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We study the stochastic resonance of quantum discord (“discord resonance”) in coupled quan-
tum systems, and make comparison with the stochastic resonance of entanglement (“entanglement
resonance”). It is found that the discord resonance is much more robust against dephasing noise
and thermal effects than the entanglement resonance. We also show that, unlike the entanglement
resonance, the level of dissipation at which the discord resonance occurs is not sensitive to dephasing
noise. These results suggest that it is easier to detect the discord resonance in actual experiment,
where the dephasing noise and temperature are difficult to control.
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I. INTRODUCTION

The presence of noise is usually regarded as detrimen-
tal to quantum systems, causing rapid destruction of co-
herence and quantum correlations [1]. Thus it is desir-
able to minimize the noise level in the manipulation of
quantum systems. However, it is recently found that
certain amount of noise can actually be beneficial un-
der certain circumstances. For example, an optimal level
of noise can help photosynthetic complexes to achieve
near unity efficiency in the light-harvesting processes [2–
6]. Here we focus on one particularly interesting noise-
assisted phenomenon, the so-called stochastic resonance
where the response of an open system to an external
driving field can exhibit resonance-like behavior on the
noise strength [7, 8]. Recently, it has been shown that
stochastic resonance phenomenon is also present in cor-
related quantum systems in terms of entanglement and
mutual information [9, 10]. However, entanglement is not
the only measure of the quantum correlations. Another
measure is the quantum discord, introduced by Zurek
(see [11, 12]), which captures the non-classical proper-
ties of the quantum correlations. Quantum discord is
believed to be more pervasive than entanglement: there
exists separable states with finite discord. Quantum dis-
cord has generated much interest in recent years [13–20].
One motivation behind this is the discovery that quan-
tum discord can play a role in the quantum speed-up of
deterministic quantum computation with one pure qubit
(DQC1) [21, 22].

Therefore, it is natural to ask whether quantum dis-
cord also exhibits the stochastic resonance behavior as
observed in entanglement. Our findings in this paper
provide an affirmative answer to this question. We show
that the resonance of quantum discord (“discord reso-
nance”) can behave very differently from the resonance
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of entanglement (“entanglement resonance”). The level
of dissipation at which the discord resonance occurs is
not sensitive to the dephasing noise, while that of entan-
glement resonance is highly dependent on the dephasing
noise. At large dephasing noise or high temperature, the
discord resonance occurs even when the entanglement is
strictly zero. In actual experimental setups, it is difficult
to control the dephasing noise and temperature. Thus,
quantum discord might be a better candidate for detec-
tion of the stochastic resonance of quantum correlations.
These results might also be useful in searching for quan-
tum effects in biological processes [23–25].
This article is organized as follows. In Sec. II, we

provide a brief introduction to quantum discord. The
Hamiltonian and decoherence model used are described
in Sec. III. In Sec. IV, we present our results and discus-
sions. Finally, we summarize our work in Sec. V.

II. QUANTUM DISCORD

The total correlations of a bipartite system are mea-
sured by the quantum mutual information [26]

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (1)

where ρA(B) and ρAB are the reduced density matrix of
the subsystem A(B) and the density matrix of the to-
tal system, respectively. S is the von Neumann entropy
defined as S(ρ) = −tr [ ρ log2 ρ ]. Next, the purely classi-
cal correlations are quantified in terms of the maximum
amount of information one can obtain about the subsys-
tem A if we make measurements on the subsystem B.
This can be shown to be [27]

C(ρAB) = max
{Πk

B
}
[S(ρA)− S(ρAB|Πk

B)]. (2)

The conditional entropy of A is S(ρAB|Πk
B) =

∑

k pkS(ρk), where ρk = trB[Π
k
BρABΠ

k
B ]/pk and pk =

tr [Πk
BρABΠ

k
B]. The maximum is taken over the set of
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FIG. 1: Stead state quantum discord (solid lines) and entan-
glement (dashed lines) between the qubits plotted against dis-
sipation rate, γ, for N = 2, J = 0.2ω0, Ω = 0.1ω0 and n̄ = 0.
Both quantum correlations exhibit resonance behaviors. In-
sets are the quantum discord (solid lines) and the entangle-
ment (dahsed lines) between qubit 1 and the environment,
according to Eq. (8). (a) At Γ = 0. (b) At Γ = 0.15ω0, the
discord resonance occurs at when the entanglement is strictly
zero, as pointed by the dotted arrow.

positive operator valued measurements (POVM) on the
subsystem B, {Πk

B}. For two qubits, it is shown that
projective measurement is the measurement that maxi-
mizes the classical correlations [28]. It can be written as
Πk

B = 1 ⊗ |k〉〈k| (k = a, b) where

|a〉 = cos θ|g〉+ eiφ sin θ|e〉; (3)

|b〉 = sin θ|g〉 − eiφ cos θ|e〉.

Finally, the quantum discord is defined as the difference
between the total correlations and the purely classical
correlations

D(ρAB) = I(ρAB)− C(ρAB), (4)

thus capturing the quantum correlations between two
systems.

III. MODEL

We study a chain of N identical coupled qubits, each
of them is independently driven by an external field of
frequency ω and strength Ω. The Hamiltonian of the
system can be written as (we set ~ = 1)
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FIG. 2: Steady state entanglement, E, and discord, D, plot-
ted as a function of dissipation rate, γ, and dephasing noise,
Γ for N = 2, J = 0.2ω0, Ω = 0.1ω0 and n̄ = 0. At a fixed
dissipation rate, the steady state entanglement and discord
decay monotonically as a function of dephasing rate. On
the other hand, the steady state entanglement and discord
exhibit a non-monotonic behavior as a function of the dis-
sipation rate, a signature of stochastic resonance. It is also
observed that the entanglement resonance [thick line in (a)]
occurs at increasing γ as Γ increases, while the discord reso-
nance [thick line in (b)] is less sensitive to Γ: it always occurs
at γ ≈ 0.05ω0 − 0.07ω0.

H(t) = ω0

N
∑

j=1

σ+
j σ

−
j + J

N−1
∑

j=1

(σ+
j σ

−
j+1 + σ−

j σ+
j+1)

+Ω cos(ωt)
N
∑

j=1

σx
j , (5)

where σ+
i = |e〉〈g| is the usual creation operator of the

i-th qubit.
The qubits also subject to local dissipation and de-

phasing noise due to the coupling to the environment.
The evolution of the system is governed by the Linblad
master equation within the usual Born-Markov approxi-
mation [29, 30]

ρ̇(t) =
i

~

[

ρ,H(t)
]

+
Γ

2

N
∑

j=1

[

2σ+
j σ

−
j ρσ

+
j σ

−
j −

{

σ+
j σ

−
j , ρ

}]

+
γ

2

N
∑

j=1

(n̄+ 1)
[

2σ−
j ρσ

+
j −

{

σ+
j σ

−
j , ρ

}]

+
γ

2

N
∑

j=1

n̄
[

2σ+
j ρσ

−
j −

{

σ−
j σ+

j , ρ
}]

, (6)

where Γ and γ are dephasing rate and dissipation rate,
respectively. n̄ = (eω0/kBT − 1)−1 is the average
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FIG. 3: 2D schematic representation of the set of all possible
states [31], enclosed by the outer circle. It contains the set of
separable states (grey area), and non-separable states (white
area). The states with zero discord are connected and has
measure zero; they are represented by the black solid lines,
with ρ = 1/4 at the centre. Pure separable states lie at the
tips of the star array. The steady state starts from the centre,
1/4, and goes to |gg〉〈gg| as dissipation increases from zero to
infinity (denoted by dashed lines a and b). (a) The discord
resonance (DR) occurs at point furthest from the black lines,
whereas the entanglement resonance (ER) occurs at point fur-
thest from the grey area. (b) For large dephasing noise or high
temperature, the state remains in the separable set, while DR
can still occur.

quanta number in the environment. We next move
to the rotating frame under the unitary transforma-

tion U(t) = exp(−iω0t
∑N

j=1 σ
+
j σ

−
j ). Assuming rotat-

ing wave approximation and zero detuning, ω0 = ω,
we have the Hamiltonian in the interaction picture,

HI = ω0

∑N
j=1 σ

+
j σ

−
j + J

∑N−1
j=1 (σ+

j σ
−
j+1 + σ−

j σ+
j+1) +

Ω
2

∑N
j=1 σ

x
j . The other terms in the master equation,

Eq. (6), remain unchanged under the transformation.

IV. RESULTS AND DISCUSSIONS

We first consider the simplest case where N = 2 and
T = 0. The analytical solution to the steady state can
only be obtained in certain limiting cases. At zero dis-
sipation, γ = 0, the steady state is maximally mixed,
ρ(∞) = 1/4, and obviously has zero entanglement and
quantum discord. At the other limit, Γ = 0, the steady
sate solution in the basis {|ee〉, |eg〉, |ge〉, |gg〉} is given by

ρ11 =
Ω4

z
, ρ22 =

aΩ2

z
, ρ33 =

aΩ2

z
, (7)

ρ44 = 1− ρ11 − ρ22 − ρ33,

ρ12 = ρ13 = −i
Ω3γ

z
, ρ14 =

−Ω2γ2 + i2JΩ2γ

z
,

ρ23 =
Ω2γ2

z
, ρ24 = ρ34 = −2JΩγ2 + iaΩγ

z
,

where a = Ω2 + γ2 and z = 4aΩ2 + 4J2γ2 + γ4.
We use the entanglement of formation as the measure

of entanglement [32, 33]. The entanglement and quantum
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FIG. 4: The quantum discord (solid line) and entangle-
ment (dashed line) of the state given in Eq. (9), with ρent =
|Φ+〉〈Φ+|.

discord of the state in Eq. (7) are plotted against dissi-
pation strength in Fig. 1(a). Both the quantum discord
and entanglement exhibit stochastic resonance behavior:
they first increase as dissipation rises, reaching a maxi-
mum at an optimal dissipation level, then decrease mono-
tonically with dissipation. This rather counter-intuitive
phenomenon can be easily understood by a “cooling”
mechanism: The steady state becomes maximally mixed
in the limit of zero dissipation γ → 0, as all the coherence
is lost to the heat bath. As dissipation increases, the off-
diagonal terms become non-zero, and the coherence of
the system is restored, which is essential for nonzero en-
tanglement and discord. This is due to that fact that
the zero-temperature bath “cools” the joint system to-
wards the individual ground state, |gg〉〈gg|. The coher-
ence is then restored by the application of the continuous
coherent excitation. The correlations can then be re-
established by the qubit-qubit interaction. The balance
between the dissipation and the continuous coherent ex-
citation provides the steady state correlations between
the qubits. However, if the dissipation is too strong,
the system approaches the separable ground state, con-
sequently both the entanglement and discord decrease to
zero asymptotically.

Though both quantum correlations exhibit stochastic
resonance behavior, the discord resonance differs signif-
icantly from the entanglement resonance. Firstly, dis-
cord is always positive for any finite dissipation, while
the state remains separable below a certain threshold
of dissipation. This situation is similar to the Werner
state, ρw = (1− p)1

4 + p |Φ+〉〈Φ+| where |Φ+〉 = (|ee〉+
|gg〉)/

√
2. The discord of the Werner state is always

positive for p > 0 while the state remains separable for
p < 1/3. It is observed that the entanglement resonance
occurs at increasing dissipation with increasing dephas-
ing noise [see Fig. 2 (a)], while the discord resonance is
not sensitive to dephasing noise: it occurs at about the
same level of dissipation, regardless of dephasing noise
[see Fig. 2 (b)]. It is also found that the discord reso-
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FIG. 5: The peak values of discord resonance (solid line)
and entanglement resonance (dashed line) versus the average
quanta number (temperature) at N = 2, γ = 0.1ω0, Γ = 0,
J = 0.2ω0 and Ω = 0.1ω0. The entanglement resonance van-
ishes at finite temperature, while the discord resonance per-
sists even at high temperature, with its peak values decrease
asymptotically.

nance always occurs at smaller dissipation than the en-
tanglement resonance. If the dephasing noise is strong
enough, the discord resonance even occurs while the en-
tanglement is strictly zero, as seen in Fig. 1(b). In fact,
entanglement remains zero for all values of dissipation
when the dephasing noise is too strong (not shown), and
yet discord resonance can still be observed. The above
situations can be vividly illustrated in the pictorial rep-
resentation of the set of states in Fig. 3.
At zero temperature, the qubits and the environment

form a tripartite pure state. Therefore, the entanglement
and quantum discord between qubit 1 and the environ-
ment can be respectively written as [16, 34]

E(ρ1,E) = D(ρ1,2)− S(ρ1,E |ρE); (8)

D(ρ1,E) = E(ρ1,2)− S(ρ1,E|ρE),

where E(ρ1,2) and D(ρ1,2) are the entanglement and
quantum discord between the qubits, respectively.
S(ρ1,E |ρE) = S(ρ1,E)− S(ρE) is the conditional entropy
between qubit 1 and the environment. Since the total
system is in a pure state, we have S(ρ1,E) = S(ρ2) and
S(ρE) = S(ρ1,2). The above quantities are plotted in
the insets of Fig. (1). Both quantities decay monotoni-
cally as a function of dissipation, γ. At γ → 0, qubit 1
is maximally entangled with the environment, and thus
its reduced density matrix is maximally mixed. As γ
increases, the entanglement decreases as the qubit ap-
proaches the ground state.
To gain more insights, we use a simple state that is

amenable to analytic analysis. The steady state resem-
bles the Werner state at small dissipation and approaches
the ground state at large dissipation. This observation
motivates us to propose the following state

ρ = (1− p1)
[

(1− p1)
1

4
+ p1 ρent

]

+ p1|gg〉〈gg|, (9)
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FIG. 6: The quantum discord (solid lines) and entanglement
(dashed lines) between qubit 1 and qubit 2 in spin chains of
(a) four, (b) five and (c) six qubits for Γ = 0, J = 0.2ω0,
Ω = 0.1ω0 and n̄ = 0.

where 0 ≤ p1 ≤ 1 and ρent is an entangled state. The
parameter p1 captures the effect of the dissipation. p1 =
0 corresponds to γ = 0 where the state is maximally
mixed. At the limit of p1 = 1, the system is in the
ground state, corresponding to γ → ∞. We first choose
the entangled state to be the Bell state, ρent = |Φ+〉〈Φ+|.
The entanglement and discord of this state as a function
of p1 are plotted in Fig. 4. The resonance behavior is
similar to what is observed in our model. The discord
resonance occurs at p1 = 0.5, where the values of the
off-diagonal terms are maximal. However, the maximum
of the entanglements is at a larger value of p1 = 2/3.
This choice of entangled state, ρent, makes the maximum
values of entanglement and discord comparable.
If a non-maximally entangled state is chosen, the max-

imum value of entanglement is usually lower than that
of discord. One choice is again the Werner state (with
p → 1 − p), ρent = p2

1

4 + (1 − p2)|Φ+〉〈Φ+|. The pa-
rameter p2 can be regarded as the dephasing noise, with
p2 = 0(1) corresponds to Γ = 0(∞). If one uses neg-
ativity as a measure of entanglement [33], it is found
that the entanglement is maximum at p∗1 = 4−3p2

6(1−p2)
, for

p2 < 2/3; the state is separable for p2 ≥ 2/3. It has been
checked numerically that the location of the maximum is
the same even if one uses entanglement of formation as
the entanglement measure. From the functional form, it
can be seen that the entanglement peaks at larger p1 as
p2 increases, having the same effect as dephasing noise.
Numerical results show that the maximum of discord re-
mains at p1 = 0.5 throughout.
At finite temperature, T 6= 0, both steady state discord

and entanglement drop since the cooling mechanism is
less effective. The peak values of discord resonance and
entanglement resonance as a function of average quanta
number (temperature) are plotted in Fig. 5. While the
entanglement resonance disappears at finite temperature,
the discord resonance persists even at high temperature,
with its maximum value decreases asymptotically. This
shows that discord resonance is more robust against ther-
mal effects.
Finally, we generalize our results to spin chains of 4,
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5, and 6 qubits. The results are plotted in Fig. 6. It is
observed that the behavior of the discord resonance and
entanglement resonance is similar to what is observed in
a two-qubit chain. Thus, our results should also hold
for spin chains of arbitrary length and possibly coupled
qubits of any configuration.

V. CONCLUSION

To summarize, we study the stochastic resonance of
quantum discord and make comparison with that of en-
tanglement. It is found that that, unlike the entangle-
ment resonance, the level of dissipation at which the dis-
cord resonance occurs is not sensitive to dephasing noise.
It is also much more robust against dephasing noise and
thermal effects than the entanglement resonance. There-
fore, it should be easier to detect discord resonance in
experiment, where the dephasing noise and temperature
might be difficult to control. Our results might find ap-
plications in the search for quantum effects in biological
processes, where the molecules might be too “warm and
wet” for steady state entanglement to survive [23–25].
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