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Following the idea of the continuity approach in [D. L. Zhou, Phys. Rev. Lett. 101, 180505
(2008)], we obtain the degrees of irreducible multi-party correlations in two families of n-qutrit
Greenberger-Horne-Zeilinger type states. For the pure states in one of the families, the irreducible
2-party, n-party and (n − m)-party (0 < m < n − 2) correlations are nonzero, which is different
from the n-qubit case. We also derive the correlation distributions in the n-qutrit maximal slice
state, which can be uniquely determined by its (n− 1)-qutrit reduced density matrices among pure
states. It is proved that there is no irreducible n-qutrit correlation in the maximal slice state. This
enlightens us to give a discussion about how to characterize the pure states with irreducible n-party
correlation in arbitrarily high-dimensional systems by the way of the continuity approach.

PACS numbers: 03.67.Mn,03.65.Ud,89.70.Cf

I. INTRODUCTION

Coherent superposition is the essential distinction be-
tween a quantum system and a classical one. This dis-
tinction becomes more significant in composite systems,
which appears in the non-classical correlations in the
quantum systems. Many concepts have been developed
to describe these correlations, such as the entanglement
[1] which depicts the nonseparability of the state of a
composite quantum system. Another concept refers to
the nonlocality is characterized by violation of a Bell in-
equality [2], which means that the local measurement
outcomes of the state cannot be described by a local hid-
den variables model.

In the information-based viewpoint, the correlation in
a quantum system can be viewed as the relationship of
the whole system and its subsystems. Namely, it mea-
sures the degree a quantum state can be described by the
reduced states of its subsystems. The total correlation
[3] in a multipartite quantum system has been defined
as the difference between the sum of the von Neumann
entropies of all the subsystems and that of the whole sys-
tem, while the so-called quantum discord [4–6], widely
studied in very recent years, was considered to be the
quantum part (opposite to the classical one) of the to-
tal correlation. In the current paper, we concerns us in
another alternative classification, in which the total cor-
relation in a multiparty system is divided into different
levels, namely pairwise, triplewise and so forth.

Linden et al. [7] proposed the concept of irreducible
n-party correlation in an n-partite quantum state. This
concept is based on the principle of maximum entropy
and describes how much more information in the n-party
level than what is contained in the (n−1)-partite reduced
states. A surprising result was given in the original work
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of Linden and his collaborators [7, 8] that almost all n-
party pure states are determined by their reduced den-
sity matrices. In n-qubit case, the only pure states that
can’t be determined by their reduced density matrices are
proved to be the generalized Greenber-Horne-Zeilinger
(GHZ) states [9, 10]. This indicates that among n-qubit
pure states, only in the case of the generalized GHZ states
the irreducible n-party correlation has a nonzero value
[11]. For the arbitrarily high-dimensional system, Feng
et al. [12] introduced the generalized Schmidt decompo-
sition (GSD) states and proved them to be the n-partite
pure states undetermined among pure states by their re-
duced density matrices. It still remains an open question
whether the GSD states identified in [12] are precisely the
pure states undetermined by their reduced density ma-
trices among arbitrary states (pure or mixed). In other
words, it is under confirmation that, whether the irre-
ducible n-party correlation in a n-partite non-GSD states
is nonzero or not.

In Zhou’s recent work [11], the concept of irreducible
n-party correlation has been generalized to m-party (2 ≤
m ≤ n) levels, where a classification of the total corre-
lation in an n-partite state is constructed. For a given
n-partite quantum state ρ[n], Zhou introduced a sequence

of density matrices. The m-th one, ρ̃
[n]
m (1 ≤ m ≤ n), has

the samem-party reduced density matrix as ρ[n], and the
maximal value of von Neumann entropy, which is consid-
ered to contain them-party level information of the given
state without the higher level information. The degree
of irreducible m-party correlation is defined as

C(m)(ρ[n]) = S(ρ̃
[n]
m−1)− S(ρ̃[n]m ), (1)

where S(σ) = −Tr(σ lnσ) is the von Neumann entropy.

For the states ρ[n] with maximal rank, ρ̃
[n]
m is proved to

have a standard exponential form

ρ̃[n]m = Exp
(

Q[m]
)

, (2)

where Q[m] is a sum of m-partite hermitian operators.
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Directly, ρ̃
[n]
n = ρ[n] is itself and ρ̃

[n]
1 =

⊗n

i=1 ρ
(i) is the

direct product of all the single partite reduced density
matrices. To derive the degrees of the irreducible mul-
tiparty correlations in quantum states with nonmaximal
ranks, Zhou presented a continuity approach based on
the fact that a multipartite state without maximal rank
can always be regarded as the limit of a series states
with maximal rank, such ρ[n](γ)|γ→+∞ = ρ[n]. By con-

structing the sequence of density matrices ρ̃
[n]
m (γ), one

can obtain the degree of irreducible m-party correlation
of ρ[n](γ)

C(m)(ρ[n](γ)) = S(ρ̃
[n]
m−1(γ))− S(ρ̃[n]m (γ)). (3)

Then C(m)(ρ[n]) = C(m)(ρ[n](γ))|γ→+∞ give the correla-

tions of the state ρ[n].
In this approach, Zhou gave the correlation distribu-

tions of the n-qubit stabilizer states and the generalized
GHZ states. It is worth noting that, in the n-qubit gen-
eralized GHZ states, which are the only pure states with
nonzero n-qubit correlation [9, 10], only irreducible 2-
party and n-party correlations have nonzero values. How-
ever, a systematic method to construct the standard ex-
ponential form density matrices in Eq. (2) for a given
state with maximal rank has not been found. Conse-
quently it is difficult to analytically obtain the correlation
distributions in the states without maximal ranks. To
the best of our knowledge, the known correlation distri-
butions, both the analytical [11] and the numerical [13],
in multipartite quantum states are restricted in n-qubit
systems. The main purpose of this paper is to derive
the degrees of irreducible multiparty correlations of some
typical quantum states without the maximal rank in n-
qutrit system. On one hand, through the analysis of
some special examples, the difference between the cor-
relation distributions in qubit systems and the ones in
high-dimensional systems can be revealed. On the other
hand, more analytical results could contribute to the con-
struction a systematic method to calculate the degrees of
irreducible multiparty correlations, at least for a family
of states.
Our main results are given in the second section. As

the first trial, we concerns us in two families of n-qutrit
GHZ-like sates, in which the pure states belongs to the
GSD states defined in [12]. The maximal slice (MS)
states [14] can be viewed as another generalization of the
original GHZ states. We introduce an n-qutrit version
MS state, which is non-GSD according to the results in
[12], and obtain its multiparty correlation distributions.
Based on these results, in the last section we give a dis-
cussion about the feasibility to solve the open problem
about the GSD states in the continuity approach.

II. MULTI-QUTRIT CORRELATIONS

To derive the degrees of irreducible multiparty correla-
tions in the three families of n-qutrit states studied in this

paper, we adopt Zhou’s continuity approach with a little
improvement. Namely, the results in the original work of
Zhou [11] indicated that, the standard exponential form

state ρ̃
[n]
m (γ) contains the maximal von Neumann entropy

among the states with the same m-party reduced den-
sity matrices, and this property is holden when its pa-
rameter γ → +∞. Therefore, for a given state, ρ[n],
with nonmaximal rank, in stead of constructing the se-

ries states ρ[n](γ) and corresponding ρ̃
[n]
m (γ), we construct

a sequence of states σ
[n]
m (γm) in the standard exponential

form (2) whose limit σ
[n]
m |γm→+∞ has the same m-party

reduced density matrices as ρ[n]. Here, for different m,

the states σ
[n]
m (γm) are independent, and the same are

true for their parameters γm. Then the degree of the
irreducible m-party correlation in the state ρ[n] is given
by

C(m)(ρ[n]) = S(σ
[n]
m−1|γm−1→+∞)− S(σ[n]

m |γm→+∞). (4)

A. First GHZ-type states

We introduce the n-qutrit states in the subspace
{|0[n]〉, |1[n]〉, |2[n]〉} as the first family of GHZ-type
states, where |i[n]〉 = |ii...i〉 with i = 0, 1, 2, denotes the
direct product of the basis |i〉 for n qutrits. They can be
expressed as

G =

2,2
∑

i=0,j=0

cij |i[n]〉〈j[n]|, (5)

with cij = c∗ij and the positive real numbers cii
satisfying

∑

cii = 1. One can write the diagonal
elements in spherical coordinate as (c00, c11, c22) =
(sin2 θ cos2 φ, cos2 θ, sin2 θ sin2 φ) with θ, φ ∈ [0, π/4].

Theorem 1. The degrees of irreducible multiparty cor-
relations in the n-qutrit GHZ-type state G in Eq. (5) are
given by

C(2) = (n− 1)H3(θ, φ),

C(n) = H3(θ, φ) − S(G), (6)

and C(m) = 0 for m = 3, 4, ...n − 1. Here, H3(θ, φ) =
H2(θ) + sin2 θH2(φ) denotes the trinary entropy of
the probabilities {cos2 θ, sin2 θ cos2 φ, sin2 θ sin2 φ}, with
H2(α) = − cos2 α ln cos2 α− sin2 α ln sin2 α being the bi-
nary entropy.

Proof. Let Zj = |0〉〈0| − |2〉〈2| be the spin-1 operator in
z-axis of the j-th qutrit, the 2-partite operators defined
as

Qij =
2

3

[1

2
+ cos

2π

3
(Zi − Zj)

]

(7)

satisfies Q2
ij = Qij and Tri,jQij = 3. We construct an
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n-qutrit state

σg(γ) = Exp
(

η + γ

n
∑

j=2

Q1j − γ1Z
2
1 + γ2Z1

)

, (8)

where tanh γ2 = cos 2φ and exp γ1 = 2 cosh γ2 cot
2 θ, and

the value of η is determined by the normalization condi-
tion Trσg(γ) = 1. Straightforward calculation gives

σg(γ) =

n
∏

j=2

( 1

eγ + 2
+
eγ − 1

eγ + 2
Q1j

)

f(Z1), (9)

with f(Z1) = cos2 θ(1 − Z2
1 ) +

1
2 sin

2 θ(Z2
1 + cos 2φZ1).

When γ approaches infinity the limit of σg(γ) is noth-
ing but the diagonal terms of G, i.e., σg|γ→+∞ = Dg =
∑

cii|i[n]〉〈i[n]|.
The state Dg has the same (n−1)-partite reduced ma-

trices as the states G, and there exists only irreducible
2-party correlation in σg(γ). Therefore, one can take

G̃m = Dg for m = 2, 3, ...n− 1 and obtain the results in
Eq. (6).

The pure states in this family are always equivalent to
the generalized GHZ states for n-qutrit system

|Gp〉 = cos θ|0[n]〉+ sin θ cosφ|1[n]〉+ sin θ sinφ|2[n]〉(10)

under local unitary transformations, which belongs to
the GSD states in [12] apparently. There are nH3(θ, φ)
correlations in |Gp〉, H3(θ, φ) of which is irreducible n-
party correlation and the others belongs to the 2-party
level. This distribution is the same as the generalized n-
qubit GHZ states in [11]. When φ = 0, H3(θ, 0) = H2(θ),
this result returns to the n-qubit case.

B. Second GHZ-type States

A generalization of the family of n-qutrit states G is
the one in the subspace {|0[n]〉, |1[n]〉, |0[m]2[n−m]〉} with
m being a positive integer less than n, and |0[m]2[n−m]〉 =
|0[m]〉 ⊗ |2[n−m]〉 denoting the direct product of basis |0〉
for the first m qutrits and |2〉 for the others. Denoting
the basis (|0̄〉, |1̄〉, |2̄〉) = (|0[n]〉, |1[n]〉, |0[m]2[n−m]〉), the
states in this family can be written as

G2 =

2,2
∑

i=0,j=0

cij |̄i〉〈j̄|, (11)

with the same constraint on cij as Eq. (5), and the diag-
onal elements cii also can be expressed in the spherical
coordinate θ and φ.

Theorem 2. The degrees of irreducible multiparty cor-
relations in the second family of GHZ-type state G2 in

Eq. (11) are given by

C(2) = mH2(θ) + (n−m− 1)H3(θ, φ),

C(n−m) = H3(θ, φ) −H3(θ, ϕ),

C(n) = H3(θ, ϕ) − S(G2), (12)

and C(k) = 0 for the other integer numbers 2 ≤ k ≤ n
, where the value of ϕ is given by cos2 2ϕ = cos2 2φ +
4|c02|2/ sin4 θ.

Proof. The quantum states D2 =
∑

cii |̄i〉〈̄i| has the same
k-partite reduced matrices as G2 for k < n −m. It can
be proved to be the limit of a state in the form (2).

Let us construct a 2-patite operator Pij = (2Z2
i −1)λ

(3)
j

by using the spin operator Zi and the third Gell-Mann

matrix of the j-th qutrit, λ
(3)
j = |0〉〈0| − |1〉〈1|. It

satisfies P 2
ij = λ

(3)
j

2
and P 3

ij = Pij . Then, the ba-

sis |0̄〉, |1̄〉 and |2̄〉 are the three eigenvectors of Ω =
∑m

j=1 Pm+1,j +
∑n

l=m+2Qm+1,l, corresponding to the
maximal eigenvalue ωmax = n − 1. Choosing the values
of γ1 and γ2 the same as the ones in Eq. (8), and exp η =
(2 cosh γ+1)−m(exp γ+2)−n+m+1(exp γ1+2 coshγ2)

−1,
the quantum state with only irreducible 2-party correla-
tion

σ2(γ) = Exp
(

η + γΩ− γ1Z
2
m+1 + γ2Zm+1

)

(13)

has the limit σ2|γ→+∞ = D2. Accordingly, we can choose

G̃2,k = D2 for k = 2, 3, ...n−m− 1.

To obtain G̃2,k for the other values of k, we intro-

duce three (n−m)-partite operators Σ1 =
∏n

j=m+1 λ
(4)
j ,

Σ2 = λ
(5)
m+1

∏n

j=m+2 λ
(4)
j and Σ3 = Zm+1

∏n

j=m+2 Z
2
j ,

with λ
(4)
j = |0〉〈2| + |2〉〈0| and λ

(5)
j = −i|0〉〈2| + i|2〉〈0|

being the fourth and fifth Gell-Mann matrices of the j-
th qutrit. They satisfy the relations ΣαΣβ = iǫαβγΣγ ,
Σ2

α =
∏n

j=m+1 Z
2
j and [Σα,Ω] = 0, where α, β, γ =

1, 2, 3, and can be viewed as the Pauli matrices in the
subspace {|0̄〉, |2̄〉}. Let tanh γ2 = cos 2ϕ and exp γ1 =
2 coshγ2 cot

2 θ, we can define an n-qutrit density matrix

τ2(γ) = Exp
(

η + γΩ− γ1Σ
2
r + γ2Σr

)

, (14)

where Σr = cos ξΣ3 + sin ξ cos ζΣ1 + sin ξ sin ζΣ2

with the parameters ζ = 1
2 arg(c20/c02) and ξ =

arccos(cos 2φ/ cos 2ϕ), and η is determined by the nor-
malization condition Trτ2(γ) = 1. It has no irreducible
(n − m + 1)-party or higher level correlation, and ap-
proaches the quantum state B2 = D2+c02|0̄〉〈2̄|+c20|2̄〉〈0̄|
when the parameter γ → +∞. The n-qutrit state
G2 has the same (n − 1)-partite reduced density ma-

trices as B2. Therefore, we can take G̃2,k = B2 for
k = n − m,n − m + 1, ...n − 1. One can yield the re-
sults in Eq. (12) via a direct calculation.
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For the pure state in this family

|Gp
2 〉 = sin θ cosφ|0̄〉+ cos θ|1̄〉+ sin θ sinφ|2̄〉, (15)

the variable ϕ = 0, the total correlation with the value
CT = mH2(θ) + (n − m)H3(θ, φ) is divided into three
nonzero irreducible multi-qutrit correlations as C(2) =
mH2(θ)+(n−m−1)H3(θ, φ), C

(n−m) = sin2 θH2(φ) and
C(n) = H2(θ). This result is different with the n-qubit
case, which indicates there could exist nonzero C(k)(2 <
k < n) in an n-qutrit pure states with the irreducible
n-party correlation.
When φ = 0, the state (15) becomes the n-qubit gener-

alized GHZ state, and at the same time the above corre-
lation distribution returns the corresponding one. When
θ = π/2, the state (15) equivalents to the direct product
ofm pure states |0〉 and a (n−m)-qubit generalized GHZ
state

|Gp
2 〉qubit = cosφ|0[n]〉+ sinφ|0[m]1[n−m]〉, (16)

in which C(2) = (n−m− 1)H2(φ) and C
(n−m) = H2(φ),

but C(n) = 0.

C. MS states

The set of MS states [14] for qubit case is an impor-
tant example to investigate the fundamental concepts in
multipartite system [15]. We generalize the definition of
MS states to n-qutrit system

|S〉 = 1√
3
(|0
¯
〉+ |1

¯
〉+ |2

¯
〉), (17)

where |i〉̄ = [cosα + sinα(X1 + X†
1)/

√
2]|i[n]〉 with the

operator of j-th qutrit Xj = |0〉〈1| + |1〉〈2| + |2〉〈0| and
α ∈ (0, arctan

√
2]. The operators Xj satisfy X2

j = X†
j ,

X†
j

2
= Xj and XjX

†
j = X†

jXj = 1.

Theorem 3. In the n-qutrit MS state (17), only irre-
ducible 2-party and (n− 1)-party correlations exist as

C(2) = H3(χ, π/4) + (n− 2) ln 3,

C(n−1) = ln 3, (18)

where χ satisfies cos2 χ = 1
6 (3 − cos 2α + 2

√
2 sin 2α),

which is determined by the eigenvalue of the reduced den-

sity matrix ρ
(1)
s for the first qutrit.

Proof. The operator Q =
∑n

j=3Q2j has 9 eigenvectors as

|i〉⊗ |j[n−1]〉 with i, j = 0, 1, 2, corresponding to its max-
imal eigenvalues qmax = n−2. We construct an operator

X = cosβQ12 +
1
2 sinβ(X1 +X†

1 +
∏n

j=2Xj +
∏n

j=2X
†
j )

commuting with Q. Thus, the eigenvector of Q + X
with the maximal eigenvalue is the one of X in the sub-
space {|i〉 ⊗ |j[n−1]〉}. Choosing the value of β satisfying

cotβ =
√
2(cotα− tanα)+1, one can check that the MS

state (17) is the unique eigenvector corresponding to the
maximal eigenvalues (UEME) of Q +X . Therefore, the
MS state can be viewed as the limit of a state without
irreducible n-party correlation

ρs = |S〉〈S| = lim
γ→+∞

Exp
(

η + γQ+ γX
)

, (19)

where η = − lnTr[Exp(γQ + γX)], which leads to
ρ̃s,n−1 = ρs.
The two-partite operator R12 = [cosα + sinα(X1 +

X†
1)/

√
2]Q12[cosα+ sinα(X1 +X†

1)/
√
2] shares the sim-

ilar properties with Qij , R
2
12 = R12 and Tr1,2R12 = 3.

The maximal eigenvalue of Q + R12 is triple degener-
ate with the eigenvectors |i〉̄. Consequently, the quantum
state with only irreducible 2-party correlation

σs(γ) = Exp(η + γQ+ γR12) (20)

has the limit σs|γ→→+∞ = Ds =
∑2

i=0
1
3 |i〉̄〈i|̄, where the

value of η is determined by the normalization condition
Trσs(γ) = 1. Thus, we can take ρ̃s,m = Ds for m =
2, 3, ...n− 2 and obtain the results in Eq. (18).

According to the results by Feng et al. [12], it is easy
to identify the n-qutrit MS state |S〉 can be determined
by its (n − 1)-partite reduced density matrices among
n-qutrit pure states. Our results show there is no irre-
ducible n-qutrit correlation in the state |S〉, which indi-
cates it can be determined by its (n− 1)-partite reduced
density matrices among arbitrary n-qutrit states (pure
or mixed).
The same scheme can be used to deal with the n-qubit

MS state

|S〉qubit = (cosα+ sinασx
1 )

1√
2
(|0[n]〉+ |1[n]〉), (21)

where σx,y,z
j denote the Pauli operators for the j-th qubit

and α ∈ (0, π/4]. Replacing Xj and Qij by (σx
j + iσy

j )/2

and (1 + σz
i σ

z
j )/2, one can construct the operators cor-

responding to Q, X and Rij in the states (19) and (20),
and obtain the nonzero correlations

C(2) = H2(ξ) + (n− 2) ln 2,

C(n−1) = ln 2, (22)

with ξ = π/4−α. The results indicate our generalization
of the MS state to the n-qutrit system in Eq. (17) has
the similar correlation distribution with the qubit case.

III. CONCLUSION AND DISCUSSION

Following the idea of Zhou’s continuity approach, for
an n-qutrit quantum state ρ[n] without maximal rank,

we construct ρ̃
[n]
m as the limit of a series n-qutrit states

in the standard exponential form (2). In this way,
we obtain the degrees of irreducible multiparty corre-
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lations in three families n-qutrit states, which can be
viewed as three generalizations of the original GHZ state.
The distribution of the total correlations in the gener-
alized GHZ state (10) is the same as the n-qubit case.
Whereas, in the n-qutrit pure state (15), there exist three
nonzero irreducible correlations which are C(2), C(n) and
C(n−m)(0 < m < n − 2). By contrast, only C(2) and
C(n) are nonzero in the n-qubit generalize GHZ state
which is the only pure n-qubit state with irreducible n-
party correlation. This indicates the classification of the
total correlations for a multipartite pure state in high-
dimensional system would be more complicated. Also,
an interesting question is raised, which kind of the ir-
reducible multiparty correlations can simultaneously be
nonzero in a pure states.
To prove the absence of irreducible n-qutrit correlation

in the MS state (17), we construct an operator Q + X
which is a sum of (n− 1)-partite operators and with |S〉
being its UEMS. The conclusion is proved by Eq. (19) in
the continuity approach. This indicates the open prob-
lem about the GSD states is equivalent to the follow-
ing one in the sense of limit: Whether the GSD state is
precisely the pure states which can’t be viewed as the
UEME of an operator Q[n−1], a sum of (n − 1)-partite
operators. It is straightforward to prove the sufficiency
part that, there exists no Q[n−1] whose UEME being a
GSD state. In the results of [12], for an n-partite GSD

state |ψ〉, there exist two projectors P1 =
⊗n

j=1 P
(1)
j

and P2 =
⊗n

j=1 P
(2)
j , such that |ψ〉 = P1|ψ〉 + P2|ψ〉.

The projectors P
(1)
j and P

(2)
j for the j-th partite sat-

isfy P
(1)
j |ψ〉 6= 0, P

(2)
j |ψ〉 6= 0 and P

(1)
j ⊥ P

(2)
j . For

any Q[n−1], 〈ψ|Q[n−1]|ψ〉 = 〈ψ′|Q[n−1]|ψ′〉, where |ψ′〉 =
P1|ψ〉 − P2|ψ〉. Then, the necessity part of this question
is left as, how to construct a sum of (n− 1)-partite oper-
ators, Q[n−1], whose UEMS is the given non-GSD state.
We hope to find an universal generalization of the con-
struction in Theorem 3 to an arbitrary non-GSD state in
our subsequent investigation.
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