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Abstract

The impact of both confinement and electron correlation on generalized oscillator strengths

(GOS’s) of endohedral atoms, A@C60, is theoretically studied choosing the Xe@C60 4d, 5s and 5p

fast electron impact ionization as the case study. Calculations are performed in the transferred to

the atom energy region beyond the 4d threshold, ω = 75–175 eV. The calculation methodology

combines the plane wave Born approximation, Hartree-Fock approximation, and random phase

approximation with exchange in the presence of the C60 confinement. The confinement is modeled

by a spherical δ-function-like potential as well as by a square well potential to evaluate the effect of

the finite thickness of the C60 cage on the Xe@C60 GOS’s. Dramatic distortion of the 4d, 5p and 5s

GOS’s by the confinement is demonstrated, compared to the free atom. Considerable contributions

of multipolar transitions beyond dipole transitions in the calculated GOS’s is revealed, in some

instances. The vitality of accounting for electron correlation in calculation of the Xe@C60 5s and

5p GOS’s is shown.

PACS numbers: 31.15.V-, 34.80.Dp, 36.40.Cg
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I. INTRODUCTION

Nano-objects A@Cn, consisting of an atom A encapsulated inside the hollow inner space

of a carbon cage Cn, known as endohedral fullerenes, or endohedral atoms, or, simply, endo-

hedrals, or confined atoms, have attracted much attention of investigators. This is because

of their importance to various basic and applied sciences and technologies. To name a few,

one could emphasize their significance for astrophysics [1], invention of quantum computers

[2], development of unique superconductors [3, 4], cancer therapy [5], etc. Understanding

of their quantum structure as well as interaction with various incoming beams of particles

- photons, electrons, ions, etc. - is imperative. From a theoretical side, the problem is

formidable in complexity due to its multi-faceted nature. A unique theory that solves this

problem once and for all is yet to be developed. Meanwhile, with the help of simpler, physi-

cally transparent theoretical models, theorists have been unraveling most unusual aspects of

A@Cn confined atoms, thereby identifying the most useful experimental studies, which could

be performed. Much of attention has been turned to various aspects of photo-ionization of

endohedral atoms. The interested reader is referred to review papers [6, 7] as well as some

recent papers [8–13] and references therein in addition to other references presented in this

paper, for a detailed introduction into the subject. Many important insights into A@C60

photoionization have been obtained on the basis of the ∆-potential [6, 7] and δ-potential

[14, 15] models. In the δ-potential model the C60 cage is assumed to have the zero thickness

and is modeled by a spherical δ-function potential V (r) = U0δ(r−R0) of an inner radius R0

and depth U0. In contrast, the ∆-potential model accounts for the finite thickness ∆ of the

C60 cage. It models the cage by a square well potential of the width ∆. One of spectacular

findings, obtained on the basis of these models, has been the discovery of resonances, termed

confinement resonances (CR’s)[15, 16] and correlation confinement resonances (CCR’s) [17],

in the photoionization spectrum of an endohedral atom. CR’s (also referred to as ordinary

CR’s in this paper) occur in photoionization spectra of endohedral atoms due to interference

of the photoelectron waves emerging directly from the confined atom A, and those scattered

off the C60 carbon cage. CCR’s differ from these ordinary CR’s in that they occur in the

spectrum of an outer subshell of the confined atom A due to interference of transitions

from this subshell with ordinary CR’s emerging in inner shell transitions, via interchannel

coupling [17]. CCR’s represent a novel class of resonances that can exist neither without
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confinement nor electron correlation. Both, ordinary CR’s and CCR’s have attracted much

interest of researchers. In particular, of great importance were theoretical predictions of a

dramatic distortion of the atomic Xe 4d giant resonance by CR’s in the Xe@C60 4d pho-

toionization made on the basis of the δ-potential model [18], ∆-potential model [17], and

time-dependent local density approximation (TDLDA) [11] calculations. This has stimu-

lated a photoionization experiment that led to a recent experimental discovery of CR’s in

the Xe@C+
60 4d photoionization spectrum [19]. The results obtained were in a much better

agreement with the δ-potential model calculated data [18] than with those obtained in the

framework of the ∆-potential model or TDLDA. (Note, beforehand, that for this reason

primarily the δ-potential model is employed in the present paper study).

In contrast to photoionization cross sections of endohedral atoms, little is known about

their generalized oscillator strengths (GOS’s). GOS’s reflect the atomic response to fast

electron impact ionization. They are more complicated and informative parameters than

corresponding photoionization cross sections. This is because, generally, many more multi-

polar transitions contribute to electron impact ionization of atoms versus primarily dipole

transition contributions to the photoionization process, see, e.g., Ref. [20]. The electron

spectroscopy of quantum objects thus serves as another powerful tool for the study of their

structures. However, to date, GOS’s of endohedral atoms were investigated only in the the-

oretical work [21], and there has been no associated experimental studies performed. In Ref.

[21], the ionization of the innermost 1s subshells of endohedral He@C60 and Ne@C60 by fast

electrons was chosen as the case study. Both the δ- and ∆-potential models were employed

in the study. Electron correlation was not accounted for. It was shown that, much as due

to photoionization, noticeable ordinary CR’s emerge in GOS’s of endohedral atoms as well.

The above mentioned finding on GOS’s of endohedral atoms is the only known to date

confinement-related-feature of their electron impact ionization. The knowledge on a possible

significance of electron correlation in GOS’s of A@C60 atoms is ultimately absent, despite

its obvious importance. The present paper fills in this vacancy in one’s knowledge. It

advances the initial understanding of GOS’s of such atoms by accounting for a mutual

impact of confinement and correlation on the ionization process. With the general impetus

of the successful experimental study of CR’s in the Xe@C60 4d photoionization [19], we, too,

choose to explore the Xe@C60, as the case study. We focus on the 4d, 5p and 5s GOS’s

upon fast electron impact ionization of the confined Xe assuming that the transferred to
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the atom energy exceeds the 4d threshold which is approximately 74 eV. This is in order

to avoid dealing with the C60 dynamical polarization impact on an A@C60 atom, which is

known to be strong at lower energies [22–24], to simplify matters. Confinement effects are

then accounted for primarily in the framework of the δ-potential model without regard for

said dynamical polarization of C60. The ∆-potential model is employed in some instances as

well, to evaluate the finite-potential-width-impact on the Xe@C60 GOS’s. In the calculations,

the plane wave Born approximation (PWBA) is used for the fast incoming and scattered

electrons. A Hartree-Fock (HF) approximation in the presence of the C60 confinement is

employed relative to the confined atom itself. This completes GOS’s calculations in the

zero-order approximation (omitting correlation). Electron correlation is then accounted for

in the framework of the random phase approximation with exchange (RPAE) [20, 25], as

the final step in the GOS’s study.

II. THEORY

In this section, we provide the outline of the general approach to calculations of GOS’s

of free (A) and endohedral A@C60 atoms.

In PWBA, GOS of an nl atomic subshell, fnl(q, ω), is defined by [in atomic units (a.u.),

but with the energy being measured in Rydbergs (Ry)] [20]

fnl(q, ω) =
2(2λ+ 1)Nnlω

q2(2l + 1)

∑

l′λ

|Qλ
nl,ǫ′l′(q)|

2. (1)

Here, Nnl is the number of electrons in the ionizing atomic subshell nl, q is the magnitude

of the transferred linear momentum to the atom upon the collision, ω and λ are the cor-

responding transferred energy and orbital momentum, respectively, Qλ
nl,ǫ′l′(q) is a reduced

matrix element for the ionization amplitude (in length-form), ǫ′ is the energy of an ejected

electron (ǫ′ = ω − Inl, Inl being the nl subshell ionization potential).

In a HF approximation,

Q
λ(HF)
nl,ǫ′l′ (q) =

√

(2l′ + 1)(2λ+ 1)





l l′ λ

0 0 0





×

∫ ∞

0

Pnl(r)jλ(qr)Pǫ′l′(r)dr. (2)
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Here, Pnl(r) and Pǫ′l′(r) are radial parts of corresponding HF atomic wave-functions of the

initial and final states of the atom, and jλ(qr) is the spherical Bessel function.

In RPAE, the equation for the GOS reduced matrix element Qλ
nl,ǫ′l′(q) is more complicated

due to the specific accounting for intershell coupling of the nl → ǫl′ transition with electronic

transitions from other subshells of the atom, see Eq. (10.14) in Ref. [20]:

Q
λ(RPAE)
nl,ǫ′l′ (q) = Q

λ(HF)
nl,ǫ′l′ (q)

+









∑

k′′l′′′>F,
k′l′′≤F

−
∑

k′l′′>F,
k′′l′′′≤F









×
Unl,ǫ′l′;k′l′′,k′′l′′′Q

λ(RPAE)
k′l′′,k′′l′′′(q)

ω − ǫk′′l′′′ + ǫk′l′′ + iη
. (3)

Here kl ≤ F denotes summation over all occupied atomic states, kl > F marks summa-

tion over discrete excited states including integration over continuous spectrum with the

assumption of η → +0, ǫkl’s are the HF energies of corresponding vacant or occupied atomic

states, Unl,ǫ′l′;n′l′′,k′l′′′ = (nl, ǫ′l′|V |n′l′′, k′l′′′) − (nl, ǫ′l′|V |k′l′′′, n′l′′) is the difference between

direct and exchange Coulomb matrix elements of intershell interaction, respectively. The

interested reader is referred to Ref. [20] for more details of the RPAE methodology.

We now turn to the description of GOS’s of A@C60 endohedral atoms.

Let us first employ the δ-potential model [14, 15] to account for the C60 confining cage.

This model exploits the following two key assumptions. First, it is assumed that the size of

a confined atom is much smaller than the C60 radius R0, R0 = 6.64 a.u. [26]. This allows

one to equal the ground state energies and electronic wave-functions of the confined atom to

those of the free atom. Second, it is assumed that the thickness ∆ of the C60 cage is much

smaller than the wavelength of the outgoing electron released upon ionization of the confined

atom. Hence, the thickness can be disregarded at all, i.e., ∆ → 0, to a good approximation.

Correspondingly, one can model the C60 cage by the δ-function-like potential Uδ(r):

Uδ(r) = −U
(0)
δ δ(r −R0). (4)

Here, U
(0)
δ = 0.442 a.u. is the potential depth which was found [14, 15] by matching the

calculated electron affinity (EA) of C60 to the known one, EA = 2.65 eV [26]. The confine-

ment brought impact on the ionization process is then associated only with modification of
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the wave-function Pǫl′(r) of an outgoing electron due to its scattering off the confining cage.

The modification results [15] in Pǫl′(r) which differs from that of the free atom P free
ǫl′ (r) only

by a multiplicative factor Dl′(k) (k being the momentum of an outgoing electron):

Pǫl′(r) = Dl′(k)P
free
ǫl′ (r), (5)

where

Dl′(k) = cos ηkl′

[

1− tan ηkl′
Gkl′(R0)

Pkl′(R0)

]

. (6)

Here, Gkl′ is the irregular-at-zero solution of the HF equation for the isolated atom, whereas

ηkl′ is the additional to the free atom phase shift due to the δ-potential well:

tan ηkl′(kr) =
P 2
kl′(R0)

Pkl′(R0)Gkl′(R0) + k/2B
. (7)

With the help of Eq. (5), the HF matrix element for the confined atom GOS amplitude,

labeled as Q
λ(δHF)
nl,ǫ′l′ (q), differs [21] from that of the free atom, Q

λ(free)
nl,l′ (q), Eq. (2), only by the

factor Dkl′:

Q
λ(δHF)
nl,ǫ′l′ (q) = Dl′(k)Q

λ(free)
nl,ǫ′l′ (q). (8)

We will be referring to the described HF approximation for calculating GOS’s of confined

atoms as the δHF approximation; the symbol δ emphasizes that the approximation employs

the δ-potential concept.

As follows from Eq. (6), the coefficient Dl(k) has an oscillatory character versus k (and,

hence, versus the transferred to the atom energy ω). Therefore, there are resonances -

confinement resonances - emerging in the transition matrix elements for A@C60 atoms.

They translate into resonances either in their photoionization cross sections or, what is

more important to us, generalized oscillator strengths [21].

In the framework of the alternative ∆-potential model, the potential Uδ(r), Eq. (4), is

replaced by a short-range square-well potential U∆(r) of the width ∆ and depth U
(0)
∆ :

U∆(r) =







−U
(0)
∆ , at R0 −

1
2
∆ ≤ r ≤ R0 +

1
2
∆

0, otherwise
(9)
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Now, excited wavefunctions of the confined atoms P∆
ǫl′(r) are not proportional to wavefunc-

tions P free
ǫl′ (r) of the free atom, Eq. (5). Instead, the new P∆

ǫl′(r) are to be found by a straight-

forward solution of a “confined” HF equation (refereed to as the ∆HF approximation), i.e.,

the HF equation which includes the potential U∆(r) in addition to the free atom potential.

In the present work, we employ the values of U
(0)
∆ = 0.422 a.u. and ∆ = 1.25 a.u. since they

were proven [27] to result in the best possible ∆-model description of experimentally ob-

served CR’s in the Xe@C+
60 4d photoionization cross section [19]. Corresponding HF GOS’s

amplitudes Q
λ(∆HF)
nl,ǫ′l′ (q) are then calculated with the help of the thus found wavefunctions

P∆
ǫl′(r).

To account for RPAE electron correlation in GOS’s of A@C60 atoms in either of the dis-

cussed models, the standard free-atom-RPAE-equation is turned into the “confined-atom-

RPAE-equation” by a straightforward replacement of all free atomic excited state wavefunc-

tions P free
ǫl′ (r) by the above discussed wavefunctions P δ

ǫl′(r) or P
∆
ǫl′(r), respectively. Similar to

the used δHF and ∆HF abbreviations, we refer to such confined-atom-RPAE methodology

as δRPAE and ∆RPAE, respectively.

In particular, the δRPAE equation transforms into

Q
λ(δRPAE)
nl,ǫ′l′ (q) = Q

λ(δHF)
nl,ǫ′l′ (q)

+









∑

k′l′′≤F,
k′′l′′′>F

D2
l′′′(k

′′)−
∑

k′l′′>F,
k′′l′′′≤F

D2
l
′′ (k′)









×
Unl,ǫ′l′;k′l′′,k′′l′′′Q

λ(δRPAE)
k′l′′,k′′l′′′ (q)

ω − ǫk′′l′′′ + ǫk′l′′ + iη
. (10)

The intershell interaction term in the δRPAE equation (the second term on the right-hand-

side of the equation) explicitly depends on the oscillatory parameter Dl(k). Hence, the

δRPAE approximation is capable of accounting for CCR’s in the GOS’s spectra. It accounts

for ordinary CR’s as well, owing to the term Q
λ(δHF)
nl,ǫ′l′ (q) (the first term on the right-hand-side

of the δRPAE equation) which itself is determined by Eq. (8).

As for the alternative ∆RPAE equation, the latter accounts for CR’s and CCR’s implic-

itly, via final-state and intermediate-state functions P∆
ǫl (r).
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FIG. 1: (Color online) The 4d generalized oscillator strengths f4d(q, ω) =
∑

λ f
λ
4d(q, ω) upon fast

electron impact ionization of Xe@C60 (δHF and δRPAE) and free Xe (HF and RPAE). Calculated

results marked as RPAEλ=1 and δRPAEλ=1 relate to fλ=1
4d (q, ω) due to only dipole transition

contributions.

III. RESULTS AND DISCUSSION

Our δHF, ∆HF, δRPAE and ∆RPAE calculated results for the 4d GOS’s f4d(q, ω) of

Xe@C60, upon fast electron impact ionization, are presented in Fig. 1 along with correspond-

ing HF and RPAE calculated data for free Xe. Calculations were performed for transferred

momenta q = 0.1, 1, and 4 and accounted for major monopole (λ = 0), dipole (λ = 1),

quadrupole (λ = 3), and octupole (λ = 3) multipolar contributions to f4d(q, ω). RPAE and

δRPAE calculations included dominant intershell interaction between transitions from 4d,

5s, and 5p subshells. A number of spectacular trends in f4d(q, ω) versus ω, q, and λ is seen.

One of the trends is the presence of strong oscillations in the f4d(q, ω) of Xe@C60. They are

absent in the 4d GOS’s of free atom. Thus, the oscillations are due to the C60 confinement,

thereby featuring the emergence of confinement resonances in the 4d GOS’s of Xe@C60.

Furthermore, interesting, relative intensities and positions of these CR’s appear to be

noticeably changing with increasing value of q in the whole energy region, including near

threshold. As a results, the calculated f4d(q = 0.1, ω) and f4d(q = 1, ω) have little to do with
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f4d(q = 4, ω). Moreover, this impact also results in that the GOS’s of free Xe and, on the

average, of Xe@C60 are found to exhibit a strong, broad resonance for q = 0.1 and q = 1 in

contrast to q = 4, in the energy region under discussion. To understand this, we also plotted

in Fig. 1 calculated data of a trial δRPAE calculation [labeled as fλ=1
4d (q, ω)] accounting only

for dipole contributions to the 4d GOS’s. The comparison of the total GOS f4d(q, ω) with

fλ=1
4d (q, ω) shows the dominant role of dipole transitions in the ionization process for smaller

q’s, q = 0.1 and 1, both for free Xe and Xe@C60 [note, for q = 0.1 dipole channels exceed

other channels by several orders of magnitude, for which reason f4d(q, ω) is undistinguished

from fλ=1
4d (q, ω)]. The Xe dipole 4d → ǫf transition is known to exhibit a strong resonance

versus ω, known as the 4d giant resonance [25]. Consequently, the nature of the strong,

broad resonance seen in the 4d GOS’s at q = 0.1 and 1 is the same as in the case of the Xe

4d photoionization, i.e., it is the familiar 4d dipole giant resonance. For a larger value of q,

q = 4, other channels beyond the dipole channel acquire considerable strengths compared to

the dipole channel. This can be judged by comparing total f4d(q, ω) with partial fλ=1
4d (q, ω)

for q = 4 displayed in Fig. 1. This explains why f4d(q = 4, ω) has, in general, little in

common with the 4d GOS’s for smaller q’s, as well as why f4d(q = 4, ω) does not exhibit

the 4d giant resonance - dipole transitions matter little. Thus, the transferred momentum

as well as multipolar impacts on the 4d GOS’s of both free Xe and Xe@C60 are found to be

considerable.

Moreover, Fig. 1 additionally features a varying role of multipolar contributions to GOS’s

near threshold. A trial calculation showed that the first resonance maximum in 4d GOS’s

near threshold is primarily due to monopole channels for q = 1, whereas it is mainly due to

octupole channels for a larger q = 4.

Finally, it also obvious from Fig. 1 that the alternative ∆RPAE calculation of the Xe@C60

4d GOS results in lower and yet clearly prominent intensities of emerged CR’s compared to

the δRPAE data; this is in line with results of the previous theoretical study [21]. Note, since

GOS’s of endohedral atoms have been experimentally unexplored, the question of which of

the used models is most appropriate remains open.

We now proceed to the discussion of the Xe and Xe@C60 5s GOS’s. Corresponding calcu-

lated HF and RPAE (for free Xe) as well as δHF and δRPAE data for f5s(q, ω) =
∑

λ f
λ
4d(q, ω)

are depicted in Fig. 2 for q = 0.1 and 1 (the 5s GOS’s for q = 4 appear to be negligible com-

pared to those for q = 0.1 or 1, thus presenting little interest for discussion). As in the above
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FIG. 2: (Color online) Calculated data for generalized oscillator strengths f5s(q, ω) of free Xe (HF

and RPAE) and Xe@C60 (δHF and δRPAE). δRPAE* labels the fictitious calculated data for the

Xe@C60 5s GOS’s (see text).

study, calculations accounted for contributions of major monopole, dipole, quadrupole, and

octupole ionization channels to f5s(q, ω) as well as intershell coupling between transitions

from the Xe 4d, 5s, and 5p subshells both in RPAE and δRPAE equations. The calculated

data show that, as in the known case of the Xe 5s photoionization [25], the 5s GOS’s of free

Xe are ultimately affected by electron correlation, both for smaller and bigger values of q.

This clearly follows from the comparison of corresponding HF and RPAE calculated data.

The same tendency is found to preserve in endohedral Xe@C60 as well, cf. δHF and δRPAE

calculated data. Furthermore, similar to 4d GOS’s, the Xe@C60 5s GOS’s are found to be

dramatically distorted by confinement. Indeed, the presence of the C60 confinement results

in the emergence of three strong oscillations (resonances) in f5s(q, ω) at given ω’s, cf. RPAE

and δRPAE calculated data. Noting that the resonance positions are about the same as the

position of ordinary CR’s in the 4d GOS’s at approximately 83, 95, and 102 eV, one might

be tempted to interpret the resonances in 5s GOS’s as CCR’s, i.e., being induced in f5s(q, ω)

by the three ordinary CR’s in 4d ionization channels, via intershell interaction, as in the

case of the Xe@C60 5s photoionization [17]. This, however, would not be entirely correct.

Indeed, e.g., such interpretation would fail to explain why a weak CR in f4d(q, ω) at about

83 eV induces as strong CCR in f5s(q, ω) as the two other stronger neighboring resonances.

The actual origin of the three emerged resonances in 5s GOS’s is thus intriguing.

To unravel the nature of the three resonances in question in f5s(q, ω) of Xe@C60, we per-
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formed a fictitious trial δRPAE calculation of the 5s GOS’s. There, we artificially eliminated

ordinary CR’s from corresponding coupling 4d ionization channels in δRPAE, Eq. (10). This

was achieved by substituting the excited wavefunctions of the 4d electrons of free Xe instead

of those of Xe@C60 into Eq. (10). This fictitious methodology will be referred to/labeled

as δRPAE*. Corresponding δRPAE* calculated data are depicted in Fig. 2 as well. One

interesting important observation is that δRPAE* intershell interaction noticeably increases

CR’s presented in δHF calculated f5s(q, ω) for both values of q and also shifts a lower energy

CR in f5s(q = 1, ω) from about 75 to about 83 eV. Such δRPAE* calculation, however, does

not bring a third (middle) resonance in f5s(q, ω). This resonance emerges only in a true

δRPAE calculation (which accounts for CR’s in 4d ionization channels) of f5s(q, ω), and its

position coincides with that of a middle resonance in 4d GOS’s. Thus, our first conclusion

in unraveling the nature of the three resonances in f5s(q, ω) is that the middle resonance is

undoubtedly correlation confinement resonance, CCR, by nature [it does not exist without

simultaneous impact of intershell interaction and confinement on f5s(q, ω)]. What about the

left and right resonances in f5s(q, ω)? Their nature is more complicated. Qualitatively, they

exist in f5s(q, ω) even without coupling with CR’s in 4d ionization channels (see δRPAE*

calculated data), i.e., the resonances uncovered by the performed δRPAE* calculation are

ordinary CR’s. In a rare, unique occasion, these CR’s (see δRPAE* calculated data) peak

at about the same energies as the left and right ordinary CR’s in 4d GOS’s, Fig. 1. There-

fore, when the 4d CR’s are accounted for in a true δRPAE calculation they strongly affect

the two originally existing δRPAE* ordinary CR’s in f5s(q, ω), thereby enhancing them, via

intershell interaction. Thus, the left and right resonances in true δRPAE calculated data

for f5s(q, ω) are the result of intershell coupling of the ordinary CR’s in 4d channels with

existing ordinary CR’s in 5s ionization channels. Therefore, the left and right resonances in

f5s(q, ω) are neither purely ordinary CR’s nor purely CCR’s. Rather, they may be termed

as CR-CR-correlation-interference-resonances - a new type of resonances which have not

been met earlier, to the best of our knowledge. This interpretation, in particular, explains

why the lower left resonance in f5s(q, ω) is as strong as the middle CCR. To start with,

it was relatively strong from the very beginning (see δRPAE* calculated data). Next, the

interaction with a weaker left 4d CR makes this 5s resonance somewhat stronger, so that it

now matches the middle CCR which is brought about by the strongest middle CR in the 4d

channel. To summarize, the discussed 5s GOS resonance spectrum of Xe@C60 has neither
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a purely CR nor CCR nature. Rather, it consists of one CCR and two CR-CR-correlation-

interference-resonances. Note, this makes the 5s GOS spectrum of Xe@C60 be unique and

different in its origin from corresponding 5s Xe@C60 photoionization spectrum [17] which

consists of purely CCR’s.

Of specific interest are the GOS’s of 5p electrons in the considered ω region. Since it is well

above the 5p ionization threshold, f5p(q, ω) for Xe@C60 could have been expected to have

negligible or very weak, at best, CR’s. This seems to be in line with a theory of scattering of

particles off a potential well or barrier. Indeed, at a sufficiently high energy of the outgoing

electron, the corresponding coefficient of reflection off a finite potential well or barrier is

small. As a result, the interference effect between the outgoing and scattered electron waves

becomes weak, and so are the associated CR’s. This, however, is true only in terms of an

independent particle approximation. As was shown in Ref. [28], where photoionization of

endofullerenes was chosen as a case study, CR’s can reappear - resurrect - and be strong at the

transferred to the atom energy far exceeding (by thousands of eV) the nl ionization threshold,

as a general phenomenon. This will happen at transferred energies, which correspond to

opening of inner-shell photoionization channels, whose intensities exceed by far the intensity

of transitions from the outer subshell of the confined atom and which are strongly coupled

with the innershell transitions. This is just the case with the Xe@C60 5p ionization above

the 4d threshold. Indeed, as known from photoionization studies [25], the Xe 5p ionization

is affected strongly by intershell interaction with 4d transitions. As was found above, the

Xe@C60 4d GOS’s are (a) strong and (b) have pronounced CR’s, see Fig. 1. Therefore, one

can predict the emergence of strong CCR’s in the Xe 5p GOS when intershell interaction

between the 5p and 4d ionization amplitudes is accounted for in δRPAE calculation, as in the

above detailed case of 5sGOS’s. Corresponding HF, RPAE, δHF and δRPAE calculated data

for f5p(q, ω) for q = 0.1 are depicted in Fig. 3. The presented results are self-explanatory.

In brief, there is the only weak CR related oscillation in the δHF calculated 5p GOS for

q = 0.1, in contrast to three strong resonance features present in the δRPAE calculated data.

The latter are found to be induced in the 5p GOS by CR’s in the 4d GOS amplitudes, i.e.,

they are CCR’s. They are strong, in a full accordance with the above made prediction. In

addition, calculated data show that, as in the known case of the free Xe 5p photoionization

[25], the 5p GOS’s of both free Xe and Xe@C60 are completely determined by intershell

correlation with the 4d subshell. This clearly follows from the comparison between HF and
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FIG. 3: (Color online) Calculated data for generalized oscillator strengths f5p(q, ω) of free Xe (HF

and RPAE) and Xe@C60 (δHF and δRPAE), as marked.

RPAE calculated data on the one hand, and δHF and δRPAE calculated data on the other

hand.

IV. CONCLUSION

In the present work we focused on the study of the impact of the C60 confinement on

the 4d, 5s and 5p generalized oscillator strengths of Xe@C60, in the energy region above

the 4d threshold, where, in our opinion, the most interesting effects occur. We hope that

the discovered impact of the transferred momentum q, electron correlation, and confinement

on generalized oscillators strengths of Xe@C60 will challenge experimentalists to verify our

predictions. Theorists, we hope, will be driven by the desire to improve the made predictions

with the help of more sophisticated theories. All this would indisputably result in uncovering

of a richer variety of possible effects outside of the made predictions, thereby advancing this

field of endeavor.
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