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Coherent feedback control of multipartite quantum entanglement for optical fields
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Coherent feedback control (CFC) of multipartite optical entangled states produced by a non-degenerate op-
tical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and
phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity
of the optical beam splitter in CFC loop. The physical conditions to enhance continuous variable multipartite
entanglement of optical fields utilizing CFC loop are obtained. The numeric calculations based on feasible
physical parameters of realistic systems provide direct references for the design of experimental devices.
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I. INTRODUCTION

As well-known light is the optimal conveyor of quantum
information due to its high speed and weak interaction with
the environment. The entangled optical fields are the neces-
sary resources for performing continuous variable (CV) quan-
tum information[1–3]. Preparing multipartite entanglement
of more than two systems and manipulating entangled quan-
tum states are two fundamental problems in quantum infor-
mation networks. In the past decades, the CV quantum in-
formation based on quantum correlations between amplitude
and phase quadratures of optical fields has attracted extensive
attention[4, 5]. To establish a practical CV quantum infor-
mation network one of the most primary tasks is to prepare
multipartite entangled states of light with possibly high en-
tanglement degree for reaching the required fidelity of tele-
porting quantum information[6–9]. A variety of theoretical
and experimental achievements in CV quantum information
have been presented[10–13]. Degenerate and non-degenerate
optical parametric amplifiers (DOPAs and NOPAs) have been
widely applied in CV quantum information systems to be the
necessary sources of squeezed and entangled states[14, 15].
Tripartite Greenberger-Horne-Zeilinger-like (GHZ-like) and
quadripartite entangled states of optical fields have been suc-
cessfully generated by DOPAs and NOPAs and applied for
CV quantum information implementations, such as telepor-
tation networks, controlled dense coding, and quantum error
correction via telecloning[16–20]. The multipartite entangled
states are the basic resources for transmitting quantum infor-
mation or quantum states among distant stations or nodes in
a quantum network, and a high entanglement degree is the el-
ementary requirement for achieving information transferring
and processing with high fidelity. In Ref.[17–19], the tripar-
tite and quadripartite entangled states are obtained by splitting
or combining squeezed states of light on optical beam split-
ters. For constructing quadripartite cluster entangled states
in Ref.[18] (Ref.[19]), four squeezed states produced by four
DOPAs (two NOPAs) are combining by the beam splitter net-
work. To ensure highly coupling efficiency of squeezed states
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on each beam splitter, these squeezed states should be clas-
sically coherent, so all optical parametric amplifiers (OPAs)
used in the system have to be pumped by a laser source and
to be phase-locked during the experiment. For the practical
applications in quantum information networks, it is desired to
produce multipartite entangled states directly in a more com-
pact device. Recently, A. S. Coelho et al. presented an elegant
experimental achievement on the generation of three-coloren-
tangled state of light, in which the CV quantum entanglement
among the pump, the signal and the idler optical fields of an
optical parameter oscillator was demonstrated firstly[6].For
connecting different physical systems with respective reso-
nance frequencies at the nodes of a quantum network, it is
important to produce the multipartite entangled optical fields
with different frequencies[6–8]. In 2004, O. Pfister et al. pre-
sented a scheme of obtaining multipartite entanglement by the
use of a single OPA without the necessity of beam splitters,
which opens a hopeful avenue to prepare directly N-partite
(N > 2) optical entangled states in a very compact device,
and provides huge scaling potential[20, 21].

On the other hand for implementing CV quantum infor-
mation network, it is also necessary to find a scheme which
can control and enhance the generated multipartite entangled
states. In fact, due to the unavoidable intra-cavity lossesin
OPAs and the limitation of the effective nonlinear coefficient
of a crystal, the squeezing and the entanglement of the quan-
tum states produced by a single OPA is not high enough un-
der usual conditions, thus the enhancement of the squeez-
ing and entanglement is desired especially. Using a phase-
sensitive DOPA (NOPA) the manipulation and the enhance-
ment of a squeezed vacuum field (bipartite entangled optical
beams) have been experimentally demonstrated, in which the
manipulation is achieved via a second-order nonlinear inter-
action inside an optical cavity[22, 23]. M. Yanagisawa et al.
and J. E. Gough et al. proposed an enhancement scheme of
optical field squeezing by placing a linear optical component
in loop in a simple coherent feedback mechanism involving
a beam splitter[24, 25]. The theoretical proposal was exper-
imentally realized by A. Furusawa’ group very recently[26].
Differentiating from the usual measurement-based controlfor
quantum systems[27, 28], the non-measurement-based coher-
ent feedback control (CFC) is a control method without any
back-action noises induced by the measurement. Thus, CFC
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is suitable to be used in CV quantum information process-
ing, where any excess noises will reduce its precision[24, 25].
Typically, this control method is specially appropriate tobe
applied for enhancing squeezing and entanglement of optical
fields. Ref.[26] reports the first experimental demonstration
of CFC on squeezed optical field, in which the squeezing de-
gree of a single-mode squeezed state is enhanced. The CFC
model is completely linear and can work in the case of quan-
tum optics. To the best of our knowledge, there is no theoreti-
cal and experimental presentation to discuss the enhancement
and manipulation of CV multipartite entanglement of optical
fields. So far, the theoretical[24, 25] and the experimental[26]
demonstration of the ability of CFC on manipulating squeez-
ing shows that the linear optical CFC loop is able to control the
quantum fluctuations of the amplitude and phase quadratures
of optical fields, which motivates us to explore the possible
effect of CFC on CV multipartite entanglement.

In this paper we propose a CFC-NOPA system to achieve
the generation and the manipulation of multipartite entangled
states of light, simultaneously. The multipartite entangled
states originally produced by the NOPA are injected into the
CFC loop directly, in which the entangled optical beams are
split to two parts by a beam splitter. One of the two parts is
fed back to the NOPA and the other part serves as the final
output multipartite entangled states of optical fields fromthis
system. The calculated results show that the features of the
CV multipartite entanglement of the output optical fields can
be controlled by tuning the transmissivity of the beam split-
ter, i.e. by adjusting the feedback amount of the entangled
optical fields returned into NOPA. In this way, the CFC loop
coherently controls the original output of the NOPA and feeds
a part of them back into the NOPA to control its performance.
The tunable optical beam splitter in CFC loop is named the
coherent feedback (CF) controller. The physical conditions
for realizing the multipartite entanglement enhancement are
found by means of numerical calculations based on scalably
experimental parameters. In the following we will describe
the CFC-NOPA system firstly in Sec. II. Then the operation
principle of NOPA and the corresponding mathematic expres-
sions for the generation of the multipartite CV entanglement
are introduced in Sec. III. In Sec. IV the manipulation effects
of CFC loop of the multipartite entangled optical fields gen-
erated by NOPA are analyzed. At last, a brief conclusion is
given in Sec. V.

II. SCHEMATIC OF CFC-NOPA SYSTEM

Since there are unavoidable losses in any real NOPAs, the
experimentally obtainable multipartite entanglement degree
from a single NOPA cannot be high enough under general
conditions. The performance of a simple CFC linear opti-
cal loop on manipulating and enhancing single-mode squeez-
ing has been theoretically and experimentally proved[24–26].
Our aim is to link directly a NOPA, which generates optical
multipartite entangled states, and a CFC loop, which feeds a
part of originally entangled optical fields back into the NOPA.
We found that the multipartite entanglement of the final output

NOPA

pump

M1 M2

PZT1

M3 M4

LBS

CBS

a
out

i
b

in

i

c
in

i c
out

i

a
in

i
=d

out

i
d

in

i

e
in

i

Coherent Feedback Control
Crystal

a
i

PZT2

FIG. 1: (Color online) Schematic of CFC-NOPA system.

optical fields from the CFC-NOPA system can be efficiently
enhanced under appropriate conditions and the entanglement
degree can be controlled by simply changing the transmissiv-
ity of the CF controller.

The CFC-NOPA system is depicted in Fig.1. The system
consists of two parts: 1. a NOPA as the source of the multi-
partite optical entangled states, 2. a CFC loop for implement-
ing the manipulation and enhancement of multipartite entan-
gled states. The NOPA has a bow-tie type ring configuration
consisting of a nonlinear crystal, two flat mirrorsM1(2) and
two spherical mirrorsM3(4). The input and output mirror
M1 has partial transmission and the other three cavity mir-
rors are highly reflective for the subharmonic optical field,
and all the four mirrors are anti-reflective for the harmonic
pump field. The strong harmonic-wave pump filed is regarded
as a classical filed and does not resonate in the optical cav-
ity. M3 is mounted on aPZT1 for scanning or locking the
cavity length of the NOPA to the resonance with the subhar-
monic field. The input optical modeŝaini (i = 1, 2, · · · , N )
are coupled to the intra-cavity optical modesâi through the
input and output coupler mirrorM1 with transmissivity ef-
ficiency γ1. All other losses are modeled as the unwanted
vacuum fieldŝbini , which are coupled to the intra-cavity op-
tical modeŝai through mirrorM2 with the intra-cavity loss
γ2. Through locking the cavity length resonating with the
injected optical modeŝai and the relative phase betweenâi
and the pump field, the output longitudinal modesâouti with
different frequencies (The frequency difference between any
two neighboring modes equals to the free spectrum range of
the resonator.) are entangled each other via concurrent inter-
actions in a second-order nonlinear medium inside an NOPA,
which constitute the multipartite entangled states[21].

In the CFC loop, a control beam splitter (CBS) with tun-
able transmissivityt for the injected signal filed̂cini plays both
roles of a controller and an input-output port. The loss of the
CF loop can be regarded as an unwanted vacuum noiseêini
coupled from the lossy beam splitter (LBS) with the transmis-
sivity l. The weak coherent optical input signal fieldĉini is in-
jected in CFC from CBS and the CF loop is locked through the
PZT2 mounted on the LBS. Then the transmitted field

√
tĉini

and the reflected field
√
1− td̂ini from CBS together serves as

the input field of NOPA (̂aini = d̂outi =
√
tĉini +

√
1− td̂ini ).

The output multipartite entangled optical fieldâouti from the
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NOPA is reflected by LBS and then becomes the incident field
of CBS. The final output field̂couti of the CFC-NOPA sys-
tem includes the transmitted field

√
td̂ini and the reflected field√

1− tĉini . We have

ĉouti =
√
td̂ini −

√
1− tĉini

=
√

t(1− l)âouti +
√
tlêini −

√
1− tĉini , (1)

and

d̂outi =
√
tĉini +

√
1− td̂ini

=
√
tĉini +

√

(1 − t)(1− l)âouti +
√

(1 − t)lêini .(2)

III. OPERATION PRINCIPLE OF NOPA FOR
MULTIPARTITE ENTANGLEMENT GENERATION

According to the multipartite non-separability criterionpro-
posed by P. van Loock and A. Furusawa[29], if the quadra-
ture correlations satisfy the inequality〈∆(X̂i − X̂j)

2〉 +

〈∆(
∑N

i=1(Ŷi))
2〉 < 4 or 〈∆(

∑N
i=1(X̂i))

2〉 + 〈∆(Ŷi −

Ŷj)
2〉 < 4 (i, j = 1, 2, · · · , N ), whereX̂i and Ŷi are the

quadrature amplitude and phase components, these entangled
optical fields can be named as GHZ-like entangled states,
which are a type of the multipartite entangled states. Basedon
the theoretical model in Ref.[21], we discuss the generation
of multipartite entangled optical fields from an NOPA, and
characterize the multipartite entanglement using above crite-
rion. The interaction Hamiltonian of the system in the inter-
action picture is given byHsys = ihk

∑N
i=1

∑N
j>i(â

+
i â

+
j −

âiâj), which corresponds to the NOPA operated at para-
metric amplification. âi is the annihilation operator of an
intra-cavity modei in the NOPA. The nonlinear coupling
efficiency k = βχ is proportional to the pump parameter
β = (ppump/pth)

1/2 (ppump-the pump power,pth-the thresh-
old pump power of NOPA) and the nonlinear coupling coef-
ficient χ of the medium which must simultaneously phase-
match several second-order nonlinearities. In this case, each
pair of the generated subharmonic fields in the NOPA forms
a two mode squeezed state. The round trip time of light in
the cavity is represented byτ . The quantum Langevin motion
equations of the intra-cavity optical fieldsâi are given by

τ
d

dt
â1 = kâ+2 + kâ+3 + · · ·+ kâ+N − (γ1 + γ2)â1 +

√

2γ1â
in
1 +

√

2γ2b̂
in
1 , (3a)

τ
d

dt
â2 = kâ+1 + kâ+3 + · · ·+ kâ+N − (γ1 + γ2)â2 +

√

2γ1â
in
2 +

√

2γ2b̂
in
2 , (3b)

· · ·

τ
d

dt
âN = kâ+1 + kâ+2 ± · · ·+ kâ+N−1 − (γ1 + γ2)âN +

√

2γ1â
in
N +

√

2γ2b̂
in
N . (3N)

The output and the intra-cavity optical fields satisfy the
following boundary condition:âouti =

√
γ1âi − âini . In

the linearized description of fields, the operators can be ex-
pressed by the sum of an average steady state value〈xi〉(〈yi〉)
and a fluctuating componentδx̂i(δŷi), i.e. x̂i = 〈xi〉 + δx̂i

(ŷi = 〈yi〉 + δŷi). Then we implement the Fourier transfor-

mationÔ(Ω) = (1/2)1/2
∫

dtô(t)e−iΩT with the canonical
commutative relation[Ô(Ω), Ô(Ω′)] = δ(Ω − Ω′). The cal-
culated quadrature correlation variances of the output optical
fields originally produced by the NOPA equal to

δX̂out
ai − δX̂out

aj = m1(δX̂
in
ai − δX̂ in

aj ) + n1(δX̂
in
bi − δX̂ in

bj ), (4)

N
∑

i=1

δŶ out
ai = m2

N
∑

i=1

δŶ in
ai + n2

N
∑

i=1

δŶ in
bi , (5)

N
∑

i=1

δX̂out
ai = m3

N
∑

i=1

δX̂ in
ai + n3

N
∑

i=1

δX̂ in
bi , (6)
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δŶ out
ai − δŶ out

aj = m4(δŶ
in
ai − δŶ in

aj ) + n4(δŶ
in
bi − δŶ in

bj ), (7)

wherem1 = (−k + γ1 − γ2 − iωτ)/(k + γ1 + γ2 + iωτ),
n1 = (2

√
γ1γ2)/(k+γ1+γ2+iωτ),m2 = (−(n−1)k+γ1−

γ2−iωτ)/((n−1)k+γ1+γ2+iωτ), n2 = (2
√
γ1γ2)/((n−

1)k+γ1+γ2+iωτ),m3 = ((n−1)k+γ1−γ2−iωτ)/(−(n−
1)k + γ1 + γ2 + iωτ), n3 = (2

√
γ1γ2)/(−(n − 1)k + γ1 +

γ2+ iωτ),m4 = (k+γ1−γ2− iωτ)/(−k+γ1+γ2+ iωτ),
andn4 = (2

√
γ1γ2)/(−k + γ1 + γ2 + iωτ). ω = 2πΩ

is the analysis frequency.̂X in
ai (X̂out

ai ) andŶ in
ai (Ŷ out

ai ) are the
quadrature amplitude and phase of theith input (output) mode
of the NOPA, respectively.

IV. MANIPULATION OF CFC LOOP OF MULTIPARTITE
ENTANGLED OPTICAL FIELDS

When an optical coherent state is injected into the CFC-
NOPA system aŝcini , by solving the equations of the quadra-
ture correlation variances of the originally optical fieldspro-
duced by the NOPA operated at the parametric amplification
[Eqs. (4)-(7)] and using the input-output relations of the CBS
[Eqs. (1) and (2)], we obtain the quantum correlation vari-
ances

〈∆(δX̂i − δX̂j)
2〉+ 〈(∆

N
∑

i=1

δŶi)
2〉

= 2(−n1

√
st+ (m1n1s

√
tr)/(−1 +m1

√
sr))

+2(
√
r + (m1t

√
s)/(−1 +m1

√
sr))

+2(−
√
lt+ (m1

√
slrt)/(−1 +m1

√
sr))

+N(−n2

√
st+ (m2n2s

√
tr)/(−1 +m2

√
sr))

+N(
√
r + (m2t

√
s)/(−1 +m2

√
sr))

+N(−
√
lt+ (m2

√
slrt)/(−1 +m2

√
sr)), (8)

wherer ands are defined asr = 1 − t ands = 1 − l, re-
spectively. Eq. (8) shows that the quantum correlation vari-
ances characterizing the multipartite entanglement of thefinal
output optical fields from the CFC-NOPA system depend on
not only the parameters of NOPA (the construction param-
eters of optical cavity, the pump parameter and the analysis
frequency), but also the transmissivity of the CF controller
and the losses of the feedback loop. It means that the fea-
tures of the multipartite entangled states originally generated
by the NOPA can be controlled by the attached CFC loop.
Since the function expression in Eq. (8) is relatively com-
plex, we will respectively study the dependence of the cor-
relation variances on the changeable parameterst, ω andβ
for a system with given construction parameters by means
of the numerical calculations. In order to provide useful
references for practical system designs, all parameter values
are experimentally reachable. For the simplicity and with-

out losing the generality, we numerically calculate the per-
formance of the CFC-NOPA system for the quadripartite en-
tanglement generation (N = 4). The parameter values used
in the calculation are as following: the input-output couple
efficiencyγ1 is 0.1, the loss of the intra-cavityγ2 is 0.003,
the round trip timeτ of light in the cavity is6.7 ∗ 10−10s,
and the CF loop lossl is 0.01. Firstly, for a given low anal-
ysis frequency(ω = 1 MHz) and a weak pumping strength
(β = 0.15), we investigate the dependence of the quantum
correlation variances〈∆(δX̂i−δX̂j)

2〉+〈(∆∑4
i=1 δŶi)

2〉 on
the transmissivityt of CF controller while other parameters
keep unchanging. According to the theoretical estimate the
quantum correlations of the amplitude and phase quadratures
among the multipartite entangled optical modes originally
produced by the NOPA are better under the lower analysis fre-
quency and the weaker pump[30–32]. For general continuous-
wave pump laser the intensity and phase fluctuations are quite
strong around zero frequency and then reduce gradually. Usu-
ally the fluctuations can achieve the quantum noise limit after
the frequency is higher than1 MHz if the pump laser is fil-
tered by the mode cleaner with a high finesse[33]. For the
pump strength ofβ < 1, the NOPA operates below its oscil-
lation threshold and thus is stable. Considering these experi-
mental conditions, we takeω = 1MHz, andβ = 0.15 in the
example for the numerical calculation. Of course, as a theo-
retical model Eq. (8) can be used for calculating the quantum
correlation variances of the output field of CFC-NOPA sys-
tems with any chosen parameters. From Fig. 2 it can be seen
that the entanglement level of the CFC loop (line3) is higher
or lower than that without the use of CFC (line2) for differ-
ent values oft. For the case oft = 0, the injected coherent
states are totally reflected by CBS and there is no entangled
light produced by the NOPA to be transmitted, thus the cor-
responding correlation variances involve six vacuum noises, i.
e. should be〈∆(δX̂i−δX̂j)

2〉+〈(∆∑4
i=1 δŶi)

2〉 = 6, which
is higher than the limitation of the inseparability criterion for
the quadrature CV entanglement (four vacuum noises)[29]. In
fact, two parts are involved in the final output field and the
field fed back into the NOPA when0 < t < 1. One part
is the multipartite entangled light, which plays the positive
role for the entanglement enhancement. The other part is the
input coherent light and the excess noise resulting from the
CFC loop, which reduces the entanglement. For the case of
t < 0.45, the positive role of the multipartite entangled light
for enhancing entanglement is smaller than the negative influ-
ence of the input coherent light and the excess noises, thus the
correlation variances on line3 are higher than that without us-
ing the CFC loop (line2). After t > 0.45, the positive role
of the coherent feedback surpasses the negative influence, so
the quantum correlations of the final output field (line3) be-
come better than that without the use of CFC (line2). Until
t = 0.8 the effect of the positive role reaches the optimal sit-
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FIG. 2: (Color online) Dependence of the correlation variances
〈∆(δX̂i − δX̂j)

2〉 + 〈(∆
∑

4

i=1
δŶi)

2〉 on the transmissivityt of
the CBS. 1: QNL, 2: NOPA only, 3: CFC-NOPA.

uation, and whent > 0.8 the ratio of the negative influence
of the excess noises increases which results in the correlation
variances raising again. In the range of0.45 < t < 1, the pos-
itive role of the CFC is stronger than the negative influence
of the injected excess noises, so the multipartite entanglement
of the final output fields is enhanced than that originally pro-
duced by the NOPA, and att = 0.8 the optimal entanglement
is obtained. Whent = 1, the CFC-NOPA is operated at the
situation without the feedback and thus line3 and line2 nearly
overlap at this point. Fig. 2 shows that the quantum correla-
tion variances among the amplitude and phase quadratures of
the multipartite entangled state can be controlled simply by
tuning the transitivityt of a CF controller. For a set of given
system parameters, one can find the transmissivity range of
entanglement enhancement and the optimalt by the numeri-
cal calculation based on Eq. (8).

The spectrum distribution of the correlation variances is
shown in Fig. 3, where all system parameters are the same
as that used in Fig. 2 andt = 0.8 is chosen. When the anal-
ysis frequency is lower than10.4 MHz, the entanglement is
enhanced by the CFC (line3 is below line2). At the zero
frequency the entanglement enhancement reaches the maxi-
mum, and when the frequency is higher than10.4 MHz the
entanglement becomes worse. From Fig. 3 we can see that
the frequency dependence of the correlation variances of the
output optical fields from the CFC-NOPA system (line3) is
stronger than that of the entangled light originally produced
by the NOPA (line2). That is because the delay of the light in
the feedback loop will affect the control performance and the
operation bandwidth of the CFC-NOPA system, and the influ-
ence becomes stronger at the region of high frequencies[26].

We also calculate the dependence of the correlation vari-
ances on the pumping strengthβ of the NOPA att = 0.8 and
ω = 1 MHz. Fig. 4 shows that the control action of the
CF controller on the multipartite entangled states produced
by the NOPA depends upon the pump power of the NOPA.
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FIG. 3: (Color online) Dependence of the correlation variances
〈∆(δX̂i − δX̂j)

2〉 + 〈(∆
∑

4

i=1
δŶi)

2〉 on the analyzed frequency
ω. 1: QNL, 2: NOPA only, 3: CFC-NOPA.

In the CFC-NOPA system the part of the multipartite entan-
gled fields fed back into the NOPA enhance the capacity of
generating entanglement via the nonlinear interaction inside
the NOPA, but at the same time the excess losses in the CFC
loop is also fed into the NOPA which reduce the entangle-
ment of the generated quantum states. When the pump power
is increased both the positive and the negative influences are
simultaneously raised. At lower pump power the positive
effect is stronger, thus the entanglement is enhanced by the
CFC loop. But when the pump power is higher (β > 0.25),
the negative effect becomes dominant and the entanglement
is reduced. There is a trade-off between the entanglement
enhancement effect due to the parametric interaction inside
NOPA and the opposite influence induced by the CF loop
losses. For a given system we have to find the range of the
optimal pump powers to achieve the best entanglement en-
hancement (In our case it is about0.125 < β < 0.225).
The similar pumping dependence of single-mode squeezing
in a CFC-NOPA system has been experimentally proved in
Ref.[26].

V. CONCLUSION

In summary, we have theoretically proposed a CFC loop
of multipartite entangled optical fields. The dependenciesof
the correlation variances of the multipartite entangled states
produced by the CFC-NOPA system on the transmissivity of
CFC, the analysis frequency and the pumping strength are
numerically calculated. The calculated results show that the
multipartite entanglement of the output fields from a NOPA
can be controlled by a pure coherent feedback mechanism.
The correlation variances among the amplitude and phase
quadratures of the multipartite entangled fields produced by
a NOPA can be manipulated only by simply tuning the trans-
missivity of a CF controller. For a given NOPA we may
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choose the optimal transmissivityt of the CBS and the pump-
ing strengthβ to achieve the possibly largest entanglement
enhancement. Besides the capacity of the entanglement en-
hancement, the CFC scheme can tune the correlations of the
quantum fluctuations among the submodes of a multipartite
entangled optical fields only by means of simply linearly op-
tical operation, which has potential applications in the future
CV quantum information processing and communication net-
works.
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