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We introduce a technique for derivation of high-fidelity composite pulse sequences for two types of
multistate quantum systems: systems with the SU(2) and Morris-Shore dynamic symmetries. For
the former type, we use the Majorana decomposition to reduce the dynamics to an effective two-state
system, which allows us to find the propagator analytically and use the pool of available composite
pulses for two-state systems. For the latter type of multistate systems, we use the Morris-Shore
decomposition, which reduces the multistate dynamics to a set of two-state systems. We present
examples which demonstrate that the multistate composite sequences open a variety of possibilities
for coherent control of quantum systems with multiple states.

PACS numbers: 32.80.Qk, 32.80.Xx 82.56.Jn, 42.50.Dv

I. INTRODUCTION

Composite pulse sequences have been used for several
decades in nuclear magnetic resonance [1–8], and since
recently, in quantum optics [9, 10] and quantum infor-
mation processing [11–14] as a versatile control tool for
two-state quantum systems. A composite pulse is a se-
quence of pulses with well defined relative phases between
each other. These phases are used as control parameters
in order to compensate particular imperfections in the
excitation profile of a single pulse. These imperfections
may originate from an imprecise pulse area (e.g., due to
fluctuating field intensity and/or pulse duration, spatial
inhomogeneity of the field, etc.), undesirable frequency
offset (e.g., due to uncompensated electric and magnetic
fields, Stark shifts, Doppler shifts, etc.), frequency chirp-
ing, etc. Because composite pulses preserve and expand
the high-fidelity excitation range of interest, they may
be viewed as combining the advantages of single reso-
nant pulses (high fidelity) and adiabatic techniques (ro-
bustness against variations in experimental parameters).
Moreover, composite pulses can improve the fidelity of
adiabatic techniques well beyond the fault tolerant quan-
tum computing benchmark [15]. Composite pulses can be
used also to shape the excitation profile in essentially any
desired manner, an objective which cannot be achieved
with resonant pulses and adiabatic techniques.

We note that the idea of composite sequences has been
developed first in polarization optics in the research on
achromatic polarization retarders [16]. Such retarders
are formed by several ordinary wave plates of the same or
different material. West and Makas [17] described achro-
matic combinations of plates with different dispersions
of birefringence, while achromatic retarders composed of
wave plates of the same material but different thicknesses
were proposed by Destriau and Prouteau [18] for two
birefringent plates and Pancharatnam for three plates
[19]. Later Harris and co-workers proposed achromatic
retarders with 6 and 10 identical zero-order quarter-wave
plates [20, 21].

Composite pulse sequences have been developed and
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FIG. 1: (color online) Three-state chainwise connected quan-
tum systems. (a) System with the SU(2) dynamic symmetry.
(b) System with the MS symmetry (Ω1 and Ω2 have the same
time dependance).

used almost entirely for two-state quantum systems.
Studies of higher dimensional systems are limited to just
three states [22]. In this paper, we construct compos-
ite pulses for two classes of multistate quantum systems:
systems with SU(2) dynamic symmetry [23] and systems,
which are reducible by the Morris-Shore (MS) transfor-
mation [24]. We illustrate the applications of these mul-
tistate composite with explicit examples of two types
of three-state quantum systems. For systems with the
SU(2) dynamic symmetry we use the Majorana decompo-
sition [23, 25] to reduce the dynamics to an effective two-
state system, which allows us to find the N -state propa-
gator analytically and use the pool of available composite
pulses for two-state systems. The three-state system with
the SU(2) dynamic symmetry has a chainwise linkage
with equal couplings and equidistant detunings, as shown
in Fig. 1(a). Multistate systems with MS symmetry [24]
are such systems that can be cast into two manifolds
of states with equal energies (in the rotating-wave ap-
proximation); couplings are allowed only between states
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of different manifolds but not within the same manifold,
and all couplings can be different but must have the same
time dependence. The dynamics of such systems can be
reduced to a set of independent two-state systems and a
certain number of dark states. The most general three-
state system with MS symmetry is a three-state chain
on two-photon resonance (but possibly off single-photon
resonance) with different couplings, as in Fig. 1(b).
This paper is organized as follows. In Sec. II, we

present some general background of composite pulse se-
quences in two-state systems. In Sec. III, we describe the
design of composite pulse sequences for multistate quan-
tum systems with SU(2) dynamic symmetry and demon-
strate compensation of pulse area and detuning devia-
tions and selective excitation. In Sec. IV we present
composite pulses for multistate systems with MS sym-
metry. and we illustrate their action with an example of
complete population depletion in a degenerate two-level
system. Sec. V discusses important issues related to
the experimental feasibility of the composite pulses tech-
nique, while Sec.VI presents a summary of the results.

II. COMPOSITE PULSES IN TWO-STATE
SYSTEMS

The dynamics of a two-state quantum system driven by
an external coherent field is described by the Schrödinger
equation,

i~∂tc(t) = H(t)c(t), (1)

where the vector c(t) = [c1(t), c2(t)]
T contains the prob-

ability amplitudes of the two states. The Hamiltonian in
the rotating-wave approximation (RWA) is

H(t) =
~

2

[
−∆(t) Ω(t)
Ω∗(t) ∆(t)

]
, (2)

where ∆ = ω0 − ω is the detuning between the laser
carrier frequency ω and the Bohr transition frequency
ω0. The Rabi frequency Ω(t) = −d · E(t)/~ parameter-
izes the coupling between the electric field E(t) and the
transition dipole moment d. Both Ω(t) and ∆(t) can be
time-dependent in general. The evolution of the system
is described by the propagator U, which connects the
values of the amplitudes at the initial and final times ti
and tf : c(tf ) = U(tf , ti)c(ti). The propagator is con-
veniently parameterized with the complex Cayley-Klein
parameters a and b as

U =

[
a b

−b∗ a∗

]
. (3)

On exact resonance (∆ = 0), the Cayley-Klein parame-

ters depend on the pulse area A =
∫ tf
ti

|Ω(t)|dt only:

a = cos(A/2), b = −i sin(A/2). (4)

A constant phase shift φ in the Rabi frequency Ω(t),

Ω(t) → Ω(t)eiφ, (5)

is imprinted in the propagator as [9]

U(φ) =

[
a beiφ

−b∗e−iφ a∗

]
. (6)

The propagator for a composite sequence of n pulses,
each having a phase φk and a pulse area Ak, reads

U
(n) = U(φn, An) · · ·U(φ2, A2)U(φ1, A1)

=

[
U

(n)
11 U

(n)
12

−[U
(n)
12 ]∗ [U

(n)
11 ]∗

]
. (7)

The composite phases φ1, φ2, . . . φn are free control pa-
rameters, which are selected from the conditions to shape
up the excitation profile in a desired manner.

A. Pulse area compensation

The most common composite pulse sequences in two-
state systems are the “composite-π” pulses, which pro-

duce complete population inversion, i.e. U
(n)
11 = 0 and

|U (n)
12 | = 1, and “composite-π/2” pulses, which produce

equal coherent superpositions, i.e. |U (n)
11 | = |U (n)

12 | =

1/
√
2. The composite-π pulses are of three basic types:

broadband (BB), narrowband (NB), and passband (PB)
[7]. It is convenient to impose the “anagram” condition
Hk(t) = Hn+1−k(t), where k = 1, 2, . . . , n, for it creates
smooth symmetric excitation profiles [9]. Usually, the
global phase of the composite pulse is irrelevant, so it is
convenient to set φ1 = φn = 0. The phases for these
“anagram” composite pulses are derived in the following
way: for BB pulses we aim to achieve a flat top of the
excitation profile at pulse area A = π; for NB pulses we
require a flat bottom at A = 0 (or A = 2π); for PB
pulses we need both a flat top at A = π and a flat bot-
tom at A = 0. These requirements lead to the following
conditions [9]:

BB:
[
∂kAU

(n)
11

]

A=π
= 0 (k = 1, 3, . . . , n− 2); (8a)

NB:
[
∂kAU

(n)
11

]

A=0
= 0 (k = 2, 4, . . . , n− 1); (8b)

PB:
[
∂kAU

(n)
11

]

A=π
= 0 (k = 1, 3, . . . , l), (8c)

[
∂kAU

(n)
11

]

A=0
= 0 (k = 2, 4, . . . , n− l − 2); (8d)

where ∂kA ≡ ∂k/∂Ak. The omitted derivatives vanish
identically [9]. The number of vanishing derivatives at
the particular value of the pulse area determines the “flat-
ness” of the excitation profile there.
The phases for the BB composite sequences are given

by the following simple formula [9]:

φ
(n)
k =

(
n+ 1− 2

⌊
k + 1

2

⌋)⌊
k

2

⌋
π

n
, (9)
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with k = 1, 2, . . . , n. No such formula exists for the NB
and PB sequences, except for a small number of ingredi-
ent pulses, and their phases are found numerically [9].

B. Detuning compensation

Composite pulses can also be used to stabilize the exci-
tation against variations in the detuning. The approach
is similar to pulse area compensation but now the com-
posite phases are determined from the condition that the
first few derivatives of the propagator elements vs the
detuning vanish. The Cayley-Klein parameters a and b
for each ingredient pulse now depend not only on the
pulse area but on the detuning and the pulse shape too,
and in general, the composite phases are different for dif-
ferent pulse shapes [9]. For composite sequences of up
to five pulses and time-symmetric pulse shapes, however,
the composite phases are universal [9].
The m independent phases of an “anagram” BB com-

posite sequence of n = 2m+ 1 pulses for detuning com-
pensation are derived from the following set of algebraic
equations:

[
∂k∆U

(n)
11

]

∆=0
= 0 (k = 0, 1, ...,m− 1); (10)

There are multiple solutions in general, with different
excitation profiles.
Composite pulse sequences can compensate simultane-

ous pulse area and detuning variations; the composite
phases are determined by nullifying the first few mixed
partial derivatives of the propagator elements:

[
∂k+lU

(n)
11

∂Ak∂∆l

]

A=π,∆=0

= 0, (11)

where k and l determine the flatness vs the pulse area A
and the detuning ∆, respectively. Again, we determine
the phases of the constituent pulses from the resulting
set of algebraic equations.
These and other composite pulse sequences applicable

to two-state quantum systems can be applied to multi-
state systems that can be reduced to effective two-state
systems, as we show in the following sections.

III. SYSTEMS WITH SU(2) DYNAMIC
SYMMETRY

A. General Theory

The elements of the Hamiltonian for a multistate sys-
tem with SU(2) dynamic symmetry read [26, 27]

Hkk(t) = ~m∆(t), (12a)

Hk,k+1(t) = Hk+1,k(t)
∗ =

~

2
Ω(t)

√
k(N − k), (12b)

Hkl(t) = 0, (|k − l| ≥ 2), (12c)

where k = 1, 2, ..., N and m = k−(N+1)/2. The linkage
pattern is a chain, in which all couplings (the off-diagonal
elements) are proportional to Ω(t) and thus share the
same time dependence, but have different magnitudes.
The detunings (the diagonal elements) are equidistant
and proportional to ∆. The propagator of the multistate
system can be expressed by the propagator of an effec-
tive two-state system, with the Hamiltonian of Eq. (2)
[23, 26, 27], i.e. in terms of the two-state Cayley-Klein
parameters a and b of Eq. (6),

Ujk =
∑

l

[(N − j)!(j − 1)!(N − k)!(k − 1)!]1/2

l!q!r!s!

al(a∗)qbr(−b∗)s, (13)

where q = j+k+l−N−1, r = N−j−l, s = N−k−l, and
l is a non-negative integer that runs over all values for
which all factorial functions are defined. If the initial con-
dition for the multistate system is b(ti) = [1, 0, ..., 0]T ,
then the initial condition for the corresponding two-state
system is c(ti) = [1, 0]T [27]. Of particular interest is the
probability for transition between the two ends of the
chain, P1→N = |UN1|2, which is readily calculated from
Eq. (13):

P1→N = |b|2(N−1) = pN−1, (14)

where p = |b|2 is the transition probability for the two-
state system described by the Hamiltonian of Eq. (2).
Therefore, complete population transfer 1 → 2 in the
two-state problem implies complete population transfer
1 → N in the N -state problem. However, the sensitiv-
ity to variations in the interaction parameters is greatly
amplified, at the power of (N−1), in the N -state system.
The evolution of the N -state system induced by a com-

posite pulse sequence can be derived from Eqs.(7) and

(13) with the replacement a→ U
(n)
11 and b→ U

(n)
12 in the

latter.

B. SU(2)-symmetric three-state system

The three-state system in Fig. 1(a) is the simplest non-
trivial example of a multistate system with the SU(2)
dynamic symmetry. The Hamiltonian of this system is
given by Eq. (12) and reads explicitly

H = ~




−∆(t) 1√
2
Ω(t) 0

1√
2
Ω∗(t) 0 1√

2
Ω(t)

0 1√
2
Ω∗(t) ∆(t)


 . (15)

Given the propagator in Eq. (3), which describes the evo-
lution of the corresponding two-state system, the respec-
tive propagator for the three-state system is

U3 =




a2

√
2ab b2

−
√
2ab∗ |a|2 − |b|2

√
2a∗b

−b∗2 −
√
2a∗b∗ a∗2



 . (16)
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The evolution of this three-state system subjected to a
composite pulse sequence is described by Eq. (16) with

the replacement a→ U
(n)
11 and b→ U

(n)
12 .

C. Applications

1. Pulse Area Compensation

According to Eq. (14), a single resonant generalized π-
pulse gives probability P1→N = 1. Here the pulse area
is defined as the time integral over the Rabi frequency

“unit” Ω(t) in Eq. (12), A =
∫ tf
ti

|Ω(t)|dt. For small

deviation ǫ from this area, A = π(1 + ǫ), the transition
probability behaves as

P1→N ∼ 1− (N − 1)
π2ǫ2

4
+O(ǫ4). (17)

BB composite pulse sequences can greatly reduce this
sensitivity to an arbitrarily high order of ǫ. For the ana-
gram BB sequences with the analytic phases of Eq. (9),
the two-state transition probability p for a sequence of n
pulses is exactly given by [9, 15]

p = 1− a2n = 1− cos2n(A/2); (18)

hence the inversion probability in the SU(2)-symmetric
N -state system is

P1→N = [1− cos2n(A/2)]N−1. (19)

For small deviations from the desired area of a general-
ized π-pulse, A = π(1 + ǫ), we find

P1→N ∼ 1− (N − 1)
(πǫ
2

)2n

+O(ǫ2n+2). (20)

Equation (20) shows that an arbitrarily large deviation
ǫ can always be compensated with sufficiently long com-
posite sequences.
Figure 2 illustrates the stabilization of the transition

probability P1→N against variations in the pulse area A
for three- and five-state SU(2)-symmetric systems. Even
the three-pulse composite sequence greatly broadens the
range of areas wherein P1→N ≈ 1. Longer composite se-
quences allow us to compensate larger variations of the
pulse area: the transition probability is kept above 99%
for up to 35% variations in A with n = 5 pulses, and up
to 60% variations in A with n = 15 pulses. For larger sys-
tems (with a larger number of states N), the excitation
profile shrinks, as predicted by Eq. (20).
NB and PB composite pulse sequences can be used also

to increase selectivity of excitation in SU(2)-symmetric
multistate quantum systems in a similar manner as in
two-state systems [10]. Such sequences can produce arbi-
trarily narrow excitation profile (NB pulses) or a combi-
nation of BB and NB features (PB pulses). NB composite
sequences, in particular, suppress excitation in the wings
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FIG. 2: (color online) Transition probability P1→N for three-
and five-state systems with SU(2) dynamic symmetry, de-
scribed by the Hamiltonian of Eq. (12), vs the pulse area
A for a single pulse and for composite sequences of 3, 5 and
15 pulses (denoted on the curves), with phases from Eq. (9).
Solid curves: N = 3 states; dashed curves: N = 5 states.

of the excitation profile, thereby shrinking the excitation
to a narrower range of pulse areas than the excitation
range of single pulse; this feature allows improved local
addressing of closely spaced trapped atoms [10].
An example for the application of BB and PB pulses

in SU(2)-symmetric multistate systems is demonstrated
in Fig. 3. An arbitrarily narrow excitation profiles can be
obtained with sufficiently long NB composite sequences.
The PB composite sequences both suppress excitation
for pulse areas around the values 0 and 2π and enhance
excitation for pulse areas around π; thereby creating a
sort of “rectangular” excitation profiles.

2. Detuning Compensation

Because of the correspondence of SU(2)-symmetric
multistate systems to the two-state system, Eq. (13),
which is particularly simple for the probability P1→N ,
Eq. (14), composite pulse sequences can be used to sta-
bilize the excitation profile against variations in the de-
tuning ∆, in a similar manner as in two-state systems [9].
As it is well known, the transition probability decreases
in a polynomial manner with ∆ for rectangular pulses,
and in an exponential manner for smooth pulse shapes
[28–30].
We consider composite sequences of pulses with

hyperbolic-secant shape and constant detuning (known
as the Rosen-Zener model [28]):

Ω(t) = Ω0sech(t/T ), ∆(t) = const. (21)

The two-state transition probability for a single sech
pulse is well known[28],

p = sin2(πΩ0T/2)sech
2(π∆T/2), (22)
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FIG. 3: (color online) Transition probability P1→3 for a three-
state system with SU(2) dynamic symmetry, described by the
Hamiltonian of Eq. (15), vs the pulse area A for a single pulse
and for NB composite sequences of 5, 9 and 17 pulses (denoted
on the curves) (top frame), and PB composite sequences of 7
and 15 pulses (bottom frame) with phases (approx.) [9]:
N5: (0, 1.161, 0.580, 1.161, 0)π;
N9: (0, 1.129, 0.822, 0.108, 1.386, 0.108, 0.822, 1.129, 0)π;
N17: (0, 1.604, 0.553, 1.091, 0.888, 0.620, 1.535, 0.149,
1.569, 0.149, 1.535, 0.620, 0.888, 1.091, 0.553, 1.604, 0)π;
P7: (0, 0.704, 1.186, 1.834, 1.186, 0.704, 0)π;
P15: (0, 0.473, 0.421, 1.624, 1.050, 1.081, 1.469, 0.259,
1.469, 1.081, 1.050, 1.624, 0.421, 0.473, 0)π.

and the transition probability between the two ends of
a SU(2)-symmetric chain can be found from Eq. (14):
P1→N = pN−1. Complete population transfer |1〉 → |N〉
is achieved for Ω0T = 1 and ∆ = 0. However, as the
detuning ∆ departs from zero, the transition probability
for a sech pulse of area π (i.e., Ω0T = 1) decreases as

P1→N ∼ 1− (N − 1)
π2T 2

4
∆2 +O(∆4). (23)

(For large ∆ the transition probability vanishes exponen-
tially, as Eq. (22) shows.)
Various composite sequences can be derived from con-

ditions (10) . Using the results in Ref. [9], we find that
the composite sequence of three pulses with areas π (i.e.,
Ω0T = 1) and phases (0, π/3, 0) compensates the second-
order deviation,

P1→N ∼ 1− (N − 1)
(πT 2 ln 2)2

4
∆4 +O(∆6), (24)

while the sequence of five π-pulses with phases φ1 =
0, φ2 = π/6, φ3 = −π/3, φ4 = π/6, φ5 = 0 compensates
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FIG. 4: (color online) Transition probability P1→3 for a three-
state system with SU(2) symmetry versus the detuning for a
single hyperbolic-secant pulse and for a sequence of five 3π/5
pulses with phases (approximately) (0, 0.747, 0.424, 0.747, 0)π
and nine 4π/9 pulses with phases (approximately)
(0, 1.308, 1.153, 1.251, 0.562, 1.251, 1.153, 1.308, 0)π.

the detuning up to sixth order,

P1→N ∼ 1−O(∆6). (25)

The stabilization of the transition probability vs the de-
tuning is demonstrated in Fig. 4. Compensation to an
arbitrary order can be achieved with a sufficiently long
composite sequence. Note that the individual pulse areas
need not equal π; indeed, the pulse areas for the five- and
nine-pulse sequences in Fig. 4 are considerably less than
π.
Composite pulse sequences can be used to stabilize

the transition probability against variations in both pulse
area and detuning; various sets of composite phases can
be derived from conditions (11). An example of such
simultaneous compensation of area and detuning vari-
ations is shown in Fig. 5. The high-excitation area in
the (∆,Ω0) plane is greatly expanded by just a five-pulse
composite sequence.

IV. SYSTEMS WITH MORRIS-SHORE
SYMMETRY

A. General Theory

In this section we shall demonstrate the potential ap-
plications of composite pulses in multistate quantum sys-
tems with MS symmetry, i.e., systems amenable to the
MS decomposition [24, 31]. These systems obey three
conditions: (i) their states can be cast into two sets with
the same RWA energies, 0 or ~∆, the implication being
that any two states of the same set are on two-photon
resonance; (ii) couplings exist between states of different
sets but not within the same set, i.e., Ωjk = 0 if states
|j〉 and |k〉 are in the same set, and (iii) all couplings
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FIG. 5: (color online) Contour plots of the transition prob-
ability P1→3 with respect to pulse area and the detuning for
a single pulse (top) and composite pulse of five pulses with
phases (0, 5/6, 1/3, 5/6, 0)π.

can be different but they must have the same time de-
pendence f(t). The dynamics of such systems can be
reduced to a set of independent two-state systems and a
certain number of dark states. We assume without loss
of generality that the two sets contain Na and Nb states,
where N = Na + Nb and Na ≧ Nb. Then the applica-
tion of the MS transformation reduces the system to Nb

independent two-state systems and Na −Nb dark states
[24, 31].
The three-state system with MS symmetry has a chain

linkage and is on two-photon resonance, but may have a
single-photon detuning and different couplings, as shown
in Fig. 1(b). An eight-state example of an MS-symmetric
system is illustrated in Fig. 6 for Na = 3 and Nb = 5.
The dynamics of an MS-symmetric N -state quantum

system is given by the solution of the Schrodinger equa-
tion (1), with c(t) = [c1(t), c2(t), ..., cN (t)]T . We order
the states in such a way that the set with the RWA en-
ergy 0 comes first followed by the other set, with the
RWA energy ~∆. Then the Hamiltonian can be written
in a block-matrix form,

H(t) = ~

[
0 Vf(t)

V
†f(t) D(t)

]
. (26)

Here 0 is an Na-dimensional square zero matrix; the zero
off-diagonal elements indicate the absence of couplings
between the states in this manifold, while the zero diago-
nal elements show that these states have the same RWA
energy, which is taken to be 0 without loss of generality.
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λ

FIG. 6: (color online) Morris-Shore transformation of a W -
system (Na = 3, Nb = 2) and a V -system (Na = 2, Nb =
1), which are independent from each other. The W -system
is transformed into two independent two-state systems with
couplings λ1 and λ2 and a dark state. The V -system itself
is transformed into one independent two-state system with
coupling λ and a second dark state.

The matrix D(t) is an Nb-dimensional diagonal matrix
with equal diagonal elements, i. e. D(t) = ∆(t)1; again,
the zero off-diagonal elements reflect the absence of cou-
plings within this set of states. Finally, the matrix V is
an (Na ×Nb)-dimensional interaction matrix,

V =




Ω11 Ω12 · · · Ω1Nb

Ω21 Ω22 · · · Ω2Nb

...
...

...
...

ΩNa1 ΩNa2 · · · ΩNaNb


 . (27)

We note that Vjk = Ωjk, where Ωjkf(t) = −djk ·E(t)/2~
represents the coupling between the j-th state in the set
of Na states and the k-th state in the set of Nb states
after rearrangement, so we can write the Hamiltonian in
the form of Eq. (26). If the same phase shift is applied to
all couplings, i.e., Ωjk → Ωjke

iφ, the interaction matrix
is phase shifted too, V(φ) = Veiφ.

This multistate system can be reduced with a constant
unitary transformation S — the MS transformation — to
an equivalent system, which consists of Nb independent
two-state systems and Nd = Na − Nb uncoupled (dark)
states (Na ≧ Nb). The transformation of the probabil-
ity amplitudes reads [24, 32] c̃ = Sc, where tildes denote

variables in the MS basis {|ψ̃k〉}Nk=1 hereafter. The trans-
formation matrix S is constant and has a block-diagonal
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form,

S =

[
A 0

0 B

]
. (28)

The matrix A is a unitary Na-dimensional square ma-
trix and B is a unitary Nb-dimensional square matrix:
AA

† = A
†
A = 1Na

, and BB
† = B

†
B = 1Nb

. The ma-
trices A and B mix only states of the same set: A mixes
the a states and B mixes the b states. The matrices A

and B are determined from the condition that they diag-
onalize VV

† and V
†
V, respectively, and have the form

[32–34]

A = [|ψ̃d
1〉, . . . , |ψ̃d

Nd
〉, |ψ̃a

1 〉, . . . , |ψ̃a
Nb

〉]†, (29a)

B = [|ψ̃b
1〉, . . . , |ψ̃b

Nb
〉]†. (29b)

Here the set of dark states |ψ̃d
1〉, . . . , |ψ̃d

Nd
〉 and states

|ψ̃a
1 〉, . . . , |ψ̃a

Nb
〉 are eigenstates of VV

†, while the set of

states |ψ̃b
1〉, . . . , |ψ̃b

Nb
〉 are eigenstates of V†

V.
Because

V
†(φ)V(φ) = V

†
V, (30a)

V(φ)V†(φ) = VV
†, (30b)

we conclude that the transformation S does not depend
on the phase shift φ. The transformed Hamiltonian in
the MS basis reads

H̃(φ, t) = SH(φ, t)S† = ~

[
0 Ṽ(φ)f(t)

Ṽ
†(φ)f(t) D(t)

]
,

(31)

where Ṽ(φ) = AV(φ)B† = Ṽeiφ. The Na × Nb-

dimensional matrix Ṽ has Nd = Na−Nb null rows. After
removing these rows V reduces to an Nb-dimensional di-
agonal square matrix, whose diagonal elements can be
denoted as λk (k = 1, 2, ..., Nb); it is readily seen that λ2k
are the eigenvalues of V†

V.
This implies that in the MS basis the system reduces

to Nd decoupled (dark) states and Nb independent two-
state systems, each driven by the Hamiltonian

H̃k(φ, t) = ~

[
0 λkf(t)e

iφ

λkf(t)e
−iφ ∆(t)

]
. (32)

The propagator for each of these two-state systems is

Ũk(φ) =

[
ak bke

iφ

−b∗ke−i(φ+δ) a∗ke
−iδ

]
. (33)

where ak and bk are the Cayley-Klein parameters of each

of the two-state systems for φ = 0 and δ =
∫ tf
ti

∆(t)dt.

The phase factor exp(−iδ) is not important and origi-
nates from the representation of the Hamiltonian (26).
The propagator for the N -state system in the MS basis
is given by

Ũ(φ) =



1Nd

0 0

0 a beiφ

0 −b
∗e−i(φ+δ)

a
∗e−iδ


 . (34)

where 1Nd
is an Nd-dimensional unit matrix, a is an Nb-

dimensional diagonal matrix with ak (k = 1, . . . , Nb)
on the diagonal, while b is an Nb-dimensional diago-
nal matrix with bk (k = 1, . . . , Nb) on the diagonal.
Then the phased propagator in the original basis reads

U(φ) = S
†
Ũ(φ)S, or explicitly [32, 34],

U(φ) =



1+

Nb∑
k=1

(ak − 1)|ψ̃a
k〉〈ψ̃a

k |
Nb∑
k=1

bke
iφ|ψ̃a

k〉〈ψ̃b
k|

Nb∑
k=1

−b∗ke−i(φ+δ)|ψ̃b
k〉〈ψ̃a

k |
Nb∑
k=1

a∗ke
−iδ|ψ̃b

k〉〈ψ̃b
k|


 .

(35)
A composite pulse sequence with phases φ1, φ2, . . . , φn

produces the propagator

U
(n) = U(φn) · · ·U(φ2)U(φ1) = S

†
Ũ

(n)
S, (36)

where Ũ
(n) = Ũ(φn) · · · Ũ(φ2)Ũ(φ1) and we have used

that the transformation matrix S does not depend on the
phases φk. Hence we can find the propagator in the MS
basis and apply a single transformation to the original
basis. This symmetry simplifies the calculations tremen-
dously because in the MS basis we have just Nb indepen-
dent two-state systems and Nd decoupled states, and we
can use the numerous BB, NB and PB composite pulses
for two-state systems.

B. Example: Population inversion of degenerate
levels

An interesting example of a system with Morris-Shore
symmetry is the transition between the degenerate mag-
netic sublevels of two levels with angular momenta Jg
and Je [35] driven by elliptically polarized laser field.
Because this field can be viewed as a coherent superposi-
tion of right circular (σ+) and left circular (σ−) polarized
fields, there are two parallel linkage patterns formed of
alternating lower and upper magnetic sublevels. For ex-
ample, the sublevels of the two degenerate levels with
angular momenta Jg = 1 and Je = 2 in Fig. 6 form
two parallel chains, resembling the letters “V” and “W”.
The W-shaped five-state chain is formed of the sublevels
mg = −1 and mg = 1 of a lower ground level with angu-
lar momentum Jg = 1 and the sublevels me = −2, 0, 2 of
an upper excited level with angular momentum Je = 2.
The V-shaped three-state chain is formed of the mag-
netic sublevels mg = 0 of the lower level and the sub-
levels me = −1 and me = 1 of the upper level. Such a
degenerate system can easily be found in various atoms.
For example, the transition between the F = 1 hyperfine
level of the 52S1/2 level of 87Rb and the F = 2 hyper-

fine level of the 52P1/2 level, in the D1 line of 87Rb; a

similar transition is found in the D2 line of 87Rb too
[36]. For both parallel chains all conditions for the MS
decomposition are fulfilled: two sets with the same RWA
energies (the upper sublevels may be detuned by ~∆),
no couplings within the same manifold, and the same



8

time dependence of all couplings since they are induced
by a single (pulse-shaped) laser field. We assume that
the interaction time is shorter than the decay time of the
excited level (27.7ns for the D1 line of 87Rb), so that no
spontaneous emission and ensuing population redistribu-
tion or population loss take place. Hence, the V and
W chains cannot exchange population and they evolve
independently.

After the MS transformation, the W-system is decom-
posed into two independent two-state systems and a de-
coupled state, while the V system is decomposed into
a two-state system and a decoupled state. The lower
states of the MS two-state systems are coherent super-
positions of the Jg = 1 sublevels, while the upper states
are coherent superpositions of the Je = 2 sublevels of the
original system. The decoupled states are coherent su-
perpositions of the excited sublevels of the original sys-
tem. Specifically, the MS excited states and the dark

state in the W system are the eigenvectors of VWV
†
W ,

which correspond to the nonzero eigenvalues λ21,2 and a
zero eigenvalue, respectively, while the MS ground states

are the eigenvectors of V†
WVW . Here

VW =




Ω−e
−iβ

− 0√
1
6 Ω+e

iβ+

√
1
6 Ω−e

−iβ
−

0 Ω+e
iβ+


 , (37)

where we have included the relevant Clebsch-Gordan co-
efficients. For the V-system, the interaction matrix is

VV =





√
1
2 Ω−e

−iβ
−

√
1
2 Ω+e

iβ+



 . (38)

Here Ω+f(t) and Ω−f(t) are real time-dependant Rabi
frequencies for the couplings induced by the σ+ and σ−

polarized laser fields, and β+ and β− are their phases.
The couplings can be produced by a single elliptically
polarized laser pulse, which is represented as a super-
position of two circularly polarized σ+ and σ− fields:
E(t) = [E+e

−iωt+iβ+ + E−e
iωt+iβ

− ]f(t). The rotation
angle of the polarization ellipse is β = β++β−; we choose
for simplicity β− = −β+ = 0. The ellipticity is

ε ≡ Ω2
+ − Ω2

−
Ω2

+ +Ω2
−

=
E2

+ − E2
−

E2
+ + E2

−
. (39)

Then Ω± = Ω
√

1
2 (1 ± ε), with Ω =

√
Ω2

+ +Ω2
−. The

composite phases φk, which result in V(φk) = Veiφk ,
can be imprinted on each elliptically polarized laser pulse
by a phase shifting device, such as an accousto-optic or
electro-optic modulator for microsecond and nanosecond
pulses, or a pulse shaper for femtosecond pulses.

The MS eigenvalues for the W system are

λ1 = Ω

√
7 +

√
1 + 24ε2

12
, (40a)

λ2 = Ω

√
7−

√
1 + 24ε2

12
, (40b)

while the MS eigenvalue for the V system is merely

λ = Ω/
√
2. (41)

Because for any ellipticity ε, these three couplings are
incommensurate it is impossible to invert their MS sys-
tems simultaneously with a resonant pulse (∆ = 0). In
other words, starting with the population in an arbitrary,
pure or mixed, superposition of the three ground sub-
levels, it is impossible to transfer all population to the
excited sublevels with a single resonant pulse (of course,
if the system is initially in a single magnetic ground sub-
level it can easily be inverted.) However, a BB composite
pulse sequence can broaden the excitation profile so much
as all three couplings of Eqs. (40) and (41) will fall in the
high-excitation range of the BB pulse and all population
can be lifted up to the excited sublevels, regardless of the
initial state.
For example, for linear polarization (ε = 0), the two

MS couplings in the W system are λ1 = Ω
√

2
3 , λ2 =

Ω
√

1
2 ; altogether with the MS coupling in the V system

(41) they can be put into the high-excitation range of any
BB composite sequences. Figure 7 demonstrates popula-
tion inversion in this degenerate system when the lower
level is prepared in an equal coherent superposition of its
three sublevels, for a few BB composite sequences. BB se-
quences clearly allow one not only to achieve high-fidelity
population inversion in such systems but to have this in-
version in large ranges of pulse areas. We point out that
this feature remains valid for arbitrary initial conditions
(including mixed states) and arbitrary light ellipticity ε.
We emphasize again that with a single resonant pulse
such complete inversion is impossible for arbitrary initial
conditions.

V. EXPERIMENTAL FEASIBILITY

We turn now our attention to various experimental is-
sues regarding the implementation of composite pulse se-
quences in real physical systems.
The first experimental restriction on the use of the

composite sequences is that their duration should not
exceed the decay time of the excited atomic states. This
implies that the application of very long composite se-
quences with fixed pulse area of each constituent pulse
(e.g. π) would require either long interaction times,
which might exceed the spontaneous decay time of the
system, or a large Rabi frequency, which might ultimately
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FIG. 7: (color online) Total population in the excited sub-
levels of a degenerate two-level system formed of the sub-
levels of the transition Jg = 1 ↔ Je = 2 following the
action of a BB resonant composite pulse sequence vs pulse

area A = 2|Ω|
∫ tf
ti
f(t)dt, where Ω =

√

Ω2
+ + Ω2

−
(Eq. (36)).

Comparison is made between the inversion induced by a sin-
gle pulse and BB sequences of n = 3, 5, and 9 pulses with
phases from Eq. (9). Additionally, a composite pulse, la-
beled 5b, with phases: (0, 0.843, 2.421, 0.843, 0) is shown to
demonstrate a composite sequence of five 3π/7 pulses. The
system is prepared initially in a equal coherent superposition
of the ground sublevels, |ψi〉 = (| − 1〉 + |0〉 + |1〉)/

√
3. The

ellipticity is ε = 0 (linear polarization) and the rotation angle
is β = 0. The dotted curve shows the total population in
sublevels me = −1 and 1 (the upper states in the V system,
the total population in which is 1

3
), whereas the dashed curve

shows the total population in sublevels me = −2, 0, 2 (the
upper states in the W system, the total population in which
is 2

3
). The solid curve shows the total population in all five

excited sublevels.

cause nonlinear processes and ensuing loss of population.
With pulses of a few-nanosecond duration, however, the
required intensity for a π-pulse is of the order of 100 MHz
for which nonlinear processes are generally negligible. We
note that our frequent statements of “sufficiently” long
sequences are supposed to comply with such restrictions,
i.e. they cannot be infinitely long. However, one of the
advantages of composite sequences if that relatively short
sequences, of 3 to 10 pulses, usually suffice to dramati-
cally change the excitation profile in a desired manner.
We note that it is also possible to design composite se-
quences, in which each individual pulse has a smaller
pulse area than π; to this end, we have added in Fig. 7
an example of a composite sequence of 5 pulses with area
3π/7. Composite sequences of pulses of even smaller ar-
eas can be constructed, if needed.

Regarding the Majorana model, an implementation of
a Majorana ladder of more than 3 states is beyond ex-
perimental reality in atoms, particularly regarding the
strict conditions on the couplings. However, the Ma-
jorana model appears naturally in other situations, for
example in rf transitions between magnetic sublevels in
Bose-Einstein condensates and output couplers for atom
lasers [27], and also in multiparticle systems in quantum
information where subspaces of multiqubit states corre-
sponding to a well-defined pseudospin can be separated,
e.g. in trapped ions [37]. Of course, the Majorana model
does not necessarily demand a ladder system; the three-
state Λ-linkage realization is easily found in atoms, for ex-
ample, the Zeeman-shifted magnetic sublevels mg = −1
and mg = 1 of a ground level with Jg = 1 coupled to
the sublevel me = 0 of an upper level with Je = 1 (or
0). There are numerous other examples of real physical
systems, beyond the examples listed above, in which our
results are applicable and potentially useful and impor-
tant.

Another important experimental limitation is that the
intensity of the pulses is limited by the splittings in the
hyperfine energy levels. For the potassium and rubid-
ium D-lines these splittings are large enough to allow the
application of nanosecond pulses without affecting un-
wanted hyperfine levels [36]. The exemplary transition
considered by us, Jg = 1 ↔ Je = 2, can be found in
several isotopes of these atoms and spectral lines. For
example, for the D1 line of 87Rb the hyperfine splitting
of the upper level 52P1/2 is 814.5 MHz [36], which allows
the application of Rabi frequencies as large as 300 MHz
for rectangular pulses and even larger for smooth pulses
(for which the power broadening is much smaller than for
rectangular pulses [38]). This makes it possible to reduce
the pulse duration to as little as 1 ns without affecting the
unwanted F = 2 hyperfine level of the excited manifold.
For the D2 line of 87Rb the relevant splitting (between
F = 2 and F = 1) is 157 MHz [36] and it imposes a
lower limit of about 4-5 ns on the pulse duration. We
note that with the composite sequences of 3π/7 pulses
mentioned above and shown in Fig. 7, the pulse duration
can be reduced by a factor of 2 compared to the standard
sequences of π pulses. Therefore, sequence of 3, 5, 7, and
even 9 pulses can be made shorter that the lifetime of
about 27 ns of the upper level of the D1 and D2 lines of
87Rb. The limiting factor therefore is the time resolu-
tion achievable by the phase shifters, e.g. acoustooptic
or electrooptic modulators [40].

We note that the technique is not limited to alkali
atoms where the lifetimes of the upper levels in the D-
lines are relatively short [36, 39]. We also note that the
described application for population inversion in MS sys-
tems is by no means limited to Jg = 1 ↔ Je = 2 transi-
tions; it can be applied to any transition between Jg and
Je = Jg + 1, e. g. F = 3 ↔ F = 2 and F = 4 ↔ F = 3
transitions in the D1 and D2 lines of 133Cs. There is no
limitation to integer angular momentum values either:
the angular momenta can also be half-integers.
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VI. CONCLUSION

The powerful technique of composite pulse sequences
is almost entirely designed for two-state quantum sys-
tems. We have described some applications of composite
pulses to two types of multistate systems: systems with
SU(2) dynamic symmetry and systems with MS symme-
try. Both of these can be reduced to one or more effec-
tive two-state systems thereby making possible the use of
the vast pool of composite pulses. We have given exam-
ples for some applications of BB, PB, and NB composite
pulses for coherent manipulation of such systems. For
SU(2)-symmetric systems, composite pulses allow one to
stabilize the population inversion against variations in
the pulse area and the detuning (with BB pulses), or
to achieve enhanced selectivity of excitation (with NB

pulses) or both (with PB pulses). For multistate sys-
tems with MS symmetry, composite pulses allow one to
drive simultaneously several parallel linkage chains with
nearly perfect efficiency. We have demonstrated how one
can achieve perfect population inversion between two sets
of degenerate states regardless of the initial population
distribution in the lower set of states. Finally, we have
discussed some important issues related to the experi-
mental feasibility of the composite pulses technique.
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