27. All decrease exponentially at large detuning. Behav-with data points separated approximately evenlgjn The



Calculated Area Calculated Area for the computed transition probability have been scaled by
n 2n n 2n a factor of 1.075 to more closely agree with the experimental
@) (b) results. Equivalently, the dipole matrix elements usede t
i i calculation could have been scaled downy.075, reducing
2SR [ D the theoretical Rabi rate by 7.5%. The scaling required is in
= o \ rough agreement with the discrepancy measured in the tensor
‘ ‘ polarizability, but is likely due to a combination of errarthe
i i R matrix elements and the experimental field calibration.
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FIG. 3. (Color online) This graph shows the population tfanfor
for (a) Lorentzian, (b) Lorentzian squared, (c) hyperbeicant, (d)
hyperbolic secant squared , and (e) Gaussian 12.5 ns psladarc-
tion of the square of the pulses’ peak electric field. Thedegsu
have a scaled detuning,7/2r = 0.1. The solid lines are the
result of a multi-level calculation described in Appendix Bhese
lines are scaled i62 by a factor of 1.075, but no scaling of the pop-
ulation transfer was applied. The pulse areas along thexispase
calculated from Eq. 2 using the two-level approximationtef Rabi & (Viem)?
frequency from Eg. A10.

Population

10 20 30 40

FIG. 4. (Color online) The same as Fig. 3 for 25 ns pulses. &hes
pulses have a scaled detuniagr/2n = 0.2.

corresponding two-photon Rabi rat@s/27 and relative AC
Stark shiftsA; /2w ranged up to approximately 100 MHz and  As expected for symmetric pulses, the population trans-
20 MHz respectively, both significantly larger than the zero fer exhibits Rabi oscillations, with peaks and returns tmze
field detuning. At these field strengths no transitions ttesta population transfer as a function of pulse intensity for all
other than the 23}, state were observed although at signifi- of the pulse shapes. The peak population transfer decreases
cantly larger fields (over 15 V/cm), transitions to the 23flan for longer pulse durations (larger scaled detuning), aslavou
higher angular momentum states occur [41]. be expected by both uncertainty principle arguments and the

The error bars in each plot represent the statistical unceRosen-Zener conjecture.
tainty of the raw data and the uncertainty due to the ambigu- In general the experimental results agree with the computed
ity introduced by the imperfect separation of the two elgttr  transition probability in the amplitude of the Rabi osdiliams
pulses seen in Fig. 1(b). Each graph is labeled horizontallynd, after scaling the theoretical field strengths, thetiona
with both the squared electric field, and the pulse area S sf the peaks and zeros of the transition probability. For the
Q,7 calculated based on the Rabi rate of Eq. 9. shortest experimental pulses presented in Fig. 3, the ctadpu

Each plot also contains a solid line which is the result oftransition probability is systematically larger than theeri-
a calculation of the population transfer based on the modehental results. We attribute this discrepancy to impeidast
described in Appendix B. The calculation explicitly incekgl in the shape of the pulse, due to (1) their large bandwidth
the evolution of the nearest set of intermediate ste8$)(  which is approaching the nominal bandwidth of the modu-
At high fields, adiabatic elimination of these states leads t lator and (2) small reflections at the end of the transmission
inaccurate values of the parameters of Eq. 9. In additian, thline which would slightly stretch its length. These imperfe
model calculation includes additional highstates that are tions in the pulses become less important for longer pulses,
strongly coupled to th@3f states. Finally, the€? values and indeed agreement between the numerical model and the



experimental results are better for the longer pulses shiown A,7/27 = 0.6 the spectral intensities are nearly the same, but
Figs. 4-7. experimentally the ratio of the Lorentzian to Gaussian peak
height is approximately two.

Calculated Area Calculated Area
2 4m 6m 8m 10m 2 4m 6m 8m 10m

It is tempting to attribute these differences to the added de
tuning of the AC Stark shifts which are not included in Eq. 6.
AC Stark shifts tend to increase the average energy spacing
during the pulse, giving each pulse an effective scaledrdetu
ing somewhat larger thafy, 7. This would move the ratios of
spectral intensities closer to the experimentally obsbree
tios of the first Rabi peak. However, the maximum AC Stark
shift at the fields of the first Rabi peak givas;7 /27 = 0.1,
which is insufficient to close the quantitative gap between t
experimental peak heights and predictions based on the spec
trum.

Population

Population

0 10 20 30 40 0 10 20 30 40 .
£ (Viemy? £ (Viemy? Of course, the most remarkable property of the data is the
0 0

Calculated Area clear systematic variation in the Rabi oscillation amplés as
2n_4m_ 6m 8m 10m a function of intensity seen in Figs. 4-7. While the hypeitbol
secant pulses produce Rabi oscillations with almost cahsta
amplitude, the Lorentzian and Lorentzian squared puls®s pr
duce Rabi oscillation amplitudes that decrease with iritgns
while the hyperbolic secant squared and Gaussian pulses pro
duce Rabi oscillation amplitudes that increase with intgns
The Rabi oscillations due to the hyperbolic secant squared
pulse seem to level off at large pulse area, but the amplitude
of the Rabi oscillations due to a Gaussian pulse continue in-
creasing with area.

Population
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2 2
& (Vicm)

FIG. 5. (Color online) The same as Fig. 3 for 50 ns pulses. &hes
pulses have a scaled detuningr/2r = 0.4. The vertical scale

for Gaussian results is twice what it is for the other fouispighapes. The differences between the results of Lorentzian and

Gaussian pulses are particularly dramatic, and show that de
Focussing for the moment on the first maximum of thetails of the pulse shape significantly affect the strongifiet
Rabi oscillations, where the Rosen-Zener conjecture i mosponse. The observed behavior is consistent with the fisding
likely to approximately hold, the systematic variationghie  of Bermanet al. [20] for large detunings. However, even for
response to different pulse shapes might be predicted basgghises where the bandwidth is twice as large as the detuning
on the spectral intensities of Eq 14. Results for pulsela wit (F|g 4) the intensity dependence of the response to differe

A,7/2m = 0.1 (7 = 12.5ns), seenin Fig. 3 show that for pulse shapes is significantly different.
all pulses except the Lorentzian the experimental peak popu

lation transfer is approximately 70%, but the Lorentzianxma
imum is slightly less than 60%. On the other hand, results for Further observation of the data shows in addition that the
the largest scaled detunings with,7/27 = 0.6 (r = 75 zeros of the Rabi oscillations for the Lorentzian pulses are
ns), as seen in Fig. 7, show that the situation is reversel, wi located at dramatically different pulse intensities thay af
the first Rabi peak of the Lorentzian pulse having approxithe other pulses. For example, in Fig. 3 the zero of the pepula
mately twice the population transfer (10%) of the other euls tion transfer occurs at 44 (V/cm)while the other four pulses
shapes. A smooth transition between these two readily obhave zeros at approximately 38 (V/éinporresponding to a
servable quantitative differences is apparent for therimée  15% larger pulse area required for a nominatypulse. Like-
diate length pulses with ,7 /27 = 0.2, 0.4, and0.5. wise, for all of the other pulsewidths, the Lorentzian piilas

As shown graphically in Fig. 2(b), the Rosen-Zener con-zeros of the transition probabilities at intensities that sig-
jecture for the amplitude of the Rabi oscillations qualigly  nificantly larger than the other four pulses. This differeis
agrees with these observations, as the Lorentzian's ghectmot an artifact of cutting off the Lorentzian pulse expenime
intensity is significantly lower than the other pulses’ adim tally; the pulses were experimentally defined betwe&nbr,
scaled detuning and significantly higher at large scaledrdet which would account for less than a 3% reduction in the pulse
ing. However, a quantitative determination of the spedtral area. The locations of the zeros of the transition proktadsli
tensities atA,7/27r = 0.1 and0.2 shows that the predicted of the other pulses are all very close to each other, but show
ratios of the Lorentzian and Gaussian peak heights are 1gmall systematic differences which will be discussed frth
and 1.75, which is far from what is observed. In addition, forin Section IV.
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FIG. 6. (Color online) The same as Fig. 3 for 62.5 ns pulsegs&h FIG. 7. (Color online) The same as Fig. 3 for 75 ns pulses. &hes
pulses have a scaled detuningr/2r = 0.5. The vertical scale pulses have a scaled detunidgr/2r = 0.6. The vertical scale
for Gaussian results is twice what it is for the other fourspidhapes.  for Gaussian results is twice what it is for the other fourspighapes.

IV.  DISCUSSION where the time-dependent mixing anglg0 < 6 < w/4)
depends on the detuning and the Rabi frequency
A. Scaling of the Rabi Oscillation amplitude
o o _ tan (260) = 2. (17)
As seen in Figs. 4-7, there are obvious differences in the A(t)

trends in the amplitude of the Rabi oscillations with pulse
intensity depending on small differences in the pulse shapd3ecause the pulses used in the experiments turn smoothly on
Numerical results based on Eq. 1 and the model described ind off, givingd(+oo) = 0, the probability amplitudes at the
Appendix B agree with the trends. More importantly, how-beginning and end of the pulse in the adiabatic basis are the
ever, the trends in the maxima of the Rabi oscillations can b&ame as the probability amplitudes in the diabatic states.
understood in terms of the pulse-shape dependent behdvior o In the adiabatic basis, the Schrédinger equation is

the states dressed by the pulsed field.

As discussed by Berman et al. [20], to understand our re- Co 1 —Q(t) 2 c_
sults it is helpful to recast Eq. 1 in terms of the instantarseo i == (18)
eigenstates of the field-interaction Hamiltonian. The mige Gt 2 —92i0 Q(t) Ct

values of the field-interaction Hamiltonian at€)/2, where
. 5 5 The functiond is a measure of the rate of change of the
Qt) = VA2(E) + Q2(2) (15) eigenstates between the zero-field states and the fullgledu
_ 2 2 high-field states. Calculated in terms of the parameterseof t
o \/(AO +AaG(1)" + (G(1) atomic model and the pulse shape

is the instantaneous energy separation between the twa-eige

states. b 1AQ - AQ
In this semiclassical dressed-state (adiabatic) bases, th 2 Q2 (19)
eigenstates are B EAOQO . )
=53¢

|—-) = cos@|i) +sinb|f)

|[+) = —sinf |i) + cos O | f) (16)

We characterize the size of the transition probability be-



tween|—) and|+) with the nonadiabatic coupling function 125
n(t) = 200 _ A0- AR AQ@. (20) 100
Q (A2 +Q2)z
0.75
As long as|d| < Q (n(t) < 1) at all imes during the pulse, 3
then the evolution is adiabatic afd. = |c_|? and P, = 0.50
|c|? remain constant during the evolution, and there are no
transitions between staté$ and| f). 025
Transitions between the two adiabatic states occur when the
magnitude of the nonadiabatic coupling is nonzero, which oc 0.00 ' '
curs for combinations of a large rate of change of the eigen- 1.00

states and small differences in the energy. For bell-shaped
pulses the nonadiabatic coupling is a double-peaked fumcti
of time, with peaks symmetric abotit= 0 occurring as the
pulse turns on and off. Interference between transitiorteen
rising and the falling edges of the pulse lead to Rabi oscilla
tions. An important observation related to the shape of the
nonadiabatic coupling function is that the magnitude of the
Rabi oscillations is dominated by behavior in the wings ef th
pulse wher? is large and? is small, and not where the pulse
is most intense, whefiis small and? is large.

We re-express the nonadiabatic coupling in terms of a set

(AOT) * Nmax

of dimensionless parameters Q,/n,
1 r |G| . . .
n(t) == (21) FIG. 8. (Color online) (a) The time of the peak of the nonadtab
2 (AoT) [(1+0rG)? + r2G2]3/2 coupling and (b) the size of the peak nonadiabatic couplingim
plied by the scaled detuningersus the ratio of the peak Rabi fre-
where A,7 is the scaled detuning; = Q,/A, ando = quency to the zero-field detuning for the five pulse shapesetfi

A4/9Q, are the ratios of the Rabi frequency to the zero fieldin Eq. 13. As in Fig. 2 curves are for Lorentzian (solid, lader),
detuning and the peak AC Stark shift to the peak Rabi frelorentzian squared (dashed, lavender), hyperbolic s¢salid, red),
quency, and?’ is the derivative of7 with respect ta: = ¢ /7. hyperbolic secant squared (dashed, red), and Gaussiéh ¢gelen).

For the idealized two-level systemn = 0, but in our experi-

mental systemg ~ 0.19. As might be expected, the nona- o )
diabatic coupling decreases linearly with the scaled degun C ~ 1 is different for each pulse shape and decreasesawith
independent of the pulse shape. The main question, therefoFid- 8(&) shows explicitly how, /7 increases withr for the

is how the nonadiabatic coupling depends on the intensity ofive pulse shapes. The results in Fig. 8 are numerical calcula

the pulses. tions based on Eq. 21, with= 0.19 and are not based on the
As a measure of the transition strength, we consider th@PProximationG(t,) ~ C. _ _
maximum value of the nonadiabatic coupling functigft,,), Using the approximate solution fog we find
wheret, is the time where the nonadiabatic coupling peaks. 3/2
In the weak pulse limit, when < 1, Na(to) = m Ca L (23a)
L s AoT (14 0C,)2 + C2P2 VT
to) = = "(to)]- 22 5/4
n(to) Q(A 7_)2|G( ) (22) Py 1 Ob L 93b
° b (to) 3/2 p1/4 (23b)
2007 (14 0Cy)2 4 C2172 1Y/
In this regime the maximum coupling occurs wheé# - C.
is a maximum, and for all shapes except the Lorentzian Ne(to) = A~ 5 /2 (23c)
G'(t,) =~ 1.5, and for the Lorentzianz'(t,) ~ 2. In oT [(1+0Cc)* + C2]
. . . 2 C
all cases, the nonadiabatic coupling, and therefore the tra na(ty) d (23d)

sition probability, increases with the pulse area as woeld b 2A,T [(140Cy)% + 03]3/2
expected from the perturbative result of Eq. 4, and decsease
with the square of the scaled detuning. For the experimental N Ce r
data presented in Section lll, this approximation is vatid f e (to) = AoT (14 0C,)2 + 02]3/2 In <a) (23€)
£2 < 4(Vicm)?. ‘ ¢
For strong pulses, when> 1, the nonadiabatic coupling for » > 1. These approximate solutions show, as confirmed
peaks further out into the wings of the pulse. The maximunby the result of the numerical calculationg(f,) in Fig. 8(b),
of n(t) occurs whereG(t,) ~ C [20, 42]. The constant that the nonadiabatic coupling behaves differently fordtie
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ferent pulse shapes as a function of pulse intensity. For the
Lorentzian and Lorentzian squared pulses.,) decreases 12k ' @
with Rabi frequency as—!/2 andr—1/4, while for the Gaus-
sian pulse)(t,) increases with the Rabi frequencylaé,/r). 1.1 %
Finally, for both the hyperbolic secant and hyperbolic s¢ca TT
squared pulsegyt,) is independent of at large intensity.
Physically, the change in the magnitude of the Rabi oscilla-
tions is determined by how the rate of change of the eigen-
states scales with intensity as the peak of the nonadiabatic 0.8k .
coupling pushes farther out into the wings of the pulse. For
Lorentzian pulses the rate gets slower as the pulses get more 0.7~ .
intense. On the other hand, for Gaussian pulses the change I I I
becomes more rapid when the coupling is pushed farther out 23 (b) 7
into the wings of the pulse. It is, quite simply, a remarkable 20k |
property of the structure of the hyperbolic secant pulseaba
the peak Rabi frequency increases the nonadiabatic cauplin
does not change. For other pulses this is simply not the case.

1.0

S,2m

09

=
—
]

S,21

B. Locationsof thezeros

The data also shows that, unlike the prediction of the
Rosen-Zener conjecture, the return areas are not located at
S, = 2nm, nor are they evenly spaced &f. This is most
apparent in the data for Lorentzian pulses, but can also be
measured for the other pulse shapes. In order to demonstrate
these variations we plot the first, second, and third retteas
for the hyperbolic secant pulse and the Gaussian pulses/ersu
the scaled detuning squared in Fig. 9. In Fig. 10 the first and
second return areas for the Lorentzian pulse are plottesiser
the scaled detuning. The return areas were calculated using
the measured zeros of the peak electric field and the Rabi rate
from Eg. 9. Uncertainties in Figs. 9 and 10 are based on the 0.0 0.1 0.2 0.3 0.4
estimated uncertainty in the measug&dat the return. These
uncertainties characterize the relative difference inrétarn 0 T/21T)2
areas, but there is an additional overall uncertainty ofapp 0
imately 10% due to uncertainties in the Rabi rate coefficient
in Eg. 9 and the field calibration. FIG. 9. (Color online) Plots of the return pulse areasya)(b) Sz,

Except for the smallest scaled detunings, Gaussian puls@é‘d (c)Ss for hyperbolic secant (red triangles) a_nd Gauss_ian (green
give return areas that are measurably smaller than thenretufduares) versus the square of the scaled detuning. A coiistat
areas for the hyperbolic secant pulses, with the discrapan 2/2m = 2 and an approximation for the Gaussian return area based

increasing with detuning and decreasing with the return-num’" the calculations of Robinson [24] are shown. For clahty data
. . . points for hyperbolic secant pulses have been offset by &l
bern. ForA,r = 0.6 the first return for the Gaussian pulse is P P P y g

. . ; the horizontal axis.
different by 25% from what is measured for a hyperbolic se-

cant pulse, but only 3.5% different for the third return. As
discussed in Section Ill the first two return areas with theC

Sa/21

oupling projects the states into the coupled basig at

Lorentzian pulse are between 20% and 40% larger Phan /2, and the phase,
and large differences exist even for the smallest expetiahen
detunings. +oo
As described above, Rabi oscillations are due to interfer- Psquare = / Q(t) dt
ence between transitions on the rising and falling edgeseof t —o0
pulse. For the resonanh(¢) = 0, case the transition to a 50- +7/2 > N (25)
50 superposition of the dressed states occuts-at-oo and = /T/Q \/(Ao +Ag)" + Q3 dt

the interference is due to the phase accumulation

o i a2
Do = / Qt)dt = / Qt)dt=5. (24)

o e accumulates untit = +7/2 when the states are pro-
For a square pulse with an intensity dependent detuning, thected back into the free-atom basis. Returns occur at
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that are differentiable ah,7 = 0 have [24]

1.6
15 - S?l =4n’7?+ 0 ((AOT)2)
- i 1 [ A7\ 27
- 1.4 ~an2e? 12 = (4 T : (27)
& n? 2w
~, 13 —
@ 12 % 4 whereq is a constant that depends on the details of the pulse
shape. The smoothness requirement makes Eq. 27 invalid for
11+ - the Lorentzian pulse, which has a discontinuous derivative
| | | | | | its Fourier transform af\, = 0. It is valid for all of the
1.0 i i
other pulse shapes we used and is also valid for square pulses
30~ ] Using the known solutions we see that the approximation is
S8k | exact for a hyperbolic secant pulse with = 0 and for a
: square pulse witlw = 1. In the analysis of the data from
(El 26k % B Gaussian pulses we treass a fitting parameter.
N Included in Fig. 9 are solid lines &, /27 = n and aline
n 24 . of the form
2+ - Sn 2 (A
=2 ten- (S5 (28)
27 2n \ 2w
20 ! ! ! ! ! !

00 01 02 03 04 05 06 . . .
° which should accurately approximate the theory of Robinson

AO‘[/ZT[ for (Aor/zw)2 < 1. In Fig. 9(a) the line for the Gaussian
pulse is fit to all but the first data point, and gives a value of
a. = 1.15 £ 0.03. In Figs. 9(b) and 9(c), the line for
FIG. 10. (Color online) Plots of the return pulse areagajpnd (b)  the Gaussian pulse is plotted with a slopezf4 anda? /6
S2 versus scaled det.uning for Lprentzian pulses. Approxionati  respectively.
based on the calculations of Robinson [22] are shown. Agreement with the form and scaling predicted by Robin-
son’s calculations is quite good considering the uncetitsin
in the matrix elements used in the calculation and the uncer-
Psquare = 2n, corresponding to tainty in the experimental electric field. The experimenya-
tem also has two important differences from the idealizexd tw
1 [ (Ao +Ad) 7 2 !evel system. First, in the Raman system the AC Stark shifts
S square = 2nm\[1 — — <°7) ) (26) increase the rate of phase advance during the pulse over sys-
n 2 tems without the shifts and therefore shrink the return,aasa
seen analytically for the square pulse in Eq. 26. Second, the
This area is expected from Eq. 7, but clearly different tharveturn intensities depend to high precision on the exactesal
expected from the Rosen-Zener conjecture. of the parameters in the Hamiltonian and, as discussed below
For other pulse shapes the transition times are not soglearivith the strongest pulses the approximations that go intto ca
defined nor are the integrals neatly solved in closed formculating the parameters of Eq. 9 are not valid.
However, as discussed above, the nonadiabatic couplifkgpea We have performed sets of of numerical experiments which
at different times for different detunings, intensitiesgdaulse isolate the contributions of the two differences between th
shapes, so it is not surprising that the return area wouldfbe d physical system and the two-state system with constant de-
ferent for different pulse shapes, even with a constantrdetu tuning. First, we numerically isolated the effect of the AC
ing. Itis another remarkable property of the hyperboli@sgc Stark shifts, by looking at the differences between the two-
coupling with constant detuning that the return areas ara no level system of Eq. 1 with the parameters in Eq. 9 and one in
function of the detuning, but constructive and destrudiive  which the AC Stark shifts are artificially eliminated by &gt
terference occurs with the same pulse areas as for the résona\; = 0. Second, we performed calculations with the two-
case. level approximation of Eq. 1 using the parameters of Eq. 9
A guantitative prediction of the variation in the return ar- and the multi-level model described in Appendix B.
eas was made by Robinson [15, 21-24], who reformulated the Our first set of calculations shows that the increased sep-
two-level problem with constant detuning as an eigenvaluaration of the dressed states due to the AC Stark shifts does
problem forS2. In addition to determining that symmetric indeed tend to reduce the return areas over systems with no
pulses always have finite values 8f for which the popu- AC Stark shifts, and that the reduction in return area istgrea
lation transfer vanishes, he developed a variational nekthoat larger scaled detuning. We found that the AC Stark shifts
for calculating the eigenvalues for specific pulse shapas. Ireduced the return areas for systems driven by hyperbalic se
general, Robinson showed that pulses with Fourier transfor cant pulses by between 5% and 10% in going from a scaled
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detuning of 0.1 to 0.6. These calculations agree with the obtween the Gaussian and the hyperbolic secant pulses, and tha
served result that the return areas for the hyperbolic $ecathis difference is largest for the farthest detuned pulsesi&-
pulse decrease with the detuning. crease with return number.

Changes in the phase advance can be estimated by look-As discussed earlier, Lorentzian pulses give a much more
ing at the difference between the integral(oft) when AC  dramatic difference in the return area than Gaussian pulses
Stark shifts are present and when they are not. This was dor@nd the sign of the difference is reversed, with return areas
explicitly for the square pulse, and the resulting differebe-  larger than for the hyperbolic secant pulse. Using his varia
tween Eq. 8 and Eq. 26 shows how AC Stark shifts reducdional approach Robinson found that Lorentzian pulses have
the return area. Becaugk; increases with pulse intensity it return areas with the explicit form [22]
might seem that the largest effect of AC Stark shifts on the re
turn areas V\_/ould be.forthe smallest scalgd det_u.nings_ Es$tort 52 = (2n7)? 1+ 3|A,|r/m 10 ((AOT)Q) ’ (29)
pulses), which require the largest pulse intensities fdvarg " 1+ |Aylr/m
area. However, with the system we use, an equally important
term in the phase advance is the cross-term in the instants¢hich has a term linear in the scaled detuning.
neous frequency separatid , A ,G(t) which increases with Also plotted in Fig. 10 is a calculation of the area based on
the scaled detuning. Eq. 29, which contains no fitting parameters. The resultseagr

Our second set of calculations was aimed at understandir@nerally with the predicted values, however as in the tesul
why results for the smallest detunings are larger than the reédf Fig. 9, the short, high intensity pulses have somewhgetar

turn areas for other detunings for both the hyperbolic secarf€turns than predicted, and the additional phase advaree du
and Gaussian pulse experiments. As seen in Fig. 9, the firé¢ the AC Stark shifts somewhat reduces the return area for

return areas fon,7/27 = 0.1 (7 = 12.5 ns) are about 10% the farther detuned pulses. We also expect that corredibons
greater than for\,7/2r = 0.2 (- = 25 ns). This discrep- Eqg. 29 due to second-order terms in the scaled detuning may

ancy repeats itself fag, with A,7/2r = 0.2 and to a lesser be important for the larger detunings.

extent forSs with A,7/27 = 0.4 (- = 50 ns). We note that

in the first two cases the return areas occur at very closeto th

maximum experimental pulse intensity, and in the third case V. SUMMARY AND CONCLUSION
at around two-thirds of the maximum pulse intensity.

As seen explicitly in Figs. 3-7, the scaled results of the We have presented experimental measurements of the tran-
multi-level model of Appendix B agrees closely with the ex- sition probability of a two-level system driven by pulsechno
perimental return areas, even though these results desagreesonant electromagnetic fields with five different smooth
somewhat with the areas calculated based on the two-levelulse shapes. By performing the experiments using mi-
model. The disagreement between the two models at higbrowave pulses driving transitions in Rydberg atoms we have
intensity arises due to the inaccuracy of the approximationbeen able to make measurements as a function of pulse area
made in adiabatically eliminating the intermediate states  with high fidelity of the pulse shape.
discussed in Appendix A adiabatic elimination of the inter- With these experiments we have demonstrated that the tran-
mediate states requires that the detunings of the intermedsition probability between the two levels driven by nonrkeso
ate states from single-photon resonance be significamgigta nant pulses is qualitatively different for different putgeapes.
than the single-photon Rabi rates. The nearest (and most contrast with the Rosen-Zener conjecture, for strongesul
strongly coupled) states to t28d doublet are th@3 f states  the transition probability is not a simple property of thesp
which are approximately 7.5 GHz away. The single-photortrum and area of the pulses. Instead, it depends on thegletail
Rabi rates (Eq. A5) between tR8d and23 f states increase of how the pulses turn on and off.
with linearly with & with a proportionality of approximately  Our primary observation is that subtle differences in the
500 MHz/(V/cm). Therefore, for the largest peak fields usedpulse shape can lead to dramatic differences in the intensit
in the experiment the single-photon Rabi rates are approxidependence of the Rabi oscillation amplitude. Followirg th
mately half the single-photon detuning, and we expect thainalysis of Bermaet al. [20] we have shown that the trends
the numerical values in Eq. 9 which are used to calculate thg the dependence of the transition probability with pulesa
pulse area are less accurate at these field strengths. Fhe cghn be understood with respect to the scaling of the nonadia-
culated Rabi rates should be more accurate for the returns @sitic coupling with intensity. This coupling is a strong ¢4n
the scaled detuning gets larger, since the fields required fo tion of the rate of change of the eigenstates as the pulse turn
return are smaller for the longer pulses. We find that the twan and off. Further we have explicitly demonstrated the con-
models agree very well for small intensities, but the tweele  tention of Bermaret al. [20] that the explanation in terms
approximation gives return areas that are smaller tharethosf the scaling of the nonadiabatic coupling is not limited to
from the multi-level model with the discrepancy as large asheir model system, but is more generally applicable. The
12% for the highest experimental pulse intensities. remarkable characteristics of the hyperbolic secant ¢ogpl!

Given the uncertainties and both of these differences bewith constant detuning is that there is a balance between the
tween the experimental system and Robinson’s model weate of change of the eigenstates and the dressed-statg/ener
should not expect that the agreement will be perfect. Howevelevels that leaves the transition probability on the risamgl
we do observe a measurable difference in the return areas billing edges of the pulse independent of the pulse intgnsit
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a feature that is not shared by any other pulse shape that w¢), separated by energf; — E; = hwy;, = hA, via a
have explored. two-photon process. A single-photon transition betwgégn

By looking at the return areas we have shown that the inand|f) is not dipole-allowed, but both states are coupled to a
terference in transitions between dressed-states ondimg ri group of intermediate statés) (¢ = 1,..., N). We consider
and falling edges of the pulses, which is responsible for the¢he case when all of the intermediate states are far detuned
characteristic Rabi oscillations, gives oscillation pds that ~ from single-photon resonance. Although the experimenis de
also depend on the pulse shape. The fact that the accumseribed in this paper are Raman processes, as diagrammed in
lated phase between transitions on the rising and falliggged Fig. 11, the formalism works equally well for two-photon ab-
is independent of the detuning in the Rosen-Zener solusion isorption and two-photon stimulated emission.
also a remarkable property of the hyperbolic secant pulge. W
have shown that Gaussian pulses have return &hetsat de-
crease subtly with detuning, and that the fractional déffere
from S,, = 2nm is a decreasing function of. This varia-
tion might be expected from the Rabi solution for a square
pulse, since the Gaussian pulse has sharper rise and fad, mo .
like a square pulse, than the hyperbolic secant. We have also I 3>
shown that Lorentzian pulses have return areas that have are —_— 2
markably large fractional difference frof), = 2nx, and that — 11>
the fractional difference does not dependronObservations 5
for both the Gaussian and Lorentzian pulses are in general
agreement with the theory of Robinson, despite the addition
of dynamic Stark shifts.

Finally, we have shown that for some pulse shapes, explic-
itly in the case of Gaussian pulses, that intensity can iddee
compensate for detuning and drive transition probakbslitieat
exceed the value for weaker pulses. As shown, the maximum
transition probability for Gaussian pulses increases tdwa
unity with pulse area independent of the detuning. Traorsiti
driven by strong Gaussian pulses therefore do not obey the
energy-time uncertainty principle which states that thagi-
tion probability should exponentially decrease with thaeled
detuning.

IN>
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Appendix A: Thetwo-level model

In this appendix we develop the equations that lead to the 1he State vector describing the system can be expanded in
model two-level system described by Eq. 1, which is the basiée interaction representation as
of a qualitative explanation of the effect of pulse shapehen t W) = aze™™ i) + ape@st|f) + Z ape” k)

transition probability. p

= ageg), (A1)
1. Formalism q

where the coefficients, are the time-dependent amplitudes
In the experiment, a pulsed electric field defined by Eq. 11of the eigenstatelg) of the atomic Hamiltoniar ,¢om, With
drives transitions between an initial statgand a final state eigenvalue&w,.
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The Hamiltonian including the externally applied mi- The differential equations in Eq. A4 can be numerically

crowave pulse is given by solved. However, the computational cost is significant be-
Lo cause of the large frequencies, andwy relative to the
H = Hptom — d - E(2) (A2) timescale of the dynamics @f; anday. Further, the sim-

plicity of the description as a nearly ideal two-level systis
in the dipole approximation and the length gauge, wheregst.
d is the dipole operator and(t) = &(¢)é is the electric
field defined in Eq. 11. Inserting the state vector of Eq. Al
into S_chrodlnger’s equation gives a set of coupled difitied 2 Adiabatic dimination of all intermediate states
equations for the coefficients,,

In cases where the intermediate stdtgsare far detuned
from single-photon resonance, they can be eliminated from
Eq. A4 and the system approximated as a two-level system.

Wherewpq = wp — Wy are the frequency Spacings between theTO aCC()mpliSh the adlabatlc elimination Eq A4(C) is forIYIaI
the statedp) and|q). Below we will abbreviate the electric integrated by parts, keeping only the boundary term [43k Th
dipole matrix elementﬁpﬂ- ¢lq) asd,,. remaining integral is negligible !f all of the single-phatBabi
frequencies?,, and the bandwidth of(¢) are much smaller
Because there is no dipole coupling between the initiathan the single-photon detuningis In this case the interme-
and final states or between the intermediate states differeliate state amplitudes, adiabatically follow the amplitudes
tial equations for the state amplitudgsare more specifically  in stategi) and|f):

ihay = = age™r e (pld- elg)E(t) (A3)

q

written
. s Qi et(Wri—wo)t et (Writwo)t
ha; = —E(t d; wint Ada == * i
1ha ( )Xk:ak k€ ( ) ag 9 [ R +g ot o a
'H A Tw Z'(ka_(—do)t i(wkf+wo)t
ihay = —E(t) ) apdppe™ ™! (Adb) Sy [ e s }af_ (A6)
% 2 Wi — Wo Wef+wo |

. g iwgit Wt . . . :
ihay, = —&(t) [aidric™" + apdpse™™ '], (A4C)  Note that to this point, we have retained both the rotatirdy an

counter-rotating terms sinee, is much smaller thaw; s or
It is convenient to rewrite the couplings in Eq. A4 in terms @i- NOt making the rotating wave approximation at this stage

of the Rabi frequencies makes the theory appropriate even when the single photon
Rabi rate€2,; and<);; are greater than the photon frequency
Eo w, [44].
Qpg = _dquv (A5)

If all of the intermediate statesk), can be adiabatically
whereg, is the peak electric field in the coupling pulse definedeliminated, then inserting the results of Eq. A6 into Eq. #4(
in Eq. 11. and A4(b) gives

N O Qs 26721&)02& * * *2€+2iwot
zai:—z kT {g + 99 + 99 —|—g }al
4 [WkimWo Wit W Whi —Wo  Whi T Wo
Qikaf 92€7i(2wo+Ao)t gg*e*m(’t g*gefiAot 9*26+i(2w07A0)t A7
-2 + + f (A7)
’ Wkt — Wo Wi + Wo Wi — Wo Wit + Wo
I
A similar differential equation can be derived fof. resentation as:
a; 1 2A1G(t) —Qze_iAotG(t) a;
i =_
3. Raman Processes ay 2 —Q,G(t)e iAot INTEll) ay

In a Raman process;; = A, < w,. We apply the ro- whereG(t) = |g(t)|* is the intensity profileA,, is the peak
tating wave approximation to Eq. A7 by dropping all terms AC Stark shift of state
oscillating with frequencfw, + A,, and retaining only con- )
stant terms and those oscillating at frequeAgy This results Ay, =—= Z kaQkPQL%’ (A9)
in an effective two-level system written in the interactrep- 2 = Wep — W

o
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and the peak two-photon Rabi frequency in the derivation of Eq. A6 makes the simple parametrization
of Eqg. 9 lose accuracy. In the case of the Raman transitions

0, = Z kaQ,ﬂ ~ Z Qlekf > within the23d Rydberg doublet, the simple adiabatic elimina-

i —Wo tion of the23 f doublet loses accuracy compared to the solu-

(A10) tion of Eq. A4 when fields are greater than a few V/cm.
The fractional difference between the two expressionstiert A second, less important, correction to the two-level sys-
Rabi frequency in Eq. A10 is of ordéx, /wy s which is small  tem is that some intermediate states are strongly coupled to
in limit of large intermediate state detuning that is neaegs additional states by the pulse, which changes their erergie
for the adiabatic elimination of intermediate stafies and distributes their character over several eigenstaktbs.
n{ states with¢ > 3 are all strongly mixed with the f state

A final transformation to the field interaction represetati .
at fields larger than

is achieved by rewriting the two probability amplitudes
ap = e €rWp (A11b) "
whereds = 0.0015 is the quantum defect of thg state. At
these fields the states compose a Stark manifold spread over a

Choosing the phase factors to be defined by frequency band of width

&it) =

Er(t) = = [-A + (A + Ap)G()] (A12b)  These shifts and distribution of states are important fer th
2 23 f states, which are 7.5 GHz away from t&%d states, but
incorporates the phase accumulated due to the zero-fielpt for the farther-away states, which are more than 500
energy-level separation and the average AC Stark shifteof thGHz away. The mixing and shifts of these more distant lev-

[ Ao+ (Ai + Ap)G(1)] (Al12a) Wstark = 3n%E ~ 1.5 GHz/(V/cm) (B2)

— N =

levels. els do not affect the approximation of Eq. A6 at the level of
Rewriting Eqg. A8 in terms of thé’s gives Schrodinger's accuracy of the calculated matrix elements. The interntedia
equation in the field-interaction representation: p states have quantum defects a hundred times larger than the
f states and therefore negligible shifts or mixing with other
b 1 [~ (Bo+AuG(1)) —-Q:G(1) b; states for the field strengths involved.
) == Figures 3-7 include computed transitions probabilities us
by 2 —Q,G(t) (Ap +AgG(2) ) \by ing a more accurate, but intuitively less helpful model that
' (A13) takes these two corrections into account. This model atiiaba
where cally eliminates all the intermediate states but2B¢ doublet
from Eqg. A3 and further includeé > 3 states in the Stark
Ag=AF —A; (A14)  manifold near the3 f states. Including these corrections to
the Hamiltonian leads to a hybrid set of equations for the sys
is the peak differential AC Stark shift. tem. In this model we integrate the dynamics of #8¢, 23,

and23/ states explicitly using Eq. A3, but the additiopand
f states are adiabatically eliminated using Eq. A6. The adi-
Appendix B: Computational M odel abatically eliminated states add an intensity-dependeumt ¢
pling and relative AC Stark shift shift parameterized By
The two-level model derived in Appendix A is quantita- andA/; to the23d states.Q) andA/, are defined by Eq. A10
tively accurate for pulses where the single photon Rabsrateand Eqg. A9 but excluding th23 f states from the summation.
of Eg. A5 are much less than the detuning from resonance Calculations using this more complex model were used in
with the intermediate states and as long as the two photon Rabigs. 3-7. The calculations based on this model agree with th
rates are much smaller than the driving field’s frequency. Focalculations using the two-level model of Appendix A for low
the experiments described the second criterion is alwdys fufields, but atf? ~ 40 (V/cm)?, the zeros of the Rabi oscil-
filled, but the firstis not for the largest pulse intensitidghen  lations are shifted by more than 10%. On the other hand, the
the single-photon Rabi rate3,,,, become greater than 10% of two models give transition probability maxima that areefiff
the single-photon detunings then ignoring the boundam ter ent by less than 3% at all fields.
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