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We present rigorous performance bounds for the quadratic dynamical decoupling (QDD) pulse sequence
which protects a qubit from general decoherence, and for its nested generalization to an arbitrary number of
qubits. Our bounds apply under the assumption of instantaneous pulses and of bounded perturbing environment
and qubit-environment Hamiltonians such as those realized by baths of nuclear spins in quantum dots. We
prove that if the total sequence time is fixed then the trace-norm distance between the unperturbed and protected
system states can be made arbitrarily small by increasing the number of applied pulses.
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I. INTRODUCTION

The coupling between a quantum system and its environ-
ment typically causes decoherence, which is detrimental in
quantum information processing (QIP) as it results in com-
putational errors [1]. Over the years, various ways of sup-
pressing quantum decoherence have been explored; see, e.g.,
Ref. [2]. The methodology we study here is dynamical de-
coupling (DD), which utilizes sequences of strong pulses to
decouple the system from its environment [3–7]. Recently, an
optimal DD pulse sequence was discovered for the suppres-
sion of pure dephasing or longitudinal relaxation of a qubit
coupled to a bath with a hard high frequency cutoff: Uhrig
DD (UDD) [8–13]. In UDD, the instants tj (j ∈ {1, 2 . . . N})
at which N instantaneous π pulses are applied are given by
tj = Tλj , where T is the total time of the sequence, and

λj = sin2 jπ

2N + 2
. (1)

By optimal it is meant that each additional pulse suppresses
dephasing or longitudinal relaxation to one additional order in
an expansion in powers of T , i.e., N pulses reduce dephas-
ing or longitudinal relaxation to O(TN+1). Rigorous perfor-
mance bounds were established in Ref. [14]. In this work we
derive performance bounds for more general pulse sequences.

A near-optimal way to suppress general single-qubit deco-
herence, as opposed to only pure dephasing or pure longitudi-
nal relaxation, is the quadratic DD (QDD) sequence [15–19].
A QDD sequence is obtained by nesting two UDD sequences

∗ yxia@brynmawr.edu
† goetz.uhrig@tu-dortmund.de
‡ lidar@usc.edu

of pulses which are orthogonal in spin space. When these two
UDD sequences comprise the same number of pulses, N , a
QDD sequence of (N+1)2 pulses will suppress general qubit
decoherence to O(TN+1), which is known from brute-force
symbolic algebra solutions for small N to be near-optimal
[15]. It has been analytically proven that when the two UDD
sequences comprise different numbers of pulses, N1 and N2,
a QDD sequence of (N1 + 1)(N2 + 1) pulses will suppress
general qubit decoherence to O(Tmin(N1,N2)+1), and this is
universal, i.e., holds for arbitrary baths and system-bath inter-
actions [16, 18, 19]. Moreover, the dependence of the sup-
pression order of each single qubit error type (dephasing, bit
flip, or both) on N1 and N2 has also been established in detail
both in terms of analytical bounds [18] and numerical simula-
tions [17, 20].

When the nesting process of UDD sequences is continued,
one has the nested UDD (NUDD) sequence, which can pro-
tect multiple qubits, or general multi-level quantum systems,
against general decoherence [16, 19]. It has been proven that
NUDD is universal, and will suppress general multi-qubit de-
coherence to O(Tmini(Ni)+1), where Ni are the orders of the
UDD sequences being nested [19]. However, it is known that
NUDD is sub-optimal [16].

Our main results in this paper are analytical upper bounds,
for QDD and NUDD, on the trace-norm distance between the
states of the DD-protected qubit or qubits, and the unperturbed
qubit or qubits, given as a function of the total evolution time
and the norms of the bath operators. Under the assumption
that the bath operators have finite norms, the upper bound for
NUDD shows that the trace-norm distance can be made arbi-
trarily small as a function of the minimal decoupling order N
of the UDD sequences comprising the NUDD sequence. In
the QDD case, a tighter bound is obtained by having different
decoupling orders for different types of decoherence errors,
using the results of Ref. [18].
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The structure of this paper is as follows. We develop our re-
sults for QDD and NUDD in parallel, always starting with the
simpler case of QDD. We first review the QDD and NUDD se-
quences in Section II. We also derive bounding series for the
two sequences in this section. In Section III we use the bound-
ing series in order to find explicit upper bounds on the dif-
ferent single-axis errors for QDD, and similar explicit upper
bounds on different error types for NUDD. These results are
then used in Section IV to derive the main results of this pa-
per: trace-norm distance upper bounds for QDD and NUDD.
We conclude in Section V, and present additional technical
details in the Appendix.

II. MODEL

In this section we give a formal description of the QDD and
NUDD sequences, and the decoherence they suppress.

A. QDD

We describe QDD as a nesting of two UDD sequences. The
inner UDD sequence, denoted UDDN1

, comprises N1 Z-type
pulses, meaning N1 instantaneous rotations by π about the
z-axis of the qubit Bloch sphere, i.e., Z = ie−i(π/2)σz . Sim-
ilarly, the outer UDD sequence, denoted UDDN2

, comprises
N2 X-type pulses, whereX = ie−i(π/2)σx . We denote the re-
sulting QDD sequence by QDDN1,N2

. To make sure that the
qubit state is unaltered by the sequence itself, we append an
additional pulse at the conclusion of the sequence if N1 or N2

is odd. Thus, if N ′i , denotes the number of pulses in UDDNi ,
where i ∈ {1, 2}, then

N ′i = Ni +Ni mod 2. (2)

We define the dimensionless relative time s := t/T , so that
the X-type pulses are applied at times

λj = sin2 jπ

2N2 + 2
(3)

where j = 1, 2, . . . , N ′2 and the Z-type pulses are applied at
times

λj,k = λj−1 + (λj − λj−1) sin2 kπ

2N1 + 2
(4)

where k = 1, 2, . . . , N ′1.
We consider the most general form of “bounded” time-

independent single-qubit decoherence, which is described by
the Hamiltonian

H̃ =
∑

α∈{0,x,y,z}

σα ⊗Bα (5)

where σ0 = 1S is the identity operator on the system. The
operators Bα with α ∈ {0, x, y, z} are arbitrary except for
the requirement that their sup-operator norms, i.e., the largest
eigenvalue of (B†αBα)1/2, are finite

Jα := ‖Bα‖ <∞. (6)

To decouple the qubit from the bath, we apply the
QDDN1,N2

sequence, assuming Eq. (5). See Fig. 1 for a
schematic depiction of a QDD3,3 sequence.
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FIG. 1. (Color online) Illustration of QDD3,3. Time flows from left
to right. The switching instants are distributed according to Eqs. (3)
and (4). The pulses πz and πx are rotations about the z and x axes,
respectively, by the angle π. The total sequence time is T .

The QDDN1,N2 sequence is generated by the control
Hamiltonian

Hc(s) =
π

2
σx

N ′2∑
j=1

δ(s−λj)+
π

2
σz

N2+1∑
j=1

N ′1∑
k=1

δ(s−λj,k). (7)

The corresponding control time-evolution operator is

Uc(s) = T exp

(
−i
∫ s

0

Hc(s
′)ds′

)
, (8)

where T is the time-ordering operator. Thus, the toggling-
frame Hamiltonian reads

H(s) = U†c (s)H̃Uc(s) (9a)

=
∑

α∈{0,x,y,z}

fα(s)σα ⊗Bα, (9b)

where the switching functions are

f0(s) = 1 s ∈[0, 1], (10a)
fx(s) = (−1)k−1 s ∈[λj,k−1, λj,k), (10b)

fy(s) = (−1)k−1(−1)j−1 s ∈[λj,k−1, λj,k), (10c)

fz(s) = (−1)j−1 s ∈[λj−1, λj). (10d)

For later use, we note that

fy(s) = fx(s)fz(s). (11)

Next, we consider the total time evolution given by the uni-
tary operator

U(T ) = T exp
(
− iT

∫ 1

0

H(s)ds
)
. (12)

Standard time dependent perturbation theory provides the fol-
lowing Dyson series for U(T )

U(T ) =

∞∑
n=0

(−iT )n
∑

{~α;dim(~α)=n}

f~αQ̂~α (13a)

f~α :=

∫ 1

0

dsnfαn(sn)

∫ sn

0

dsn−1fαn−1
(sn−1) . . .∫ s3

0

ds2fα2
(s2)

∫ s2

0

ds1fα1
(s1) (13b)

Q̂~α := (σαn ⊗Bαn) · · · (σα1
⊗Bα1

) (13c)
= rσn0

0 σnxx σnyy σnzz ⊗Bαn · · ·Bα1
. (13d)
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The notation dim(~α) = n in Eq. (13a) means that the vector ~α
is restricted to having n component {αn, . . . , α1}. The com-
ponents are αk ∈ {0, x, y, z} for 1 ≤ k ≤ n. Each integer
nα ≥ 0, α ∈ {0, x, y, z} counts how many times the opera-
tor σα ⊗ Bα appears in Q̂~α. For given dimension n of ~α, we
have n = n0 + nx + ny + nz . In this way, the complete sum
over all possible sequences of B0, Bx, By , and Bz are con-
sidered. The rearrangement of the non-commuting product
of Pauli matrices in Eq. (13c) into the canonical form (13d)
gives rise to r = (−1)v where v counts the number of times
two different Pauli-matrices have to pass each other based on
σασβ = −σβσα if α 6= β.

Our goal is to find an upper bound for each term f~αQ̂~α
separately. We exploit |fα(s)| = 1, ‖σα‖ = 1, and

‖Q̂~α‖ ≤ J~α (14a)
J~α := JαnJαn−1 . . . Jα1 (14b)

to obtain the upper bounding series given below for the series
(13a) term by term

‖U(T )‖ ≤
∞∑
n=0

TnFn
∑

{~α;dim(~α)=n}

J~α (15a)

=: SQ(T ) (15b)
= exp[(J0 + Jx + Jy + Jz)T ], (15c)

where

Fn :=

∫ 1

0

dsn

∫ sn

0

dsn−1 . . .

∫ s3

0

ds2

∫ s2

0

ds1 =
1

n!
.

(16)
The equality between (15a) and (15c) is most easily seen by
realizing that the right hand side of (15a) is the Dyson series of
(15c) as obtained by time dependent perturbation theory. This
series will be used extensively when we compute the perfor-
mance bounds in Section III which generalize the UDD results
in Ref. [14].

B. NUDD

The NUDD sequence is a generalization of the UDD and
QDD sequences that suppresses decoherence for a multi-qubit
system. Assume that the system comprisesm qubits. We con-
sider the most general form of “bounded” time-independent
m-qubit decoherence. Subject only to the constraint on the
bath operators B~µ that they are bounded

J~µ := ‖B~µ‖<∞, (17)

the Hamiltonian that gives rise to this general decoherence is

H̃ =
∑
~µ∈Dm

σ̂~µ ⊗B~µ (18)

where

Dm := {(0, 0), (1, 0), (1, 1), (0, 1)}m (19a)
σ̂~µ := σ1,µ1

⊗ · · · ⊗ σm,µm . (19b)

Here the σj,µj ’s are Pauli matrices or the identity and we use
j ∈ {1, . . . ,m} to index the qubits. For the jth qubit, we
use the binary component µj ∈ {(0, 0), (1, 0), (1, 1), (0, 1)}
of the vector ~µ := (µ1, µ2, . . . , µm) to denote the Pauli matrix
subscripts {0, x, y, z}, respectively.

The NUDD sequence for anm-qubit system consists of 2m
nested levels (two per qubit). Let T be the total duration of
the NUDD sequence and N ′i be the decoupling order of the
ith-level UDD [Eq. (2)]. Then the pulses at the ith level are
applied at the instants

λl2m,l2m−1,...,li

= λl2m,l2m−1,...,li+1
+ (λl2m,l2m−1,...,li+1+1

− λl2m,l2m−1,...,li+1
) sin2 liπ

2N ′i + 2
(20)

where 1 ≤ i ≤ 2m and 1 ≤ li ≤ N ′i . Even values of i
correspond to σx pulses applied to qubit number j = i/2,
while odd values of i correspond to σz pulses applied to qubit
number j = (i+ 1)/2. The control Hamiltonian is therefore

Hc(s) =
π

2

2m∑
{i≥2, even}

σi/2,x

N ′p∑
{lp=1}2mp=i

δ(s− λl2m,...,li)

+
π

2

2m−1∑
{i≥1, odd}

σ(i+1)/2,z

N ′p∑
{lp=1}2mp=i

δ(s− λl2m,...,li),

(21)

where the inner sums are multiple sums, one for each value
of the index p labeling the nesting levels i, i+ 1, ..., 2m. The
control time-evolution operator is

Uc(s) = T exp
(
− i
∫ s

0

Hc(s
′)ds′

)
. (22)

The toggling-frame Hamiltonian is

H(s) = Uc(s)
†H̃Uc(s) (23a)

=
∑
~µ∈Dm

f~µ(s) σ̂~µ ⊗B~µ (23b)

f~µ(s) =

m∏
j=1

fj,µj (s) (23c)

where the fj,µj (s)’s are the switching functions. They can be
obtained by the anticommutation relations of the Pauli matri-
ces

fj,(0,0)(s) = 1 (24a)
for s ∈ [0, 1]

fj,(1,0)(s) = (−1)l2j−1 (24b)
for s ∈ [λl2m,l2m−1,...,l2j−1−1, λl2m,l2m−1,...,l2j−1

)

fj,(0,1)(s) = (−1)l2j (24c)
for s ∈ [λl2m,l2m−1,...,l2j−1, λl2m,l2m−1,...,l2j )

fj,(1,1)(s) = fj,(1,0)(s)fj,(0,1)(s) (24d)
for s ∈ [0, 1].
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In the last equation we used Eq. (11).
Now consider the total time evolution given by the unitary

operator

U(T ) = T exp
(
− iT

∫ 1

0

H(s)ds
)
. (25)

Standard time dependent perturbation theory provides the fol-
lowing Dyson series for U(T )

U(T ) =

∞∑
n=0

(−iT )n
∑

{~µk∈Dm}nk=1

f~µ1,...,~µn Q̂~µ1,...,~µn

(26a)

f~µ1,...,~µn :=

∫ 1

0

dsnf~µn(sn)

∫ sn

0

dsn−1f~µn−1
(sn−1) . . .∫ s3

0

ds2f~µ2
(s2)

∫ s2

0

ds1f~µ1
(s1) (26b)

Q̂~µ1,...,~µn := (σ̂~µn ⊗B~µn) · · · (σ̂~µ1
⊗B~µ1

) (26c)

= r
∏

~µk∈Dm

σ̂
n~µ
~µ ⊗B~µn · · ·B~µ1

, (26d)

where r =
∏m
j=1 rj and each rj := (−1)vj , where vj counts

how often two different σj,µj with the same j pass each other
in order to obtain (26d) from (26c). Each n~µ in Eq. (26d)
indicates how many times σ̂~µ ⊗ B~µ appears in Eq. (26c) and
the n~µ’s satisfy

∑
~µ∈Dm n~µ = n.

Following steps analogous to the QDD case we have

|f~µ| = 1 (27a)

‖Q̂~µ1,...,~µn‖ ≤
∏
~µ∈Dm

J
n~µ
~µ . (27b)

This allows us to write

‖U(T )‖ ≤
∞∑
n=0

TnFn
∑

{~µk∈Dm}nk=1

∏
~µ∈Dm

J
n~µ
~µ (28a)

=: SN(T ), (28b)

where Fn was defined in Eq. (16) and the right hand side of
(28a) is the Dyson series applied to

SN(T ) = exp
(
T
∑
~µ∈Dm

J~µ

)
. (29)

For an alternative derivation see Section III B.

III. BOUNDS FOR GENERAL DECOHERENCE

A. QDD

Very recently Ref. [18] found rigorous lower bounds on the
decoupling orders of a QDDN1,N2

sequence. The result is
summarized in Table I. We define the decoupling order of a
single-axis error σα to be dα for α ∈ {x, y, z}. Thus, af-
ter applying the QDDN1,N2

sequence, the first non-vanishing

term in the Dyson series (13a) that contributes to the σα-type
error is of order T dα+1 or higher.1 We will use this result in
deriving the bounds for decoherence.

Single-axis error σα N1 mod 2 N2 mod 2 Decoupling order dα
α = x 0 or 1 0 or 1 N1

α = y

0 0 max{N1,N2}
0 1 max{N1 + 1,N2}
1 0 N1

1 1 N1 + 1

α = z
0 0 or 1 N2

1 0 or 1 min{N1 + 1, N2}

TABLE I. Summary of single-axis error suppression from Ref. [18].

Any operator acting on the qubit subspace can be expanded
in terms of the Pauli matrices and the identity. Hence

U(T ) =
∑

α∈{0,x,y,z}

σα ⊗Aα(T ) (30)

is another way to write Eq. (13a), which serves to define the
bath operators Aα(T ). We classify the decoherence error
based on the parities

pα := nα mod 2, α ∈ {x, y, z}. (31)

Using

σασβ = iεαβγσγ + δαβ1 α, β ∈ {x, y, z} (32)

where εαβγ is the Levi-Civita symbol, we find the results gath-
ered in Table II.

case j px py pz Channel Decoupling order
0 0 0 0 σ0 1
1 0 0 1 σz dz
2 0 1 0 σy dy
3 0 1 1 σx dx
4 1 0 0 σx dx
5 1 0 1 σy dy
6 1 1 0 σz dz
7 1 1 1 σ0 1

TABLE II. Classification of the error terms in the series Eq. (13a)
according to the parities pα := nα mod 2. Recall that nα counts
how many times the operator σα ⊗Bα appears in Q̂~α. The Channel
column gives the corresponding single-axis error term in Eq. (30).
The last column gives the order to which the single-axis error is sup-
pressed. For completeness, the identity channel σ0 is also listed,
though rather than being suppressed it increases in linear order.

Similarly to the bounding series found in Ref. [14] we can
straightforwardly deduce bounding series for the various cases

1 In Ref. [17] the result for the decoupling order of σz when N1 is odd was
found numerically (using a spin-bath model) to be min{2N1 + 1, N2},
which improves on the analytical bound min{N1+1, N2} from Ref. [18].
In all other cases Refs. [17, 18] were in perfect agreement.
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in Table II from SQ(T ) in Eq. (15b). We first write SQ(T ) as
a sum over the eight terms differing in at least one parity

SQ(T ) =

7∑
j=0

Sj(T ), j = 20pz + 21py + 22px. (33)

The parity pα of nα is the parity of SQ(T ) = exp[(J0 +
Jx + Jy + Jz)T ] as function of Jα. Since exp(JαT ) =
cosh(JαT ) + sinh(JαT ) nicely splits even and odd contri-
butions, we can split SQ(T ) into separate bounding functions
as listed in Table III.

case j px py pz Bounding function Sj
0 0 0 0 eJ0T cosh(JxT ) cosh(JyT ) cosh(JzT )

1 0 0 1 eJ0T cosh(JxT ) cosh(JyT ) sinh(JzT )

2 0 1 0 eJ0T cosh(JxT ) sinh(JyT ) cosh(JzT )

3 0 1 1 eJ0T cosh(JxT ) sinh(JyT ) sinh(JzT )

4 1 0 0 eJ0T sinh(JxT ) cosh(JyT ) cosh(JzT )

5 1 0 1 eJ0T sinh(JxT ) cosh(JyT ) sinh(JzT )

6 1 1 0 eJ0T sinh(JxT ) sinh(JyT ) cosh(JzT )

7 1 1 1 eJ0T sinh(JxT ) sinh(JyT ) sinh(JzT )

TABLE III. Functions of the respective bounding series for the vari-
ous contributions of parity combinations.

We would like to use the bounding functions Sj to upper-
bound ‖Aα‖. To this end, note first that, using Eqs. (30) and
(32), for α ∈ {x, y, z}

1

2
trS[σαU(T )] =

1

2

∑
β

tr[σασβ ]Aβ(T ) = Aα(T ), (34)

where trS denotes the partial trace over the system. On the
other hand, using Eq. (13),

trS[σαU(T )] =

∞∑
n=0

(−iT )n
∑

{~α;dim(~α)=n}

f~αtrS[σαQ̂~α], (35)

and

trS[σαQ̂~α] = rtr[σασnxx σnyy σnzz ]Bαn · · ·Bα1
. (36)

Using the fact that only the parity (31) of the exponents mat-
ters, we can rewrite the trace as

θα,~p :=
1

2

∣∣∣tr[σασnxx σnyy σnzz ]
∣∣∣ (37a)

=
1

2

∣∣∣tr[σpx⊕δα,xx σpy⊕δα,yy σpz⊕δα,zz ]
∣∣∣, (37b)

where ~p := (px, py, pz) and ⊕ denotes addition modulo 2.
The values of θα,~p are given Table IV.

Combining Eqs. (34)-(37), we have,

‖Aα(T )‖ ≤
∞∑
n=0

TnFn
∑

{~α;dim(~α)=n}

θα,~pJ~α (38)

where Fn was defined in Eq. (16).
In view of Table IV, Eq. (38) provides the decomposition

by parity of Eq. (15). Consider, e.g., the case α = x. Then

px ⊕ δα,x py ⊕ δα,y pz ⊕ δα,z θα,~p
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

TABLE IV. The eight cases implied by Eq. (37).

Table IV tells us that θx,~p = 1 only when {px = 1, py =
0, pz = 0} (second row) or {px = 0, py = 1, pz = 1} (bottom
row). In all other cases θx,~p = 0. Comparing with Table III,
we see that these two non-zero cases correspond to j = 4
and j = 3, respectively. A similar argument informs us that
θy,~p = 1 only when {px = 0, py = 1, pz = 0} or {px =
1, py = 0, pz = 1}, which corresponds to j = 2 and j = 5 in
Table III, and θz,~p = 1 only when {px = 0, py = 0, pz = 1}
or {px = 1, py = 1, pz = 0}, which corresponds to j = 1 and
j = 6 in Table III.

Now, note that the right-hand side of Eq. (38) without the
θα factor is just SQ(T ) as defined in Eq. (15b). We can thus
conclude from Eq. (38) that, due to the θα prefactor, its right-
hand-side consists of only two non-vanishing terms for each
value of θα, which acts like a Kronecker delta function for the
parity triple (px, py, pz) of the bounding functions Sj , namely
α = x ⇒ j = 3, 4, α = y ⇒ j = 2, 5, α = z ⇒ j = 1, 6.
Thus,

‖Ax(T )‖ ≤ S3(T ) + S4(T ) (39a)
‖Ay(T )‖ ≤ S2(T ) + S5(T ) (39b)
‖Az(T )‖ ≤ S1(T ) + S6(T ). (39c)

Next, to account for the suppression of decoherence by
QDD we define

p
(j)
k :=

1

k!

∂k

∂T k
Sj

∣∣∣
T=0

, (40)

so that

Sj =

∞∑
k=0

p
(j)
k T k. (41)

We consider the partial Taylor series ∆
(j)
d of the analytic

bounding functions Sj which leave out the contributions up
to and including T d

∆
(j)
d :=

∞∑
k=d+1

p
(j)
k T k. (42)

According to Tables II and III, the contributions of case j
are bounded by the corresponding partial Taylor series ∆

(j)
d

where d is the decoupling order of the channel. This is a man-
ifestation of the fact that the QDD sequence causes the first dα
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powers in T of Aα to vanish, i.e., Aα(T ) = O(T dα+1) [18].
Using Eq. (39) we deduce that

Lx := ∆
(3)
dx

+ ∆
(4)
dx
≥ ‖Ax(T )‖ (43a)

Ly := ∆
(2)
dy

+ ∆
(5)
dy
≥ ‖Ay(T )‖ (43b)

Lz := ∆
(1)
dz

+ ∆
(6)
dz
≥ ‖Az(T )‖. (43c)

This is our first key result for QDD.
Due to the analyticity in the variable T of Sj for each j, we

know that the residual term vanishes for d→∞, that is

lim
d→∞

∆
(j)
d = 0. (44)

We define the dimensionless parameters (~ is set to unity)

ε := J0T ηα := Jα/J0 (45)

where α ∈ {x, y, z}. Thus, we can write the bound-
ing functions Sj as Sj(ε, ~η), where ~η = (ηx, ηy, ηz). By
Taylor-expanding Sj(ε, ηx, ηy, ηz) we can express the bound-
ing functions in terms of ε and functions {g(n)l (~η)}6n=1 given
in Appendix A:

∆
(j)
dα

=

∞∑
n=dα+1

g(j)n (~η)εn (46a)

= g
(j)
dα+1(~η)εdα+1 +O(εdα+2). (46b)

The behaviors of the bounding functions Lx, Ly and Lz are
shown in Fig. 2 for different ~η. Here we assume that the de-
coherence is isotropic, i.e., η := ηx = ηy = ηz . Given this
assumption, it makes sense to choose N1 = N2 so that the
decoupling orders for different types of errors are close. To
simplify the computation, we choose both N1 and N2 to be
even and thus, according to Table I, dx = dy = dz . Note that
in this situation Lx, Ly and Lz are identical.

FIG. 2. (Color online) The upper bound Lα for ‖Ax‖ = ‖Ay‖ =
‖Az‖ according to Eqs. (43) in the isotropic case, i.e., ηx = ηy = ηz ,
is given as a function of ε for various number of pulses N1 = N2 =
N ∈ {2, 6, 16, 34}, at fixed values of ηα. In each panel the curves
become steeper as N increases.

We also investigated the case where ηx = ηy 6= ηz and how
the parities of N1 and N2 affect the bounds. In Fig. 3 and
Fig. 4, we plotted two cases. The first is where both N1 and
N2 are even, which are represented by the thick lines. The
second is where N1 and N2 are either even or odd, which are
represented by the thin lines. We picked ηz to be 10−2 for all
the plots and ηx = ηy ∈ {10−4, 10−2, 1, 102}. Since ηz is
fixed, we also fixed the values of N2 for the two cases. We
picked N2 to be 10 in the first case and 9 in the second case to
explore the effect of parity. We varied the value of N1 based
on the values ηx and ηy . We can see from the figures that in
the majority of cases, the parities of N1 and N2 only change
the decoupling order by 1 or do not change it at all, so the
bounds do not vary much. However, when N1 is small com-
pared to N2, the parities can change the bounds nontrivially
as seen in the top left panels of Fig. 3 and Fig. 4. We can
also see this from Table I. When N1 is small compared to N2,
the decoupling orders of σy and σz can decrease considerably
when N1 switches between even and odd values.

FIG. 3. (Color online) The upper bounds for ‖Ax‖ (dotted lines),
‖Ay‖ (dashed lines) and ‖Az‖ (filled lines) according to Eq. (43)
are depicted. Here N2 is 10. The values of N1 in the four panels
going from left to right and top to bottom are 2, 10, 18 and 34. The
value of ηz = 10−2.

Equation (43) allows us to establish tight bounds on the rep-
resentation of the unitary time evolution as given in Eq. (30).
In subsection IV A we use this fact to establish a bound on the
trace-norm distance between the unperturbed qubit state and
the protected qubit state.

B. NUDD

If we were to use the same method for NUDD for m qubits
as we did in the QDD case for one qubit, we would need
to consider 2(3

m) cases based on the parities of n~µ. Re-
call that n~µ indicates how many times σ̂~µ ⊗ B~µ appears in
(σ̂~µn⊗B~µn) · · · (σ̂~µ1

⊗B~µ1
); Eq. (26d). To simplify the anal-

ysis, unlike the QDD case, we do not address each error term
separately.

Any operator acting on the space of m qubits can be
expanded in the {σ~µ} basis. Generalizing the QDD case
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FIG. 4. (Color online) The upper bounds for ‖Ax‖ (dotted lines),
‖Ay‖ (dashed lines) and ‖Az‖ (filled lines) according to Eqs. (43)
are depicted. We make N2 to be 9 in this case. The values of N1 in
the four panels going from left to right and top to bottom are 3, 10, 19
and 34. The value of ηz = 10−2 as in the previous case.

[Eq. (30)] we can thus write

U(T ) =
∑
~µ∈Dm

σ̂~µ ⊗A~µ(T ), (47)

where σ̂~µ andDm were defined in Eqs. (19). Eq. (47) provides
another way to organize the terms in Eq. (26a). We introduce
the upper bounding series S~µ for each A~µ such that

‖A~µ(T )‖ ≤ S~µ(T ) (48a)

SN(T ) =
∑
~µ∈Dm

S~µ(T ) (48b)

holds. Below we construct this series explicitly. Let
~0 := {0, . . . , 0} (49a)

K := Dm\~0. (49b)

Since σ̂~0 is the all-identity term, it is the term that causes no
errors; its corresponding bounding series is S~0(T ). On the
other hand, every σ̂~µ with ~µ ∈ K is an error term with corre-
sponding bounding series S~µ(T ). For later use, we note that
S~0(0) = 1 and S~µ(0) = 0 for all ~µ ∈ K.

In order to derive bounds we first recall that U(T ) from
Eq. (25) is the solution of the Schrödinger equation

∂TU(T ) = −iH(T )U(T ) (50a)

= −i

 ∑
~µ∈Dm

f~µ(t/T )σ̂~µB~µ

U(T ) (50b)

with U(0) = 1. Eq. (50b) generates exactly all terms of the
series of U(T ). Thus, in order to obtain the series for SN(T )
all we need to do is to replace −i→ | − i| = 1, f~µ → |f~µ| =
1, σ̂~µ → ‖σ̂~µ‖ = 1, and B~µ → ‖B~µ‖ = J~µ on the right
hand side. This provides us with the generating differential
equation for the bounding series

∂TSN(T ) =

 ∑
~µ∈Dm

J~µ

SN(T ). (51)

Its integration from SN(0) = 1 recovers the previous result
(29) precisely.

In analogy, the differential equation for each A~µ(T ) reads

∂TA~µ(T ) = −i

 ∑
~ν∈Dm

f~µ⊕~ν(t/T )R~µ⊕~ν;~νB~µ⊕~ν

A~ν(T ),

(52)
where, as before, ⊕ stands for sums modulo 2. Note
that addition and subtraction are equivalent modulo 2: ~µ ⊕
~ν = ~µ 	 ~ν. It is essential that the sums modulo 2 in
{(0, 0), (1, 0), (1, 1), (0, 1)} faithfully reproduce the spin al-
gebra of the identity and the Pauli matrices except for factors
of ±i, which are collected in R~µ⊕~ν;~ν . Replacing operators
by their norms and complex numbers by their moduli on the
right hand side yields the generating differential equation for
the bounding series S~µ satisfying Eq. (48a),

∂TS~µ(T ) =

 ∑
~ν∈Dm

J~µ⊕~ν

S~ν(T ). (53)

Unfortunately, the set of differential equations (53) is still
too difficult to be solved generally. Hence we aim at a looser
bound by defining

J1 := max
~µ∈K

J~µ (54a)

η :=
J1
J~0

(54b)

ε := J~0T. (54c)

If we substitute J1 for each J~µ with ~µ ∈ K we obtain one
bounding series S1(T ) for all S~µ(T ) = S1(T ). To see this
we insert S1(T ) = S~µ(T ) on the right hand side of Eq. (53)
yielding

∂TS~0(T ) = J~0S~0(T ) + γJ1S1(T ) (55a)
∂TS~µ(T ) = J~0S1(T ) + J1S~0(T ) + (γ − 1)J1S1(T ) (55b)

where ~µ ∈ K and γ := 4m − 1 = |K| is the number of
non-identity terms. The first term on the right hand side of
(55a) results from ~0 = ~0 ⊕ ~0, the second from ~ν = ~0 ⊕ ~ν for
~ν ∈ K. The first term on the right hand side of (55b) results
from ~0 = ~µ ⊕ ~µ, the second from ~µ = ~µ ⊕ ~0, and the third
from ~µ ⊕ ~ν where ~ν ∈ K\~µ. There are γ − 1 terms of the
latter kind, independent of ~µ. This independence implies the
equality of all S~µ(T ) for ~µ ∈ K because they all start at the
same value S~µ(0) = 0. Thus, replacing Eq. (55b), we have

∂TS1(T ) = J~0S1(T ) + J1S~0(T ) + (γ − 1)J1S1(T ) (56)

which, together with Eq. (55a), constitutes a two-dimensional
set of linear differential equations. The two eigenvalues of the
corresponding matrix are λ+ = J~0 + γJ1 and λ− = J~0 − J1
so that the general solution reads S1(T ) := A exp(λ+T ) +
B exp(λ−T ) with coefficientsA andB. The initial conditions
S~0(0) = 1 and S1(0) = 0 imply ∂TS1(0) = J1 from which
A and B are determined to yield

S1(T ) =
exp(J~0T )

γ + 1
(exp(γJ1T )− exp(−J1T )). (57)
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The bounding series of the sum of all error terms is given by
SK(T ) := γS1(T ) which reads

SK(T ) =
γ exp(J~0T )

γ + 1
(exp(γJ1T )− exp(−J1T )). (58)

This result is the bounding series for all error terms in NUDD.

We define

pk :=
1

k!

∂k

∂T k
SK

∣∣∣
T=0

(59a)

∆N :=

∞∑
k=N+1

pkT
k, (59b)

and

dmin := min
1≤i≤2m

{N ′i} (60)

be the decoupling order of the NUDD sequence [19]. Since
‖A~µ‖ ≤ S~µ(T ), we have

∑
~µ∈K

‖A~µ‖ ≤
∑
~µ∈K

S~µ(T ) ≤ SK(T ), (61)

and hence

∑
~µ∈K

‖A~µ‖ ≤ ∆dmin . (62)

By Taylor-expanding Eq. (58) we can write SK(T ) and thus
∆d as an infinite series in terms of ε and η of Eqs. (54c) and
(54b). We do not write the result explicitly, but the formula
(58) for SK(T ) is simple enough to allow the bounds to be
computed easily with any computer algebra program. This is
our first key result for the NUDD sequence.

To leading order in ε, we find

∆d = gd+1(η,m)εd+1 +O(εd+2), (63)

where

gl(η,m) := (1− 4−m)
(1− η + 4mη)l − (1− η)l

l!
. (64)

In Fig. 5 we include plots of ∆dmin
as a function of ε for var-

ious values of dmin and η. We can see that, as expected, the
behavior of ∆dmin

is similar to that of Lα in the QDD case.

FIG. 5. (Color online) The upper bound ∆dmin for
∑
~µ∈K ‖A~µ‖

is given as a function of ε for various pulse numbers dmin ∈
{5, 10, 20, 40}, at fixed values of η, and for m = 10. In each panel
the curves become steeper as dmin increases.

IV. DISTANCE BOUND

A. QDD

Next, we shall use the bounds on the bath operators Ax, Ay
and Az to derive a bound on the trace-norm distance

D[ρS(T ), ρ0S(T )] =
1

2

∥∥ρS(T )− ρ0S(T )
∥∥
1

(65)

between the actual qubit state

ρS(T ) := trB[ρSB(T )], (66)

and the “error-free” qubit state

ρ0S(T ) := trB[ρ0SB(T )] (67)

where ρ0SB(T ) is the time-evolved state of the whole qubit-
bath system without coupling between the qubit and the bath,
and trB denotes the partial trace over the bath degrees of free-
dom. The trace norm ‖A‖1 is the trace of (A†A)1/2. The
trace-norm distance D is the standard distance measure be-
tween density matrices [1]. The method we employ here is
similar to the one in Ref. [14]. We consider an initial state

ρ0SB(0) = |ψ〉〈ψ| ⊗ ρB (68)

in which the qubit is in a pure state |ψ〉 and the bath is in an
arbitrary state ρB (e.g., a mixed thermal equilibrium state).
The initial state evolves to ρSB(T ) = U(T )ρ0SB(0)U†(T )
when the qubit and the bath are coupled, or to ρ0SB(T ) =

[1S ⊗ UB(T )]ρ0SB(0)[1S ⊗ U
†
B(T )] when the qubit is isolated

from its environment. The unitary bath time-evolution opera-
tor without coupling reads

UB(T ) := exp(−iTB0) (69)

where B0 is the bath term in Eq. (5).
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Let us first define the bath correlation functions

bαβ(T ) := tr[Aα(T )ρBA
†
β(T )] (70)

where α, β ∈ {0, x, y, z}. To simplify the notation, we will
omit the time dependence T in bαβ(T ) and Aα(T ) from now
on. Computation yields (see Appendix B 1)

D[ρS(T ), ρ0S(T )] ≤ |bxx + byy + bzz|

+
1

2

∑
α,β∈{0,x,y,z}

(|bαβ | − |b00|). (71)

We know from the unitarity of U and Eq. (30) that

1 = U†(T )U(T )

= 1S ⊗
∑

α∈{0,x,y,z}

A†αAα

+
∑

α∈{x,y,z}

σα ⊗ (A†αA0 +A†0Aα + i[A†β , Aγ ]),

(72)

where in the last sum {β, γ} are adjusted to α so that {α, β, γ}
is a cyclic permutation of {x, y, z}. Therefore we have

1 = A†0A0 +A†xAx +A†yAy +A†zAz, (73a)

0 = A†xA0 +A†0Ax + iA†yAz − iA†zAy, (73b)

0 = A†yA0 +A†0Ay + iA†zAx − iA†xAz, (73c)

0 = A†zA0 +A†0Az + iA†xAy − iA†yAx. (73d)

It follows from Eq. (73a) that 〈i|
∑
α∈{0,x,y,z}A

†
αAα|i〉 = 1

for all normalized states |i〉, and thus

〈i|A†0A0|i〉 = ‖A0|i〉‖2 ≤ 1 (74)

because 〈i|
∑
α∈{x,y,z}A

†
αAα|i〉 =

∑
α∈{x,y,z} ‖Aα|i〉‖2 is

nonnegative. In particular, we know that

‖A0‖ ≤ 1. (75)

To obtain a bound on the functions bαβ we use the following
general correlation functions inequality (see Ref. [14] for a
proof)

|tr[QρBQ
′]| ≤ ‖Q‖‖Q′‖, (76)

which holds for arbitrary bounded bath operators Q,Q′. Us-
ing Eq. (75) , Eq. (76), and the bounds (43) in Eq. (71) yields

D[ρS(T ), ρ0S(T )]

≤ ‖Ax‖+ ‖Ay‖+ ‖Az‖+ ‖Ax‖2 + ‖Ay‖2 + ‖Az‖2

+ ‖Ax‖‖Ay‖+ ‖Ay‖‖Az‖+ ‖Ax‖‖Az‖ (77a)

≤ Lx + Ly + Lz + L2
x + L2

y + L2
z + LxLy + LyLz

+ LxLz (77b)

= ∆
(3)
dx

+ ∆
(4)
dx

+ ∆
(2)
dy

+ ∆
(5)
dy

+ ∆
(1)
dz

+ ∆
(6)
dz

(77c)

+ (∆
(3)
dx

)2 + (∆
(4)
dx

)2 + (∆
(2)
dy

)2 + (∆
(5)
dy

)2 + (∆
(1)
dz

)2

+ (∆
(6)
dz

)2 + 2∆
(3)
dx

∆
(4)
dx

+ 2∆
(2)
dy

∆
(5)
dy

+ 2∆
(1)
dz

∆
(6)
dz

+ ∆
(3)
dx

∆
(2)
dy

+ ∆
(3)
dx

∆
(5)
dy

+ ∆
(4)
dx

∆
(2)
dy

+ ∆
(4)
dx

∆
(5)
dy

+ ∆
(2)
dy

∆
(1)
dz

+ ∆
(2)
dy

∆
(6)
dz

+ ∆
(5)
dy

∆
(1)
dz

+ ∆
(5)
dy

∆
(6)
dz

+ ∆
(3)
dx

∆
(1)
dz

+ ∆
(3)
dx

∆
(6)
dz

+ ∆
(4)
dx

∆
(1)
dz

+ ∆
(4)
dx

∆
(6)
dz
.

This is the rigorous bound on the trace-norm distance and
hence our second key result for QDD.

Using Eq. (46b), one can rewrite this bound in terms of ε
and ~η, which we do not write out here for brevity.

In explicit calculations the leading order in ε will dominate
for ε → 0. Then only the first line in Eq. (77c) plays a role,
since all other terms are of higher order. Hence we have

D[ρS(T ), ρ0S(T )] ≤ [g
(3)
dx+1(~η) + g

(4)
dx+1(~η)]εdx+1

+[g
(2)
dy+1(~η) + g

(5)
dy+1(~η)]εdy+1

+[g
(1)
dz+1(~η) + g

(6)
dz+1(~η)]εdz+1

+O(εminα∈{x,y,z}{dα}+2). (78)

Equation (78) is our third key QDD result. It shows that the
QDD bound is dominated by the channel with the smallest
decoupling order dα, as was expected intuitively.

B. NUDD

We consider an initial state

ρ0SB(0) = |ψ〉〈ψ| ⊗ ρB (79)

where |ψ〉 is the state of the m-qubit system. The ini-
tial state evolves to ρSB(T ) = U(T )ρ0SB(0)U†(T ) when
the qubit and the bath are coupled, or to ρ0SB(T ) =

[1S ⊗ UB(T )]ρ0SB(0)[1S ⊗ U†B(T )] when the qubit is isolated
from its environment. The unitary bath time-evolution opera-
tor without coupling reads

UB(T ) := exp(−iTB~0) (80)

where B~0 is the bath operator that corresponds to the identity
system operator. We know from the unitarity of U(T ) and
Eq. (47) that ∑

~µ∈Dm

A†~µA~µ = 1. (81)
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Following the same steps as in the QDD case yields

‖A~0‖ ≤ 1. (82)

Explicit computation (see Appendix B 2) as in the QDD case
shows that

D[ρS(T ), ρ0S(T )] ≤
(∑
~µ∈K

‖A~µ‖
)2

+ ‖A~0‖
∑
~µ∈K

‖A~µ‖. (83)

We use the bounds on the operators A~µ to derive a bound on
the trace norm distance between ρSB(T ) and ρ0SB(T ). Substi-
tuting Eq. (62) and Eq. (82) into Eq. (83), we conclude that

D[ρS(T ), ρ0S(T )] ≤ ∆2
dmin

+ ∆dmin , (84)

where ∆dmin is the bound presented in Eq. (59b). The bound
is dominated by ∆dmin

which is the leading order term for
ε → 0. By expanding ∆dmin

we find for the leading order
term

D[ρS(T ), ρ0S(T )] ≤ gdmin+1(η,m)εdmin+1 +O(εdmin+2).
(85)

Equation (85) is our second key result for NUDD.

V. CONCLUSIONS

We have derived and presented rigorous performance
bounds for the QDD and NUDD sequences, respectively.
These sequences, which build on the UDD sequence, protect
a qubit or system of qubits from general decoherence, under
the assumptions that the pulses are instantaneous and the bath
operators are bounded in operator norm. Our key bounds are
given in Eq. (77c) for QDD and in Eq. (84) for NUDD. The
leading order terms are identified in Eq. (78) (for QDD) and
Eq. (85) (for NUDD). These results show that if the total se-
quence time is fixed, we can make the error D[ρS(T ), ρ0S(T )]
arbitrarily small by increasing the number of pulses at each
UDD level comprising the QDD or NUDD sequences.

When instead the minimum pulse interval is fixed, we ex-
pect that, just as in the case of UDD [14], there will be an
optimal sequence order, beyond which performance starts to
decrease. A rigorous study of this aspect of QDD and NUDD
is an interesting topic for a future investigation. We hope that
the results presented here will inspire experimental tests of
the QDD and NUDD sequences in physical systems with bath
spectral densities exhibiting relatively hard high frequency
cutoffs, a condition which corresponds to our key assumptions
[Eqs. (6),(17)] of bounded bath operators.
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Appendix A: Bounding polynomials

The polynomials that appear in the Taylor expansions of the
bounding functions Sj(ε, ~η) are:

g
(1)
l (~η) =

1

8l!
[(1 + ηx + ηy + ηz)

l + (1− ηx + ηy + ηz)
l

+ (1 + ηx − ηy + ηz)
l + (1− ηx − ηy + ηz)

l

− (1 + ηx + ηy − ηz)l − (1− ηx + ηy − ηz)l

− (1 + ηx − ηy − ηz)l − (1− ηx − ηy − ηz)l]
(A1)

g
(2)
l (~η) =

1

8l!
[(1 + ηx + ηy + ηz)

l + (1− ηx + ηy + ηz)
l

− (1 + ηx − ηy + ηz)
l − (1− ηx − ηy + ηz)

l

+ (1 + ηx + ηy − ηz)l + (1− ηx + ηy − ηz)l

− (1 + ηx − ηy − ηz)l − (1− ηx − ηy − ηz)l]
(A2)

g
(3)
l (~η) =

1

8l!
[(1 + ηx + ηy + ηz)

l + (1− ηx + ηy + ηz)
l

− (1 + ηx − ηy + ηz)
l − (1− ηx − ηy + ηz)

l

− (1 + ηx + ηy − ηz)l − (1− ηx + ηy − ηz)l

+ (1 + ηx − ηy − ηz)l + (1− ηx − ηy − ηz)l]
(A3)

g
(4)
l (~η) =

1

8l!
[(1 + ηx + ηy + ηz)

l − (1− ηx + ηy + ηz)
l

+ (1 + ηx − ηy + ηz)
l − (1− ηx − ηy + ηz)

l

+ (1 + ηx + ηy − ηz)l − (1− ηx + ηy − ηz)l

+ (1 + ηx − ηy − ηz)l − (1− ηx − ηy − ηz)l]
(A4)

g
(5)
l (~η) =

1

8l!
[(1 + ηx + ηy + ηz)

l − (1− ηx + ηy + ηz)
l

+ (1 + ηx − ηy + ηz)
l − (1− ηx − ηy + ηz)

l

− (1 + ηx + ηy − ηz)l + (1− ηx + ηy − ηz)l

− (1 + ηx − ηy − ηz)l + (1− ηx − ηy − ηz)l]
(A5)
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g
(6)
l (~η) =

1

8l!
[(1 + ηx + ηy + ηz)

l − (1− ηx + ηy + ηz)
l

− (1 + ηx − ηy + ηz)
l + (1− ηx − ηy + ηz)

l

+ (1 + ηx + ηy − ηz)l − (1− ηx + ηy − ηz)l

− (1 + ηx − ηy − ηz)l + (1− ηx − ηy − ηz)l]
(A6)

Appendix B: Distance Bound Calculation

1. QDD

In this appendix we prove the bound on the trace-norm dis-
tance in Eq. (71). To simplify the notation, we let

P0 := |ψ〉〈ψ|. (B1)

Then

2D[ρS(T ), ρ0S(T )]

=
∥∥trB

[
ρSB(T )− ρ0SB(T )

] ∥∥
1

=
∥∥trB

[
U(T )ρ0SB(0)U†(T )

]
− trB

[
ρ0SB(0)

] ∥∥
1

=

∥∥∥∥∥∥trB


 ∑
α∈{0,x,y,z}

σα ⊗Aα

 (P0 ⊗ ρB)

 ∑
α∈{0,x,y,z}

σα ⊗A†α

− P0

∥∥∥∥∥∥
1

=
∥∥(b00 − 1)P0 + b0xP0σx + b0yP0σy

+ b0zP0σz + bx0σxP0 + bxxσxP0σx

+ bxyσxP0σy + bxzσxP0σz + by0σyP0

+ byxσyP0σx + byyσyP0σy + byzσyP0σz

+ bz0σzP0 + bzxσzP0σx + bzyσzP0σy

+ bzzσzP0σz
∥∥
1

(B2a)

≤ |b00 − 1|+ |b0x|+ |b0y|+ |b0z|
+ |bx0|+ |bxx|+ |bxy|+ |bxz|
+ |by0|+ |byx|+ |byy|+ |byz|
+ |bz0|+ |bzx|+ |bzy|+ |bzz|. (B2b)

In going from Eq. (B2a) to Inq. (B2b), we used the triangle
inequality, the unitary invariance of the trace norm, and the
normalization of |ψ〉. This proves Eq. (71).

We require one last result:

|b00 − 1| = |tr[A0ρBA
†
0]− 1|

= |tr[A†0A0ρB]− 1|
= |tr{[1−A†xAx −A†yAy −A†zAz]ρB} − 1|
= |tr[ρB]− tr[AxρBA

†
x]− tr[AyρBA

†
y]− tr[AzρBA

†
z]|

= |bxx + byy + bzz|,

(B3)

where we used cyclic invariance of the trace in bαβ together
with Eq. (73a) and the normalization tr[ρB] = 1. Eq. (71) now
follows immediately from the triangle inequality.

2. NUDD

Here we prove Eq. (83) following the same steps as in the
QDD case.

D[ρS(T ), ρ0S(T )]

=
∥∥trB[ρSB(T )− ρ0SB(T )]

∥∥
1

=
∥∥trB[U(T )ρ0SB(0)U†(T )]− trB[ρ0SB(0)]

∥∥
1

=

∥∥∥∥∥∥trB


 ∑
~µ∈{0,1}2m

σ~µA~µ

 (P0 ⊗ ρB)

 ∑
~µ∈{0,1}2m

σ~µA
†
~µ

− P0

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
∑

~µ∈{0,1}2m

∑
~ν∈{0,1}2m

tr(A†~µρBA~ν)σ~µP0σ~ν − P0

∥∥∥∥∥∥
1

≤ |tr(A†~0ρBA~0)− 1|+
∑
~µ∈K

∑
~ν∈K

|tr(A†~µρBA~ν)|

+
∑
~µ∈K

|tr(A†~0ρBA~µ)|+
∑
~µ∈K

|tr(A†~µρBA~0)|

≤
∑
~µ∈K

|tr(A†~µρBA~µ)|+
∑
~µ∈K

∑
~ν∈K

|tr(A†~µρBA~ν)|

+
∑
~µ∈K

|tr(A†~0ρBA~µ)|+
∑
~µ∈K

|tr(A†~µρBA~0)|

≤
(∑
~µ∈K

‖A~µ‖
)2

+
∑
~µ∈K

‖A~µ‖2 + 2‖A~0‖
∑
~µ∈K

‖A~µ‖ (B4a)

≤ 2
(∑
~µ∈K

‖A~µ‖
)2

+ 2‖A~0‖
∑
~µ∈K

‖A~µ‖. (B4b)

In the derivation we used the unitary invariance of the trace
norm, triangle inequality, the normalization of |ψ〉, Eq. (76)
and Eq. (81). The step from inequality (B4a) to (B4b) is not
necessary, but loosens the bound for the sake of simplicity of
the result.
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