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Abstract

Motivated by the recent experimental observations [M. Kataoka et al., Phys. Rev. Lett.102, 156801

(2009)], we propose here an theoretical approach to implement quantum computation with bound states of

electrons in moving quantum dots generated by the driving ofsurface acoustic waves. Differing from static

quantum dots defined by a series of static electrodes above the two-dimensional electron gas (2DEG), here

a single electron is captured from a 2DEG-reservoir by a surface acoustic wave (SAW) and then trapped

in a moving quantum dot (MQD) transported across a quasi-onedimensional channel (Q1DC), wherein

all the electrons have been excluded by the actions of the surface gates. The flying qubit introduced here

is encoded by the two lowest levels of the electron in the MQD,and the Rabi oscillation between these

two levels could be implemented by applying finely-selectedmicrowave pulses to the surface gates. By

using the Coulomb interaction between the electrons in different MQDs, we show that a desirable two-qubit

operation, i.e., i-SWAP gate, could be realized. Readouts of the present flying qubits are also feasible with

the current single-electron detected technique.
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∗ weilianfu@gmail.com

1



I. INTRODUCTION

In the past decades a considerable attention is paid to quantum computation implemented usu-

ally by an array of weakly-coupled quantum systems [1]. Basically, a quantum computing process

involves a series of time-evolutions of the coupled two-level quantum systems (qubits). In the clas-

sical computer, the information unit is represented by a bit, which is always understood as either

0 or 1. The information unit in quantum computation is very different. For example, the qubit can

be at logic “0” or logic “1” and also the superposition of both. Owing to this property, quantum

computer provides an automatically-parallel computing and thus possesses much more powerful

features than that realized by the classical computer. Thisbasic advantage has been definitely

demonstrated with Shor algorithm [2] for significantly speeding up the large number factoring.

A central challenge in the current quantum information science is, how to build such a quantum

computer? Until now, there has been many proposals for experimental quantum computation, such

as atomic qubits coupled via a cavity field [3, 4], cold ions confined in a linear trap [5], nuclear

magnetic resonance [6], photons [7, 8], quantum dots [9, 10], and Josephson superconducting

system [11], etc.. Note that all these candidates are based on the static qubits, and the controllable

interbit interactions are difficult to achieve. Alternatively, in this paper we focus on the flying

qubits generated by the electrons in moving quantum dots (MQDs). In fact, quantized transport

of electrons along a quasi-one dimensional channel (Q1DC) by surface acoustic waves have been

observed [12, 13]. The original attempt in these experiments is to build the desirable current

standards, but now has also leaded to the study of quantum computation. The qubit in such a

systems is ”flying” [14, 15], since the electron in the MQD is drawn along the Q1DC by a surface

acoustic wave (SAW). In principle, quantum computing with these flying qubits realized by using

SAWs possess two manifest advantages [16, 17]: i) one can make ensemble measurements over

billions of identical MQDs and thus be robust against various random errors, and ii) it should

allow a longer quantum operation by preventing the spreading of the wave function and reducing

undesired reflection effects.

The approach using the above SAW-based flying qubits to implement quantum computation

was first proposed by Barnes et al [14], who used two spin-states of the transported electron to

encode a flying qubit. Although the feasibility of this proposal was then analyzed in detail [15],

the experimental demonstration of this proposal has not been achieved yet. One of the possible

obstacles is that the required local magnetic fields are not easy to apply for manipulating the spin-
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states of the electrons in the MQDs. In order to overcome sucha difficulty, the flying qubits in

our quantum computing proposal are directly encoded by the two bound-states (rather than the

above spin-states) of the electrons in the MQDs. In principle, there are a few electronic levels

within each MQD, but only the two lowest ones with relatively-long lifetimes are suitably selected

to encode a qubit. Our idea is motivated by the recent experimental work, wherein the coherent

single-electron dynamics on these bound states was successfully observed [18].

The paper is organized as follows. In Sec. II we briefly describe the SAW-based MQDs and

numerically calculate the electronic levels. How these levels change adiabatically during the MQD

transporting along the Q1DC are also discussed. By applyingan additional driving electric field

to the gates above the channel, we show in Sec. III that the Rabi oscillations between the qubit’s

levels could be implemented. In Sec. IV, we describe an approach to implement a two-qubit

operation between the flying qubits across different channels. Finally, we summarize our main

results and give some discussions on feasibility of our proposal, including how to read out the

proposed flying qubit by using the existing experimental-technique.

II. SAW-BASED MOVING QUANTUM DOTS

We consider the system demonstrated first to experimentallyobserve quantized-

acoustoelectric-currents [18–21]. A two-dimensional electron gas (2DEG) is formed in a

GaAs/AlGaAs heterostructure below the metallic surface split-gate. At1.5 K the electronic den-

sity and the mobility in this 2DEG are measured as [20]1.8 × 1015 m−2 and160 m2V −1s−1,

respectively. The surface gates are utilized to define a Q1DCwithout any electron. Two SAW

interdigital transducers placed on each side of the device are used to generate a SAW (with a reso-

nant frequency around3GHz) propagating along the Q1DC. The surface gate geometry is chosen

to produce an electrostatically defined channel with the length approximately of the SAW wave-

length (λ = 1 µm), so that a single electron can be periodically transported through the channel.

The moving potential containing only one electron can serveas a MQD. Of course, when the quan-

tum dot carrying few electrons moves through the channel, a quantized current is generated. This

current can be measured by connecting an ammeter to two Ohmiccontacts on the 2DEG mesa.

For simplicity, we assume that only one electron is capturedinto the MQD and then propagates

along the narrow depleted Q1DC. The potential of the electron in a MQD could be effectively
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simplified as

Veff(z, t) = VSAW(z, t) + Vgate(z), (1)

whereVSAW(z, t) and Vgate(z) are the piezoelectric potential accompanying the SAW and the

electrostatic potential defined by the surface split-gate,respectively. First, the thickness and width

of the quantum dot (i.e., its sizes along they- andx-direction) are all neglected, such that the

electrostatic potential could be simply modeled as a strictly 1D potential [22, 23]

Vgate(z) =
V0

cosh2(z/a)
. (2)

Here, thez-axis is chosen along the channel which the SAW propagates through and the parameter

V0 determines the effective height of the potential barrier. The split-gate is operated well beyond

the pinch off voltage in the absence of the SAW, so the energyV0 could be greater than the electron

Fermi energy in the 2DEG, and the edge of the depleted Q1DC is well away from the edge of the

surface split-gate. The effective length of the Q1DC can be taken asleff = 2a, and it takes also

approximately as long as the SAW wavelengthλ(= 1µm). Consequently, we havea = 0.5 µm.

Next, by considering the screening effect of the metal gateson the SAW-induced electric potential,

and neglecting the mechanical coupling between the semiconductor and the metal surface gate, all

the changes in the components of the stress tensor, and the separation between split-gates, etc.,

Aı̌zin et al [24] showed that the piezoelectric potentialVSAW could be simplified to the form

VSAW = VS cos(kz − wt). (3)

Here,VS is the amplitude of the SAW, andk andw are the frequency and wave number, respec-

tively.

With the above potential the electronic levels of the electron trapped in the MQD can be deter-

mined by solving the instantaneous eigenvalue equation

Ĥ0(t)|En(t)〉 = En(t)|ψn(t)〉,

Ĥ0(t) = −
~
2

2m∗

d2

dz2
+

V0

cosh2(z/a)
+ VS cos(kx− wt). (4)

Here,m∗ = 0.0067me is the effective mass of the electron in GaAs, andV0 = ~
2/2m∗l20, VS =

γV0. The parameterl0 = 4 × 10−2a is the effective width of the Q1DC, andγ = 0.5 the ratio of

the SAW potential amplitude to the height of the electrostatically-induced potential barrier in the

Q1DC. The SAW velocity isv = 2981 m/s [22]. By finite differential method we can numerically
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solve Eq. (4) and obtain the electronic levels in the MQD. Although the shape of the potential

or the size of the quantum dot changes with the motion, the dotis still “big” enough to hold a

few levels. Specifically, Fig. 2 shows the effective potential and its corresponding bound levels
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FIG. 1: (Color online) The effective potential and its allowed energy levels forγ = 0.5 at various typical

times: (a)t = 0 ns, (b)t = 0.1 ns, (c)t = 0.15 ns, (d)t = 0.2 ns, (e)t = 0.3 ns, and (f)t = T = 0.34 ns.

The blue solid line represents the effective potential and the colored lines show the allowed levels: ground

state (lower red line), the first exited state (upper purple line), the second excited state (dashed blue line),

the other excited state (dotted black line).

for the different times over the SAW period. Qualitatively,the dot could capture many electrons

initially, but most of them will be escaped from the local well and returned to the source reservoir.

In the present calculation, we consider the ideal conditionwherein only one electron is initially

captured by the MQD and held in where across the channel. One can see from Fig. 2 that, a few

bound levels exist in the local potential of the quantum dot moving along the channel. A snapshot

of the wave function and the corresponding probabilistic distributions of the electron residing in

these levels in a specific moment are shown in Fig. 3. Indeed, our numerical calculations show

clearly that only the electron in the third (dotted blue-line) level could escape from the well. We

see specifically from Fig. 3(c) that, only the wave function of the third adiabatic levels had a

(significantly) small probability for tunneling out the trapped potential. Such a tunneling wave

function has really certain overlap with the adjacent potential, although the relevant probability is

still sufficiently low, e.g., less than6%. Therefore, such a tunneling is still negligible compared
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with the probabilities of the lowest two levels in the adjacent potential. The higher adiabatic levels

have the higher tunneling probabilities, but their original occupation probabilities are really very

small and thus these tunnelings can be safely neglected. Typically, the probabilities of the electron

in the lowest two levels, the ground and first excited ones, tunneling to the source reservoir is

negligible. In other times, there may be more levels in the local well as shown in Fig. 2, although

we don’t emerge these levels out in Fig. 3, but certainly two lowest levels with relatively-long

lifetimes are suitably selected to encode the desirable flying qubit, the unit of the moving quantum

information.
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FIG. 2: (Color online) Wave functions of the lowest three levels and their relevant probabilistic distributions

at certain time (with the maximum tunneling probability): (a) Potential and its allowed levels, (b) The eigen-

functions of the allowed levels and (c) the probabilistic distributions of the electron in the allowed-levels

along the channel. Here, the thick blue reveal the change of the potential, and the lower red, upper dashed

purple and dotted blue lines denote the ground, the first excited and the second excited state, respectively.

We now show that the flying qubit defined above is sufficiently stationary, although the shape
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of the potential varies with the quantum dot moving along thechannel. The adiabatic theorem

asserts that, if the rate of the change of Hamiltonian is slowenough, the system will stay at an

instantaneous eigenstate of the time-Hamiltonian. For thepresent case the adiabatic condition is

expressed as

β =

∣

∣

∣

∣

∣

~〈m|∂H0(t)
∂t

|n〉

(Em(t)−En(t))2

∣

∣

∣

∣

∣

≪ 1, (5)

whereEm(t)− En(t) is the energy splitting between the state|m〉 and|n〉. Our numerical results

show that, at certain time:E0 = −1.22 × 10−23 J, E1 = 1.64 × 10−23 J and consequently

β = 0.0847. This indicates that the adiabatic condition could be satisfied. A lower value of the

β-parameter is also possible by properly adjusting the relevant parameters. This means that the

levels used above to encode the flying qubit is adiabatic, andthus one can call them later as the

so-called adiabatic levels. Thus, once the flying qubit is prepared at one of its logic states (|0〉 and

|1〉), it always stays at that state until the specific driving is applied.

III. RABI OSCILLATIONS BETWEEN THE LEVELS OF FLYING QUBIT

For realizing quantum computation, we need to first implement arbitrary rotations of the single-

qubit. For the present flying qubit, this can be achieved by using the usual Rabi oscillations

between the adiabatic states|0〉 and |1〉. Basically, these states should be kept as the pure ones.

This can be realized by cooling the system to a sufficiently low temperatureTtemp, such that the

conditionkBTtemp ≪ ~ω is satisfied. Here,ω = ω1 − ω0 is the electronic transition frequency of

the flying qubit, andkB is Boltzmann constant. Experimentally [18], the system canbe worked

approximately at the temperatureTtemp = 0.27 K, yieldingkBTtemp = 3.726× 10−24 J ≪ ~ω ∼

2.8502 × 10−23 J . Thus, the transitions between the qubit’s levels due to thethermal excitations

can be safely neglected.

We now apply a resonant electric driving to the surface gatesfor implementing the desirable

Rabi oscillations. Under such a driving the previous 1D-potential Vgate, i.e., Eq. (2), is now

changed asVgate → V ′

gate = Vgate + Ve cos(ωt− φ)/ cosh2(z/a) with ω andφ being the frequency

and initial phase of the driving field, respectively. Consequently, the dynamics of the driven flying

qubit is determined by the following time-dependent Schrödinger equation

i~
∂|ψ(t)〉

∂t
= (Ĥ0 + Ĥ ′(t, φ))|ψ(t)〉. (6)
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with

Ĥ ′(t, φ) =
Ve cos(ωt− φ)

cosh2(z/a)
, (7)

Above,Ve is a parameter depending on the power of the applied electric-filed. In our calculation,

we choose it asVe = 0.3VS for simplicity. Generally, the wave function of the driven flying qubit

can be written as

|ψ(t)〉 = C0(t)|0〉+ C1(t)|1〉, (8)

with C0(t) andC1(t) being the time-dependent probability-amplitudes of finding the electron in

the states|0〉 and|1〉 at the timet, respectively.

From Eqs. (6-8), the equations of motion for the amplitudesC0(t) andC1(t) can be derived as

∂C0(t)

∂t
= −iω0C0(t)− iC0(t)D00 cos (ωt− φ)− iC1(t)D01 cos(ωt− φ), (9)

and
∂C1(t)

∂t
= −iω1C1(t)− iC1(t)D11 cos (ωt− φ)− iC0(t)D10 cos(ωt− φ), (10)

with Dij = Ve/[~〈i| cosh
2(z/a)|j〉], i, j = 0, 1. The method to solve the above ordinary differen-

tial equations is relatively-standard, e.g., by the existing program in Matlab software. Certainly,

the relation

|C0(t)|
2 + |C1(t)|

2 = 1, (11)

is always satisfied. With the initial condition|ψ(0)〉 = |0〉 andφ = 0 for simplicity, we plot the

how the dynamical variable|C1(t)|
2 changes with the time in Fig. 4. It is seen really that the popu-

lation in one of the logic state of the flying reveals an obviously oscillating behavior with a period:

τ ∼ 0.31 ns. This time-interval is sufficiently-long for the MQD across the Q1DC demonstrated in

the experiment. The time interval for a quantum dot across the channel is estimated as∼ 0.34 ns.

Thus, Rabi oscillations between the levels|0〉 and |1〉 can be really demonstrated in the present

MQD system.

Rabi oscillations are formally equivalent to the single-qubit σx operations:|0〉 → |1〉, |1〉 →

|0〉. In principle, arbitrary single-qubit operation can be implemented by the combinations of a

pair of noncommutable single-qubit operations [25] , e.g.,σx and the phase-flip gatêU(θ) =

exp(iθ)|0〉〈0|+exp(−iθ)|1〉〈1| generated by the free evolution of the qubit. However, if theinitial

phaseφ of the driving field can be well defined, then the Hamiltonian of the driven qubit reads

Ĥ(t, φ) = H0 +H ′(t, φ) ≃ ~ωσ̂z + Ve cos(ωt− φ)(1−
ẑ2

a2
). (12)
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Above, the usual Taylor expansion is used and the high-orderterms are neglected. Furthermore,

the position operator̂z2 can be expressed (in the qubit’s representation) as

ẑ2 = (z200 + z01z10)|0〉〈0|+ (z211 + z10z01)|1〉〈1|

+ (z00z01 + z01z11)|0〉〈1|+ (z11z10 + z10z00)|0〉〈1|, (13)

wherezij = 〈i|z|j〉 andzij = zji (i, j = 1, 2). Finally, in the interaction picture and under the

usual rotating-wave approximation, the Hamiltonian of thedriven qubit reduces to

Ĥi = g
(

e−iφ|0〉〈1|+ eiφ|1〉〈0|
)

, (14)

with g = −Ve(z00z01 + z01z11)/(2a
2). This Hamiltonian yields the following arbitrary rotation

Û(α, φ) =





cosα −ieiφ sinα

−ie−iφ sinα cosα



 , α = gt/~, (15)

of the qubit.
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FIG. 3: (Color online) Rabi oscillation of the population inthe qubit’s level|1〉. The oscillation period

shown here is about0.31 ns. During a period time of the SAW0.34 ns, if the electron is originally residing

in the ground state, it could jump to the excited level|1〉 and then rotate to the initial state|0〉.

A problem may exist during the driving for implementing the desirable Rabi oscillation. That

is, due to the adiabatic changes of the electronic levels thequbit’s energy splitting changes adi-

abatically with the time. Consequently, it seems that the desirable Rabi oscillation implemented

by usually applying a resonant pulse cannot be achieved. However, due to the adiabatic change of

the energy splitting is practically weak, the qubit encodedby two adiabatic levels can always be
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driven near-resonantly. In fact, within a very short time interval, the transition frequency changes

very small. For example, when the interval is0.01 ns, the change rate of the frequency is only

6.4% under the parameter chosen above. Thus, during a period time, the maximum change rate of

the energy-splitting could be only6% by properly setting the relevant parameter, e.g., forγ = 2.2.

Under these near-resonant drivings, the desirable Rabi oscillations could still be achieved with

the sufficiently-high fidelities. Therefore, the desirableRabi oscillation could be achieved for the

present qubit with slowly-changing energy-splitting, at least theoretically.

IV. COUPLING THE SEPARATED MOVING QUANTUM DOTS FOR TWO-FLYING-QUBIT

OPERATIONS

We now discuss how to implement an universal gate, i.e., the two-qubit operation, with the

MQDs. A simple way to achieve such a task is by utilizing the Coulomb interaction between

the electrons in the nearest-neighbour interaction MQDs. To do this, let us consider the situation

schematically shown in Fig. 5, wherein two MQDs driven by twoSAWs pass across two Q1DCs,

the upper- and lower ones. Suppose that the tunneling between them is negligible and only the

Coulomb interaction between them is important. First, the Coulomb force between the electrons

in these two MQDs can be expressed as

Fint(zu, zl) =
e2

4πε0

(zl − zu)

[d2 + (zl − zu)2]3/2
, (16)

with zu andzl being their coordinates along the channels (the indicesu and l refer to the upper

and lower channels, respectively) andd the distance between the two Q1DCs. Since the motions

of the electrons are always along the Q1DCs, the vertical force of the Coulomb interaction can

be ignored and thus only the horizontal force along the z-axis is taken account into. Second, the

potential related to above force can be written as

Vint(z) =
1

4πε0

∫ z

0

e2zdz

(d2 + z2)3/2
= −

1

4πε0

e2

d

{

1

[1 + (z/d)2]1/2
− 1

}

, (17)

wherez = zu − zl. By using the usual Taylor expansion and ignoring the high-order terms under

the conditiond≫ z, the above Coulomb potential reduces to

Vint(z) =
e2

8πε0d3
z2 =

e2

8πε0d3
(

z2u + z2l − 2zuzl
)

. (18)

Thirdly, the Hamiltonian describing the dynamics of the two-coupling MQDs reads

Ĥh = Ĥt + Vint(z), (19)
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FIG. 4: (Color online) The schematic diagram to implement controllable couplings between two flying-

qubits. Two MQDs passage along the the upper and lower Q1DCs,respectively, and the coupling between

them is realized by the Coulomb interaction of the inside electrons. Thez axis is chosen along the electronic

path of the lower channel, andr is the distance between the upper electron and the lower one.

with

Ĥt =
∑

j=u,l

[

−
~
2

2m∗

j

d2

dz2j
+

V j
0

cosh2(zj/a)
+ V j

S cos(kzj − ωt)

]

=
∑

j=u,l

~ωj

2
σ̂z
j , (20)

andσ̂z
j =|1j〉〈1j|−|0j〉〈0j|, ωj = (Ej

1 − Ej
0)/~.

In the qubit representation, the position operatorsẑj , ẑ2j andẑj ẑk (wherej, k = u, l andj 6= k)

can be expressed as

ẑj =
1

2
(z11j − z00j )σ̂z

j + z01j σ̂
x
j , ẑ

2
j =

1

2
(z11j + z00j )(z11j − z00j )σ̂z

j + (z00j + z11j )z01j σ̂
x
j , (21)

and

ẑj ẑk =
1

4
(z11k + z00k )(z11j − z00j )σ̂z

j + z01j z
01
k σ̂

x
j σ̂

x
k +

1

4
(z11j + z00j )(z11k − z00k )σ̂z

k

+
1

2
(z00k + z11k )z01j σ̂

x
j +

1

2
(z00j + z11j )z01k σ̂

x
k +

1

4
(z11j − z00j )(z11k − z00k )σ̂z

j σ̂
z
k

+
1

2
(z11j − z00j )z01k σ̂

z
j σ̂

x
k +

1

2
(z11k − z00k )z01j σ̂

z
j σ̂

x
k , (22)

respectively. Above,̂σx
j = σ̂+

j + σ̂−

j with σ̂+
j =|1j〉〈0j| andσ̂−

j =|0j〉〈1j|; z11j , z00j andz01j are the

matrix elements〈1j|zj|1j〉, 〈0j|zj|0j〉, and〈1j|zj|0j〉, respectively. As a consequence, the above

Coulomb potentialVint(z) can be rewritten as

V̂int = Cz
uσ̂

z
u + Cz

l σ̂
z
l + Cx

u σ̂
x
u + Cx

l σ̂
x
l + Czz

ul σ̂
z
uσ̂

z
l + Cxx

ul σ̂
x
uσ̂

x
l + Czx

ul σ̂
z
uσ̂

x
l + Cxz

ul σ̂
x
uσ̂

z
l , (23)

with
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




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



Cz
u =

e2

16πε0d3
(z00u + z11u − z00l − z11l )(z11u − z00u ),

Cz
l =

e2

16πε0d3
(z00l + z11l − z00u − z11u )(z11l − z00l ),

Cx
u =

e2

8πε0d3
(z00u + z11u − z00l − z11l )z01u ,

Cx
l =

e2

8πε0d3
(z00l + z11l − z00u − z11u )z01l ,

and














Czz
ul =

−e2

16πε0d3
(z11u − z00u )(z11l − z00l ), Cxx

ul =
−e2

4πε0d3
z01u z

01
l ,

Czx
ul =

−e2

8πε0d3
(z11u − z00u )z01l , C

xz
ul =

−e2

8πε0d3
(z11l − z00l )z01u .

In the interaction picture defined by the unitaryÛ0(t) = exp [(−i/~)t
∑

j=u,l λj σ̂
z
j ] with λj =

~ωj/2 + Cz
j , the Hamiltonian of the system reduces to

ĤI =C
zz
ul σ̂

z
uσ̂

z
l +

∑

j=u,l

Cx
j

(

e2itλj/~σ̂+
j + e−2itλj/~σ̂−

j

)

+Cxx
ul

[

e2it(λu+λl)/~σ̂+
u σ̂

+
l + e2it(λu−λl)/~σ̂+

u σ̂
−

l +e−2it(λu−λl)/~σ̂−

u σ̂
+
l + e−2it(λu+λl)/~σ̂−

u σ̂
−

l

]

+Czx
ul

(

e2itλl/~σ̂z
uσ̂

+
l + e−2itλl/~σ̂z

uσ̂
−

l

)

+ Cxz
ul

(

e2itλu/~σ̂+
u σ̂

z
l + e−2itλu/~σ̂−

u σ̂
z
l

)

. (24)

Consequently, under the usual rotating-wave approximation, we have

HI = Cxx
ul (σ̂

+
u σ̂

−

l + σ̂−

u σ̂
+
l ). (25)

During this derivation, the significantly-small quantities Czz
ul ≪ Cxx

ul has been omitted, and we

have also assumed thatλu = λl. Typically, for the experimental parameters:z = 2.981×10−2 µm,

we havez00u = −5.3594× 10−1 µm, z11u = −5.4418× 10−1 µm, z01u = z10u = 5.6607× 10−2 µm;

z00l = −5.6186 × 10−1 µm, z11l = −5.6975 × 10−1 µm, z01l = z10l = −5.6431 × 10−2 µm, and

thus|Czz
ul /C

xx
ul | = 5.1× 10−3 ≪ 1.

Finally, the above Hamiltonian yield the following two qubit evolution (in the representation

with the basis{|11〉, |10〉, |01〉, |00〉}

Û = e−iĤI t/~ =















1 0 0 0

0 cos ξ −i sin ξ 0

0 −i sin ξ cos ξ 0

0 0 0 1















, ξ = tCxx
ul /~. (26)
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This is the typical two-qubit i-SWAP gate. With such an universial gate, assisted by arbitrary

rotations of single qubits, any quantum computing network could be constructed [1].

We now discuss the possible leakages due to Coulomb interaction, i.e., the elec-

trons may populate the bound states outside the computational basis. Without loss of

the generality, the third bound state|2〉 of each electrons is also considered. There-

fore, we need to discuss the two-qubit dynamics within a nine-dimensional subspaceΞ =

{|00〉, |01〉, |10〉, |11〉, |02〉, |20〉, |12〉, |21〉, |22〉}, and the Hamiltonian of the two-qubit system

should be written as a9×9 matrix. However, one can easily check (in the interaction picture under

the usual rotating-wave approximation) that, there are just three invariant subspaces including the

computational basis:(i)Im1 = {|00〉}, (ii)Im2 = {|01〉, |10〉}, and(iii)Im3 = {|02〉, |11〉, |20〉}.

This means that the possible leakage only takes place in the third invariant subspace, i.e., the

states|20〉 and|02〉 might be populated during the two-qubit operation. The Hamiltonian in such

an invariant subspace can be expressed as

Ĥ3 =











A1 −2z01l z
21
u e

−it(ω10

l
−ω21

u ) −2z02l z
20
u e

−it(ω20

l
−ω20

u )

−2z10l z
12
u e

it(ω10

l
−ω21

u ) A2 −2z12l z
10
u e

−it(ω21

l
−ω10

u )

−2z20l z
02
u e

it(ω20

l
−ω20

u ) −2z21l z
01
u e

it(ω21

l
−ω10

u ) A3











, (27)

with the frequenciesωmn
k = (Ek

m −Ek
n)/~, m, n = 0, 1, 2; k = u, l, and

A1 = (z00l )2 + z01l z
10
l + z02l z

20
l + (z22u )2 + z20u z

02
u + z21u z

12
u − 2z00l z

22
u ,

A2 = (z11l )2 + z10l z
01
l + z12l z

21
l + (z11u )2 + z10u z

01
u + z12u z

21
u − 2z11l z

11
u ,

A3 = (z22l )2 + z20l z
02
l + z21l z

12
l + (z00u )2 + z01u z

10
u + z02u z

20
u − 2z22l z

00
u .

The dynamics determined by this Hamiltonian can be numerically solved and the time-dependent

populations of the involved bound states are shown in Fig. 5,wherein the involved parameters are

calculated as:z22u = −5.548 × 10−1 µm, z02u = z20u = 1.9787× 10−3 µm, z21u = z12u = 8.1606×

10−2 µm; z22l = −4.287 × 10−1 µm, z02l = z20l = −2.4678× 10−4 µm, z21l = z12l = −3.6634 ×

10−3 µm; andω10
l − ω21

u = 3.9519× 1010 rad/s, ω21
l − ω10

u = 6.9369× 1011 rad/s, ω20
l − ω20

u =

7.3321× 1011 rad/s. Fig. (5a) shows that the population transfer between the computational basis

|01〉 and|10〉 could be implemented by properly setting the duration of theCoulomb interaction

between the electrons in different MQDs. Furthermore, it isseen from Fig. (5b) that, the leakages

of the populations from the computational basis|11〉 are relatively weak, e.g., the probabilities

transferred to the state|02〉 are less than 10% and to the state|20〉 are really negligible. In fact,
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FIG. 5: (Color online) Population evolutions of two coupledqubits during an i-SWAP gate operation. (a)

The population transfers between the computational basis|10〉 and|01〉, and (b) Population of the computa-

tional basis|11〉 versus the duration. It is seen that the leakages of the population from the state|11〉 to the

states|20〉 and|02〉 are relatively weak. In these numerical calculations, the parameterd which represents

the distance of the two Q1DCs is typically set as1.1 µm, and the others are the same as those used in

Figs. 1-3.

weaker leakages could be achieved by decreasing the value ofthe parameterz( 6= 0). Also, we

have numerically checked that the adiabatic changes of the levels do not significantly deduce the

unwanted leakages. In this sense, the desirable i-SWAP gatebetween the MQDs in different

channels can be implemented and the relevant leakages couldbe effectively suppressed.

V. DISCUSSIONS AND CONCLUSIONS

Readout of the qubits is another crucial tasks in quantum computing. In Barnes et al’s

scheme [14], the flying qubit is encoded by the spin-states ofthe electrons in the MQDs and

its readout is implemented by using the usually magnetic Stern-Gerlach effect. In our proposal

the flying qubit is encoded by the lowest two levels of the electron in the moving trapped poten-

tial. These levels are theoretically steady but still existweak tunnelings. Thus, by detecting the

tunnelings of the moving electron from the trapped potential, one can achieve the qubit readouts.

This is because that the tunneling rates of electron in either the state|0〉 or the state|1〉 should be

different and thus could be distinguished individually. Infact, these tunneling-measurements have

been realized in the recent experiment [18]. There, anotherchannel is introduced to detect the

tunnelings of the electrons in the MQDs across the computational channels. Physically, the flying
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electron in the state|1〉 should yield significantly-high probability of tunneling to the detecting

channel, and thus decrease the currentItop flowing along the computational channel. While, if

the flying electron in the ground level|0〉, then the probability of tunneling out should be obvi-

ously small and thusItop should be almost unchanged. Stronger tunnelings are also possible, if

the flying qubit is excited for leakage. This can be achieved by applying a resonant pulse to excite

the electron staying at the computational basis|0〉 (or |1〉) to the higher level (e.g., the state|2〉)

with significantly-bigger tunneling-probabilities [26].By this way, flying qubit staying at|0〉 or

|1〉 could be more robustly detected.

Another challenge for realizing our proposal is how to hold only one electron in a MQD across

the computational channel. Initially, many electrons can be captured by the SAWs from the source

region of 2DEG; the number of electrons residing in the minima of SAWs depend on the size of

the formed quantum dot. Note that the static potential generated by the split-gate is fixed, but

the depth and the curvature of the MQD vary with the time during the MQD moving along the

channel. When the size of the dot becomes smaller, electronscaptured from the source are ejected

from the dot and let a few ones be still trapped by the potential. By suitably controlling the relevant

parameters, e.g., the power of the SAW and the split-gate voltage, only one electron could reside

in a MQD for realizing the desirable flying qubit [21]. Also, the thermal excitations of the present

qubit can be safely neglected as the experimental temperature is sufficiently low, so the captured

electron can be kept in its ground state except it is driven byexternal field. Finally, as in all the

other solid-state quantum computing candidates, decoherence in the present flying qubit is also an

open problem and would be discussed in future.

In summary, we have put forward an approach to implementing quantum computation with the

energy levels of the electrons trapped in the MQDs. The idea involves the capture of electrons

from a 2DEG by the SAWs to form the potentials for trapping a single electron. Each SAW may

capture many electrons from the 2DEG source, but we can make only one electron reside in the

minimum of the SAW by tuning the surface split-gate to changethe barrier height, that forces the

excessive electrons to tunnel out from the quantum dot. By numerical method, we have known

that few adiabatic levels of each electron could be formed ina MQD, and the lowest two ones

are utilized to encode a flying qubit. We have shown how to implement the Rabi oscillations with

the flying qubit for performing single-qubit operation. A two-qubit gate, i.e., i-SWAP gate, has

also be constructed by using the Coulomb interaction of the electrons in different MQDs across

the nearest-neighbor computational channels. In principle, our proposal can be extended to the
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system includingN qubits by integrating an array ofN Q1DCs.
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