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A Model for Non-Cancellation of Quantum Electric Field Fluctuations

Victor Parkinson∗ and L. H. Ford†

Institute of Cosmology, Department of Physics and Astronomy
Tufts University, Medford, MA 02155, USA

A localized charged particle oscillating near a reflecting boundary is considered as a model for
non-cancellation of vacuum fluctuations. Although the mean velocity of the particle is sinusoidal,
the velocity variance produced by vacuum fluctuations can either grow or decrease linearly in time,
depending upon the product of the oscillation frequency and the distance to the boundary. This
amounts to heating or cooling, arising from non-cancellation of electric field fluctuations, which are
otherwise anticorrelated in time. Similar non-cancellations arise in quantum field effects in time-
dependent curved spacetimes. We give some estimates of the magnitude of the effect, and discuss
its potential observability. We also compare the effects of vacuum fluctuations with the shot noise
due to emission of a finite number of photons. We find that the two effects can be comparable in
magnitude, but have distinct characteristics, and hence could be distinguished in an experiment.

PACS numbers: 42.50.Lc, 05.40.Jc, 12.20.Ds, 04.62.+v

I. INTRODUCTION

Consider a localized charged particle coupled to quantum electromagnetic field fluctuations in the vacuum state.
We will treat it as a classical particle, but more generally it can be viewed as a quantum particle in a wavepacket state
sharply peaked in space. Because the vacuum is the state of lowest energy of the quantum field, the particle cannot,
on average, acquire energy from the electromagnetic field. This does not prevent energy fluctuations which are within
the limits set by the energy-time uncertainty principle. The particle can acquire additional energy from an electric
field fluctuation, but the energy must be surrendered on a timescale inversely proportional to the magnitude of the
energy. Energy conservation is enforced by temporally anticorrelated electric field fluctuations, which are guaranteed
to take back the energy within the allowed time. Thus on the average, neither the particle nor the quantum field
gains energy.

This holds in any static situation, including one where reflecting boundaries are present. Although classical image
charge effects can be present, no net energy may be extracted from the vacuum. A model with a charge maintained
at fixed mean distance from a plane mirror was treated in Ref. [1]. Switching on the effect of the mirror can cause
the particle’s mean squared velocity to either increase or decrease, but after transients have died away, it approaches
a constant. This need not be the case in a time-dependent situation, which will be the topic of this paper. The
cause of the time-dependence may be a source of energy, so it is now possible for the particle’s energy to either grow
or decrease in time. However, one may also view the time-dependence as upsetting the anticorrelated fluctuations
which are present in a static situation. In the static case, the anticorrelated fluctuation takes exactly the amount
of energy obtained by the particle in a previous fluctuation. The time-dependence may either enhance or suppress
the magnitude of the the second fluctuation, resulting in either a decrease or increase, respectively, of the particle’s
energy. We will see both possibilities illustrated in the model discussed in Sect. II.

Examples of non-cancellation of field fluctuations arise in cosmology. One is Brownian motion of charged particles
in an expanding universe [2]. Other examples were discussed in Refs. [3–5], where it was argued that quantum stress
tensor fluctuations during inflation can lead to density and gravity wave perturbations which depend upon the total
expansion during inflation. In the present paper, we consider a simple flat space model which is of interest both in
its own right, and as an analog model for effects in curved spacetime. Lorentz-Heaviside units with c = ~ = 1 will be
used.
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II. THE MODEL

A. Formulation and Calculations

Our model consists of a particle of mass m and electric charge q undergoing bounded, non-relativistic motion in a
direction normal to a perfectly reflecting plane mirror. We take this to be the z-direction, and write

z(t) = d+Af(t) , (1)

where d is the mean distance to the mirror, A > 0 is the amplitude of the motion, and f(t) is a dimensionless function

which we later take to be sinusoidal. We require z(t) > 0 for all t and |ż(t)| = A |ḟ(t)| � 1 We assume that the
components of the particle’s velocity satisfy a Langevin equation,

v̇i =
q

m
Ei(x, t) , (2)

where x = x(t) is the spatial location of the particle at time t. Here E is the total electric field, including both
a classical applied field, including possible image charge effects, and the quantized electric field. This is the usual
equation of motion for a non-relativistic charged particle when magnetic forces are neglected. Our key assumption is
that it may be used in the presence of a fluctuating electric field. For now we ignore dissipation effects, which have
been discussed in Refs. [6, 7]. We will treat dissipation by emitted radiation in Sect. III A. Note that an alternative
to moving the charge with the mirror fixed is to move the mirror, or to use a charge moving at constant speed near
a corrugated mirror. The latter strategy was first used by Smith and Purcell [8] to create radiation, and is the basis
of the free electron laser.

With the initial condition vi(t0) = 0, we may integrate the Langevin equation and then take expectation values
in the electromagnetic field vacuum state to write the variance in vi as a double time integral of the electric field
correlation function:

〈∆v2i (t)〉 =
q2

m2

∫ t

t0

dt1

∫ t

t0

dt2〈[〈Ei(x1, t1) Ei(x2, t2)〉 − 〈Ei(x1, t1)〉 〈Ei(x2, t2)〉] . (3)

Here x1 = x(t1) and x2 = x(t2), the spatial locations of the particle at times t1 and t2, respectively. Any classical
part to the electric field will cancel in the correlation function. For now, we focus on the quantum part of the electric
field, for which 〈Ei(x, t)〉 = 0. We are interested only in the effect of the boundary, as the empty space correlation
function will not produce any growing terms in 〈∆v2i (t)〉. The quantum electric field correlation function may be
written as a sum of an empty space part and a boundary correction. We drop the former and write

〈∆v2i 〉 =
q2

m2

∫ t

t0

dt1

∫ t

t0

dt2〈Ei(x1, t1)Ei(x2, t2)〉b , (4)

where the subscript b indicates the boundary correction to the two-point function. These corrections may be found
by the method of images, and are [9]

〈Ex(x1, t1)Ex(x2, t2)〉b = − τ2 + (z1 + z2)2

π2[τ2 − (z1 + z2)2]3
(5)

for a transverse direction, and

〈Ez(x1, t1)Ez(x2, t2)〉b =
1

π2[τ2 − (z1 + z2)2]2
(6)

for the longitudinal direction, where τ = t1− t2, and z1 = z(t1), ect. Here we assume that the particle does not move
far compared to the distance to the mirror, and have equated the coordinates in the transverse directions, x1 = x2
and y1 = y2. Note that, for example, 〈vx vz〉b = 0, so there will be no correlation between the random motion in the
transverse and longitudinal directions.

Next we assume that |Af(t)| � d, and Taylor expand the two-point functions to second order in A. The integrand
for the longitudinal variance becomes

1

(τ2 − {2d+A[f(t1) + f(t2)]}2)2
≈

1

(τ2 − 4d2)2
+

8d

(τ2 − 4d2)3
A[f(t1) + f(t2)] +

2(τ2 + 20d2)

(τ2 − 4d2)4
A2[f(t1) + f(t2)]2 . (7)



3

We are seeking contributions to 〈∆v2i 〉 which grow in time. The zeroth order term describes the case of a stationary
charge, which was treated in Ref. [1], and gives a constant contribution. The first order term yields a purely oscillatory
function when f(t) is sinusoidal. Thus we omit both of these terms and focus on the second order term. Note that
the τ -dependent part of this term may be written as a total derivative

Fz(τ) ≡ 2(τ2 + 20d2)

(τ2 − 4d2)4
≡ d4

dτ4
G(τ) =

∂2

∂t21

∂2

∂t22
G(τ) . (8)

The function G(τ) may be expressed in terms of logarithmic functions, but we will not need its explicit form, beyond
the fact that it has only a logarithmic singularity at τ = 0.

Now we assume that f(t) and its first three derivatives vanish in the past and future. This allows us to integrate
over all t1 and t2, and to perform integrations by parts with no boundary terms. Thus we may write∫ ∞

−∞
dt1dt2 Fz(τ) [f2(t1) + f2(t2)] =

∫ ∞
−∞

dt1dt2G(τ)
∂2

∂t21

∂2

∂t22
[f2(t1) + f2(t2)] = 0 . (9)

This implies that only the cross term in the last term in Eq. (7) can give a nonzero contribution. Now we may write

〈∆v2z〉 =
2

π2

q2

m2
A2

∫ ∞
−∞

∫ ∞
−∞

dt1 dt2 Fz(τ) f(t1) f(t2) . (10)

Next we adopt a specific form for f(t1), which is f(t1) = sin(ωt1) for 0 . t1 . t and f(t1) = 0 for t1 . 0 and t1 & t.
The approximate signs indicate that f should fall smoothly to zero at the end points of the interval. This describes
a charge which oscillates sinusoidally at angular frequency ω for a time t. This sinusoidal motion could be driven by
a classical electric field of the form Ecl

z (t) = −E0 sin(ωt), in which case

A =
q E0

mω2
. (11)

The integration in Eq. (10) is effectively over a square of side t. Next, we change integration variables to τ and
u = t1 + t2. Because Fz(τ) falls to zero rapidly if |τ | � d, and because we assume t � d, the integration on τ may
be taken over an infinite range. However, the u integration is restricted to a finite interval:

〈∆v2z〉 =
1

2π2

q2

m2
A2

∫ 2t

0

du

∫ ∞
−∞

dτFz(τ)[cos(ωτ)− cos(ωu)] . (12)

The integral of the cos(ωu) term will generate an entirely oscillatory contribution, which may be ignored compared
to the linearly growing term, so we may write

〈∆v2z〉 ≈
2

π2

q2

m2
A2 t

[∫ ∞
−∞

(τ2 + 20d2)

(τ2 − 4d2)4
cos(ωτ) dτ

]
. (13)

At this point, it is useful to note that τ should have a small, negative imaginary part in Eqs. (5) and (6). This
arises because these two-point functions are expressible as integrals of the form∫ ∞

0

dω ω3 e−iωτ , (14)

which are absolutely convergent if Im(τ) < 0. We can implement this condition by replacing τ by τ − iε in Eq. (13),
where ε is a small positive real number. We can write the denominator in the integrand as

[(τ − iε)2 − 4d2]4 = (τ − iε+ 2d)4(τ − iε− 2d)4 , (15)

revealing that there are two fourth-order poles in the upper half-plane are at τ = ±2d+ iε. Next we write cos(ωτ) in
terms of complex exponentials. The τ integration is along the real axis, so the e−iωτ term gives no contribution when
the contour is closed in the lower half-plane. The eiωτ term yields the residues of the two poles when the contour is
closed in the upper half-plane. The sums of the residues is a real function.
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B. Key Results

The result of the evaluations of the longitudinal velocity variance, after using Eq. (11), is

〈∆v2z〉 =
q4E2

0

16πm4 d
Rz t , (16)

where

Rz =
1

2ξ4
[(3− 5ξ2) sin(2ξ) + 2ξ (ξ2 − 3) cos(2ξ)] , (17)

and ξ = ω d.
The same mathematical technique holds for the transverse direction; only the precise form of the integrand changes.

Let Fz → Fx, where

Fx(τ) = −4(40d4 + 34d2τ2 + τ4)

[(τ − iε)2 − 4d2]5
. (18)

In this case, there are two fifth-order poles in the upper half-plane, but otherwise the evaluation procedure is the
same. Now the velocity variance in the x-direction, which is also the mean squared velocity in this direction, is found
to be

〈∆v2x〉 = 〈v2x〉 =
q4E2

0

16πm4 d
Rx t , (19)

where

Rx =
ξ2 − 1

4ξ4
[(4ξ2 − 3) sin(2ξ) + 6ξ cos(2ξ)] , (20)

Note that the Ri, which are dimensionless, are proportional to the rate of change of the corresponding velocity
variance:

Ri(ξ) =
16πm4d

q4E2
0

d〈∆v2i 〉
dt

. (21)

These quantities are illustrated in Fig. 1.
Of significant interest here is that for both the longitudinal and transverse components, the coefficient of the time

dependence of 〈∆v2i 〉 can be either positive or negative, depending on the frequency of the oscillation and distance
to the mirror. These results can be interpreted in terms of non-cancellation of previously anticorrelated electric field
fluctuations. When there is linear growth, the fluctuations are adding energy to the particle on average. Similarly,
a linear decrease signifies that they are removing energy, which could be described as a “cooling mode” . The latter
effect can only go so far, and at some point our approximation of localized particles would break down.

It is also of interest to examine the low and high frequency limits of the above results. At low frequency, ξ � 1, we
have

〈∆v2x〉 ∼ −2〈∆v2z〉 ∼
q4E2

0 ξ

30πm4 d
t , (22)

and at high frequency, ξ � 1,

〈∆v2x〉 ∼
q4E2

0 t

16πm4 d
sin(2ξ) , 〈∆v2z〉 ∼

q4E2
0 t

16πm4 d ξ
cos(2ξ) . (23)

Note that the effect tends to be larger in a transverse direction than in the longitudinal direction, especially at high
frequencies.

Next we wish to make some estimates of the magnitude of the heating or cooling effect. We do this by defining a
change in effective temperature for the i-direction, ∆Ti, by

1

2
m〈∆v2i 〉 =

1

2
kB∆Ti , (24)
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FIG. 1: (Color online) This graph shows the dimensionless quantities Rz and Rx, which are proportional to the rates of change
of velocity variance in the longitudinal direction and a transverse direction, respectively. Here ξ = ω d.

where kB is Boltzmann’s constant. Strictly speaking, this is not a real temperature, since it is not isotropic, but it is
a useful measure of the size of the effect. From either of Eqs. (16) or (19), we find

∆Ti =
q4E2

0

16πkBm3 d
Ri t . (25)

This may be expressed as

∆Ti ≈ 10−8K

(
I

1W/cm2

)(
1µm

d

)(
t

1 s

)
Ri , (26)

where we have replaced E2
0/2 by I, the power per unit area in a plane electromagnetic wave with peak electric field

E0. We have also set q = e, the electronic charge.
Our approximation of a perfectly reflecting plate should hold both for modes whose wavelength is of order d and

at angular frequencies of order ω. Note that ξ = 2πd/λ, where λ is the wavelength of the driving field. From Fig. 1,
we see that Rz reaches its maximum value of about 0.5 at ξ ≈ 2.5 and Rx first reaches its maximum of about 1.0 at
ξ ≈ 4. Both of these correspond to λ > d. If d & λP , the plasma wavelength of the metal in the plate which can be
in the range of 0.1µm, then the perfect reflectivity assumption should be valid. Ultimately, whether this effect can be
measured in a realistic experiment depends upon the sensitivity of temperature measurements, the power intensity I
of the driving field which can be used, and the time t which can be achieved. On the latter point, it is possible that
planar Penning traps will be able to achieve very long coherence times with single electrons [10].

As noted earlier, 〈∆v2x〉 = 〈v2x〉 because the mean transverse velocity vanishes, 〈vx〉 = 0. Thus the increased drift in
the transverse directions when 〈v2x〉 > 0 is a signature of this effect. When 〈v2x〉 < 0 due to the shift in electromagnetic
vacuum fluctuations, then we need to interpret the effect as a reduction in mean squared transverse velocity, with a
positive contribution coming from other effects, such as quantum uncertainty in speed, classical thermal effects, or
shot noise (to be discussed in Sect. III B). This reduction is closely related to the phenomenon of negative energy
density in quantum field theory, whereby it is possible to reduce to local energy density below the vacuum level with
either boundaries or quantum coherence effects [11].

In the longitudinal direction, there is a nonzero mean velocity given by the response to the classical driving force.
The time averaged square of this velocity is

〈v2z〉c =
1

2

(
qE0

mω

)2

=
1

2
(Aω)2 . (27)

It is of interest to compare this quantity with the quantum variance given by Eq. (16), and write

〈∆v2z〉
〈v2z〉c

=
q2ξ2Rz t

8πm2d3
= 0.16ξ2Rz

(
1µm

d

)3(
t

1 s

)
. (28)
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Given that we expect ξ ∼ Rz ∼ O(1), it is possible for the random motion produced by electric field fluctuations to
approach a significant fraction of the classical motion.

So far, we have treated the charges as classical point particles, but the same conclusions about changes in 〈∆v2i 〉
should hold for quantum particles if they are localized in space on scales small compared to d, the distance to the
mirror. Ehrenfest’s theorem tells us that classical equation of motion hold, on average, in quantum mechanics. We are
concerned here with changes in the variance of the particles’ momentum, which follow from momentum conservation
considerations.

III. RADIATION AND SHOT NOISE

A. Radiated Power

In this subsection, we will address the dissipation effect due to emitted electromagnetic radiation. First, we
determine the average power radiated by our oscillating charge. It acts as an electric dipole, and so we may use the
far-zone field formulas, with the method of images to obtain the field components. (This problem has been extensively
studied in the literature. See, for example, Ref. [12] for further references and a detailed treatment of the near-zone
fields.) What follows are the non-zero field components at a point of observation P located in the x− z plane, where
r1 is the distance from P to the real dipole, and r2 the distance from P to the image dipole. We have assumed that
P is far enough away that both r1 and r2 have approximately the same polar angle θ. First, the z-component:

Ez =
sin2 θ

4π
pe ω

2

(
eiωr1

r1
+
eωr2

r2

)
(29)

where pe is the peak value of the oscillating electric dipole moment and ω is the frequency. From here, we make
further approximations: given a distance 2d separating the dipoles, we can let r1 ≈ r + d cos θ and r2 ≈ r − d cos θ.
Further, since we are assuming d� r, we approximate r1 ≈ r2 ≈ r in the denominators. The z-component is then

Ez =
pe ω

2

2π

eiωr

r
sin2 θ cos(ωd cos θ) (30)

Similarly, for the other non-zero field components, we have:

Ex = −pe ω
2

4π

eiωr

r
sin θ cos θ cos(ωd cos θ) , (31)

and

Hy = −pe ω
2

2π

eiωr

r
sin θ cos(ωd cos θ) (32)

The next step is to obtain P (θ), the power radiated per unit solid angle in the direction of a unit vector n =
sin θ x̂ + cos θ ẑ. From the Poynting vector, we find

P (θ) = r2 n · (E×H∗) = r2 (sin θ x̂ + cos θ ẑ) · (−EzH∗y x̂ + ExH
∗
y ẑ)

=
p2e ω

4

8π2
[sin4 θ cos2(ωd cos θ) + sin2 θ cos2 θ cos2(ωd cos θ)]

=
p2e ω

4

8π2
[sin2 θ cos2(ωd cos θ)] . (33)

We next integrate P (θ) to obtain the total power radiated:

PT =

∫ 2π

0

∫ π/2

0

P (θ)dΩ . (34)

Let u = cos θ and use pe = qA and ξ = ω d to write

PT =
p2e ω

2

4π

∫ 1

0

(1− u2) cos2(ξu)du =
p2e ω

2

96π

{
8 +

3

ξ3
[−2ξ cos(2ξ) + sin(2ξ)]

}
=
q2A2ω4

12π
ST , (35)
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where

ST = 1 +
3

8ξ3
[−2ξ cos(2ξ) + sin(2ξ)] . (36)

This gives us PT , the energy radiated per unit time.
We can write the energy radiated per oscillation cycle, Ec, as

Ec =
2πPt
ω

=
1

6
q2A2ω3ST . (37)

The ratio of this quantity to the particle’s average kinetic energy is

Ec
〈KE〉

=
q2A2ω3ST

3m〈v2〉
=

2q2A2ω3ST
3mA2ω2

(38)

Ec
〈KE〉

=
2q2ω

3m
ST . (39)

The function ST is of order one when ξ is of order one. Then, inserting the charge and mass values for an electron,
as well as our typical frequency value of 1014Hz, the estimate comes out to

Ec
〈KE〉

≈ 8× 10−9 (40)

Thus, the electron radiates only a few parts per billion of its own kinetic energy per cycle. The small value of this
ratio shows that the electron with our driving field is a weakly damped driven oscillator that needs only minimal
energy restoration for preservation. The emitted radiation is the primary irreducible source of dissipation. This
estimate indicates that it is reasonable to neglect its dissipative effects on the motion of the paricle.

B. Shot Noise from Photon Emission

However, there is another effect arising from the emitted radiation to be considered. Because the power radiated by
the particle consists of discrete photons, there will be a statistical uncertainty in the momentum lost by the particle.
This will lead to an additional contribution to 〈∆v2〉, the velocity variance of the particle. Any experiment which
seeks to measure the effects of vacuum fluctuations on the variance, Eqs. (16) and (19), will have to contend with this
shot noise as a background. Let Pi be the average power radiated by the particle in direction i. Then in time t, an
energy and magnitude of momentum of pi = Pi t will be radiated in this direction, corresponding to a mean number
of photons of Ni = Pi t/ω. The statistical uncertainty in this number is

√
Ni, assuming that the emission of different

photons are uncorrelated events. This leads to an uncertainty in the i-component of the particle’s momentum of order

∆pi = ω
√
Ni =

√
Piω t , (41)

and a variance in the velocity in direction i of

∆v2si =
Piω t

m2
, (42)

where the “s”-subscript refers to shot noise.
Now we find the total power radiated in the z-direction. This quantity is found by projecting onto the z-axis, and

integrating over a hemisphere:

Pz = r2
∫ 2π

0

∫ π/2

0

P (θ) cos θ dΩ = 2πr2
∫ π/2

0

P (θ) cos θ d(cos θ)

=
p2eω

4

4π

∫ 1

0

u(1− u2) cos2(ξu) du , (43)

where u = cos θ, as before. The result is

Pz =
1

64π

p2e
d4

[−3− 2ξ2 + (3− 4ξ2) cos(2ξ) + 2ξ(ξ3 + 3 sin(2ξ))] . (44)
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FIG. 2: (Color Online) The relative magnitudes of velocity variance in the z-direction with only shot noise, Sz, and with both
shot noise and quantum electric field fluctuations, Sz + 4Rz.

Next, introduce substitutions for the dipole moment as follows:

p2e = q2A2 = q2
(
qE0

mω2

)2

. (45)

We now have

Pz =
q4E2

0

64πm2

Sz
ξ

(46)

where,

Sz
ξ

=
1

ξ4
[−3− 2ξ2 + (3− 4ξ2) cos(2ξ) + 2ξ(ξ3 + 3 sin(2ξ))] . (47)

Consequently the mean square velocity in the z-direction from shot noise is

∆v2sz =
q4E2

0Sz
64πm4d

t . (48)

Now compare this effect to that of the electric field fluctuations, using Eq. (16) to write

〈∆v2z〉
∆v2sz

=
4Rz
Sz

. (49)

Figure 2 compares these effects, showing the relative magnitudes of what would be seen without and with quantum
electric field fluctuations, as a function of ξ.

We can make a similar calculation for the power radiated in the x-direction, and find

Px = r2
∫ 2π

0

∫ π/2

0

P (θ) sin θ dΩ =
3

128

q4E2
0

m2

Sx
ξ
. (50)

Here

Sx = ξ

[
2
J2(2ξ)

ξ2
+ 1

]
, (51)

and J2 is a Bessel function of the first kind. We find the x-direction velocity variance to be

∆v2sx =
3

128

q4E2
0

m4d
Sxt . (52)
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FIG. 3: (Color Online) The relative magnitudes of velocity variance in the x-direction with only shot noise, Sx, and with both
shot noise and quantum electric field fluctuations.

The ratio of the effect of electric field fluctuations to that of shot noise for the transverse direction is

〈∆v2x〉
∆v2sx

=
8Rx
3πSx

. (53)

The same graphical comparison as for the z-direction leads to Fig. 3. We see that the effects of quantum electric field
fluctuations and of shot noise are comparable in order of magnitude when ξ is of order one. However, the sum of the
two effects always seems to lead to a positive velocity variance. In the limit that ξ � 1, we find

〈∆v2z〉
∆v2sz

∼ 2
cos(2ξ)

ξ2
, (54)

and

〈∆v2x〉
∆v2sx

∼ 8 sin(2ξ)

3πξ
. (55)

Thus, in the limit of high oscillation frequency or large distance to the mirror, the shot noise effect dominates.

IV. SUMMARY

In summary, we have presented a model in which charges, such as electrons, moving in the quantum electromagnetic
vacuum near a mirror may increase or decrease their velocity variance. The ultimate energy source is the driving
field, but the mechanism can be viewed as non-cancellation of anticorrelated electric field fluctuations. The effect
is a form of squeezing of the particle’s velocity uncertainty by the electromagnetic vacuum fluctuations. The most
striking aspect of this effect is that the mean squared velocity can decrease, corresponding to an effective cooling of
the charges. Although the effect is normally small, it might be observable.

In our model, we have assumed that the charges move and the mirror remains stationary. However, for non-
relativistic motion, one would obtain the same result if the opposite were true. A rapidly oscillating mirror is more
difficult to achieve, although rapid electrical switching of the reflectivity of a mirror might be possible, and has been
explored in the context of the dynamical Casimir effect, the quantum emission of photons by a moving mirror [13, 14].
This effect seems to have been recently observed in the context of superconducting circuits [15]. Although the effect
discussed in the present paper involves exchange of kinetic energy between charges and a quantum field in the presence
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of a boundary, rather than quantum creation of photons, it can be viewed as a variant of the dynamical Casimir effect.
In the latter case, the kinetic energy of the boundary is converted into photons. In the model of this paper, it is
converted into random motion of a charged particle, but both are effects in quantum field theory.

An alternative to switching of a mirror is the use of charges moving near a corrugated mirror, as in the Smith-Purcell
effect [8]. In this configuration, the effect studied here should also arise.

We compared the effects of electromagnetic vacuum fluctuations with shot noise due to emission of a finite number
of photons. The two effects can be of the same order of magnitude, but have distinct signatures, so it should be
possible to distinguish them experimentally.

The effect studied here is also of interest as an analog model for quantum effects in cosmology. A curved background
spacetime can also cause non-cancellation of otherwise anticorrelated fluctuations. Thus the effect discussed here bears
some relationship the effects studied in Refs. [2–5].

Acknowledgments

We would like to thank Jim Babb, Jen-Tsung Hsiang, Akbar Salam, and Roger Tobin for useful discussions. This
research was supported in part by the US National Science Foundation under Grant No. PHY-0855360.



11

[1] H. Yu and L.H. Ford, Phys. Rev. D 70, 065009 (2004).
[2] C.H.G. Bessa, V.B. Bezerra and L.H. Ford, J. Math. Phys. 50, 062501 (2009).
[3] C.-H. Wu, K.-W. Ng, and L.H. Ford, Phys. Rev. D 75, 103502 (2007), arXiv:gr-qc/0608002.
[4] L.H. Ford, S.-P. Miao, K.-W. Ng, R.P. Woodard, and C.-H. Wu, Phys. Rev. D 82, 043501 (2010), arXiv:1005.4530.
[5] C.-H. Wu, J.-T. Hsiang, L. H. Ford, and K.-W. Ng, Phys. Rev. D 84, 103515 (2011), arXiv:1105.1155.
[6] J.T. Hsiang and D.S. Lee, Phys. Rev. D 73, 065022 (2006).
[7] T.H. Wu, J.-T.Hsiang and D.-S.Lee, AIP Conf. Proc. 1059, 175 (2008).
[8] S.J. Smith and E.M. Purcell, Phys. Rev. 92, 1069 (1953).
[9] L.S. Brown and G.J. Maclay, Phys. Rev. D 184, (1969) 1272.

[10] J. Goldman and G. Gabrielse, Phys. Rev. A 81, 052335 (2010).
[11] See, for example, L.H. Ford, Int. J. Mod. Phys A 25, 2355 (2010), arXiv:0911.3597.
[12] X. Li and H.F. Arnoldus, Phys. Rev. A 81, 053844 (2010).
[13] S.A. Fulling and P.C.W. Davies, Proc. R. Soc. London A 348, 393 (1976).
[14] L.H. Ford and A. Vilenkin, Phys. Rev. D 25, 2569 (1982).
[15] C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, and P. Delsing, arXiv:1105.4714.


