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We solve the zero-temperature Unitary Fermi Gas problem by incorporating a BCS importance
function into the Auxiliary-field quantum Monte Carlo method. We demonstrate that this method
does not suffer from a sign problem, and that it increases the efficiency of standard techniques
by many orders of magnitude for strongly-paired fermions. We calculate the ground-state energies
exactly for unpolarized systems with up to 66 particles on lattices of up to 273 sites, obtaining an
accurate result for the universal parameter ξ. We also obtain results for interactions with different
effective ranges, and find that the energy is consistent with a universal linear dependence on the
product of the Fermi momentum and the effective range. This new method will have many appli-
cations in superfluid cold atom systems and in both electronic and nuclear structures where pairing
is important.

The study of strongly interacting Fermi systems is one
of the central themes and major challenges in physics.
Superfluidity in unpolarized cold atomic Fermi gases,
which has been demonstrated both experimentally and
theoretically, provides a prototypical example. The ex-
perimental ability to use a Feshbach resonance to adjust
the strength of the potential between the atoms allows
an exploration of the physics over many length scales. A
particularly interesting regime is at unitarity where the
scattering length diverges and the effective range of the
potential is very small compared to the interparticle spac-
ing. Since the particle density provides the only length
scale, the ground-state energy E0 is proportional to the
free Fermi gas energy EFG,

E0 = ξEFG . (1)

The ability to quantitatively understand the proper-
ties of this system represents a great triumph of many-
body physics. Many experiments and calculations have
been performed for the unitary Fermi gas. Initial qual-
itative agreement was found between theory[1, 2] and
experiment[3–5]. More precise recent experiments have
yielded ξ = 0.39(2)[6] and 0.41(1)[7], with smaller val-
ues obtained very recently by Zwierlein, et al.[8]. Fixed-
node Diffusion Monte Carlo (DMC) calculations[1, 2, 9–
12] have always included a Bardeen-Cooper-Schrieffer[13]
(BCS) trial wave function to guide the Monte Carlo walk
and provide the fixed node constraint[14] needed to over-
come the fermion sign problem. As is well known, these
calculations provide an upper bound, with the current
best value ξ = 0.383(1)[11, 12].

In this paper we show that exact calculations can
be performed to accurately determine the ground-state
properties of the unpolarized Fermi gas. Furthermore, we
perform calculations with small but finite effective range,
and find results consistent with a universal linear depen-
dence of the energy upon the Fermi momentum times the
effective range: E/EFG = ξ + SkF re + ....

A new method is introduced to allow the use of a BCS

trial wave function in the auxiliary-field quantum Monte
Carlo (AFQMC) approaches of Zhang and coworkers[15,
16]. Using the new approach, we perform calculations
with several forms of the kinetic energy term that all
give the correct continuum limit but with different finite
effective ranges to study the convergence with particle
number and lattice sizes, and to obtain the dependence
of ξ on the effective range. An exact result is obtained
for the value of ξ, as well as results for the slope S.

Quantum Monte Carlo simulations play a key role in
addressing the challenge of strongly interacting Fermi
systems. The AFQMC method has been applied to a
variety of systems in several fields. With equal numbers
and masses of up- and down-spin fermions and an attrac-
tive interaction, there is no fermion sign problem. The
formalism developed here allows the use of a BCS impor-
tance function, which drastically improves the efficiency
in this situation. In general applications, a sign or phase
problem is present, which is controlled by a constraint,
also using the importance function [15, 16]. Hartree-Fock
or free Fermi gas (FG) type of importance functions have
been used. This approach has been shown to be very
accurate in many condensed matter models and optical
lattices [17], quantum chemistry [18], and solid state ma-
terials [19]. The present method will allow the use of BCS
importance functions (or antisymmetrized geminal power
(AGP) in chemistry) to significantly improve our ability
to deal with the sign problem in systems where pairing
is important, and enhance the capabilities for quantum
simulations in strongly correlated systems in general.

The AFQMC method, in both-zero[20] and finite-
temperature formulations[21], has also been applied to
the unitary Fermi gas. Precise results require simultane-
ously large lattices, so the system is dilute, and a large
number of particles for an accurate approach to the con-
tinuum and thermodynamic limits. Many such calcula-
tions have been performed[20, 22–25], but the variance of
the method limited the results to relatively small number
of particles and lattice sizes so that, as we demonstrate
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below, the results are unlikely to have converged to the
thermodynamic limit.

The range of the van der Waals interaction in cold
atoms is small (e.g. about 3 nm in 6Li[26]) compared
to interparticle spacing so that the short range structure
of the interaction is unimportant; the results are com-
pletely determined by the form of the kinetic energy and
the scattering length. For an N3

k lattice, the equivalent
Hamiltonian is

H =
1

N3
k

∑
k,j,m,s

ψ†jsψmsεke
ik·(rj−rm) + U

∑
i

ni↑ni↓ .

(2)
Here ψjs is the destruction operator for a fermion of spin
s on lattice site at position rj . For odd lattice sizes
Nk = 2Nc + 1, the k are given by 2π

L (nxx̂ + nyŷ + nzẑ)
with −Nc ≤ nx, ny, nz ≤ Nc. The k space destruction

operators are cks = N
−3/2
k

∑
j e
−ik·rjψjs, and the den-

sity operators are nis = ψ†isψis.
To reach the continuum limit, we need to take the limit

of zero particle density, ρ ≡ N/N3
k → 0, in the context of

the Hubbard model (i.e., replace L by Nk). Equivalently,
because of scale invariance, we can think of the system as
a discretized representation of a supercell with fixed size
L, and take the k-space cutoff to infinity. In either case,
we then take the number of particles, N , to infinity. In
this limit only the behavior of εk for k � 2π

α is important,
where α ≡ L/Nk is the lattice spacing. Thus a variety
of kinetic energy forms can be used as long as they are
quadratic for k much smaller than the cutoff. In this
work we present results for

ε
(2)
k =

~2k2

2m
, ε

(4)
k =

~2k2

2m

[
1− β2k2α2

]
ε
(h)
k =

~2

mα2
[3− cos(kxα)− cos(kyα)− cos(kzα)] .(3)

The superscript 2 and 4 indicate the highest power of k,
while ε(h) is the Hubbard model hopping kinetic energy
offset by a constant so that it is zero at k = 0.

For two particles, the Hamiltonian is separable, and
the solution of the Lippmann-Schwinger equation for low-
energy s-wave scattering gives the phase-shift equation,

k cot δ0 = − 4π~2

mUα3

[
1+

Uα3

16π3
P
∫ π/α

−π/α
dk′x

∫ π/α

−π/α
dk′y

∫ π/α

−π/α
dk′z

1

εk′ − εk

] (4)

where P indicates the principal parts integration, and the
k space sums are cut off by the lattice spacing α. The
effective range expansion is

k cot δ0 = −a−1 + 1
2k

2re + ... (5)

where a is the scattering length and re the effective range.
Since we are interested in the unitary limit, we adjust

U to have a−1 = 0. Both ε
(2)
k and ε

(h)
k have nonzero

effective ranges. The extra parameter β in ε
(4)
k can be

adjusted to make the effective range zero. The values for
the parameters are given in table I.

Energy U 2mα2

~2 β reα
−1

ε
(h)
k -7.91355 - -0.30572

ε
(2)
k -10.28871 - 0.33687

ε
(4)
k -8.66605 0.16137 0.00000

TABLE I. The parameters that give infinite scattering length
for two particles in an infinite lattice for the various kinetic

energies. The β value for the ε
(4)
k kinetic energy has been

adjusted to give zero effective range, re.

The AFQMC algorithm uses branching random walks
to project the ground state from an initial trial state with
the imaginary-time operator exp[−Hτ ]. Because the in-
teraction is attractive, there is no fermion sign problem
for equal numbers of up and down fermions studied here,
and no path constraint is required. A walker is a set of
N single-particle orbitals. Initially, the orbitals for the
up spin particles are taken to be identical to those for
the down spin particles. The two-body interaction term
is broken up using a Hubbard-Stratonovich (HS) trans-
formation which has only positive weights, and treats the
up and down spin particles identically. Therefore, the up
spin orbitals remain identical to the down spin orbitals
during the propagation. We will show below that the
usual form for a singlet paired BCS trial function also
gives no fermion sign problem.

The walker states are given by specifying the orbital
coefficients. These can be specified on the real space lat-
tice φn,j or as momentum space coefficients φ̃n,k related
to each other by a discrete Fourier transform. If we begin
with real orbitals on the real space lattice, the orbitals
remain real when propagated. The momentum space or-
bitals therefore satisfy φ̃n,−k = φ̃∗n,k. The orbitals are
orthonormalized periodically. This is needed to limit
roundoff error, but the mathematical expressions are cor-
rect without it. The orthonormal orbitals therefore sat-
isfy

∑
k φ̃
∗
n,kφ̃m,k = δnm, and the corresponding opera-

tors, wns =
∑
k φ̃n,kcks, satisfy {wns, w†ms′} = δnmδss′ .

The walker state is

|W 〉 =

N/2∏
n=1

w†n↑w
†
n↓|0〉 . (6)

Because N � N3
k and because the imaginary-time his-

tory of the walk need not be retained, this formalism is
much more efficient than the usual lattice formulations
for the ground state of dilute gases.

Using a discrete HS transformation[27], the potential
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energy propagator is

e−U
∑

i ni↑ni↓∆t =
1

2N
3
k

∑
{σ}=±1

GV ({σ},∆t)

GV ({σ},∆t) = exp

∑
i,s

(
2uσi − 1

2U∆t
)
nis − uσi


(7)

where tanh2 u = − tanh
(
U∆t

4

)
. The kinetic energy prop-

agator is

GT (∆t) = exp

[
−
∑
k

εk

(
c†k↑ck↑ + c†k↓ck↓

)
∆t

]
. (8)

Given a choice of one of the N3
k set of fields, the ap-

plication of the Trotter breakup of one term of the prop-
agator on a walker |W 〉 gives another walker |W ′〉 times
a weight w′({σ},W ) that depends on the set of HS vari-
ables {σ} and |W 〉,

G({σ},∆t)|W 〉 ≡ GT (∆t
2 )GV ({σ},∆t)GT (∆t

2 )|W 〉
→ w′({σ},W )|W ′〉 . (9)

The propagation above consists of (1) Multiply each
φ̃n,k by exp(− 1

2εk∆t). (2) Fast Fourier transform to
obtain φn,i in real space. (3) Multiply each φn,i by
exp

(
2uσi − 1

2U∆t
)
. (4) Fast Fourier transform to ob-

tain φ̃n,k in momentum space. (5) Multiply each φ̃n,k by
exp(− 1

2εk∆t). (6) Update the weight from non-operator
terms.

Including importance sampling reduces the fluctua-
tions, by changing the sampling so that it is non-uniform,
without biasing the results. We want to sample walkers
|W 〉 from 〈ΨT |W 〉〈W |ψ(t)〉 where

|ψ(t+ ∆t)〉 = e−(H−ET )∆t|ψ(t)〉 (10)

The contribution of a walker |W 〉 at the next time step
is then∑

{σ}=±1

[
1

2N
3
k

〈ΨT |G({σ},∆t)|W 〉
〈ΨT |W 〉

e−ET ∆t

]
×

1

w({σ},W )
G({σ},∆t)|W 〉 .

(11)

We want to sample the set of HS variables {σ}, from
the unnormalized probability distribution given by the
square brackets. The normalization which, to order ∆t2

is the local energy expression e−(
1
2 [EL(W )+EL(W ′)]−ET )∆t,

will give the weight of the sampled walkers. Once we
have sampled the {σ} values, the new normalized walker
is given by the second term of Eq. 11. We make sure
that regions where the trial function is small are sampled
adequately to eliminate trial-function bias.

The particle projected BCS state is

|BCS〉 =

[∑
k

fkc
†
k↑c
†
−k↓

]N/2
|0〉 , (12)

where fk = vk/uk in the usual notation. The overlap of
a walker with the BCS state is

〈W |BCS〉 = 〈0|
N/2∏
n=1

wn↓wn↑

[∑
k

fkc
†
k↑c
†
−k↓

]N/2
|0〉

(13)

The contraction needed is wns′c
†
ks = φ̃n,kδss′ . The two

creation operators in the BCS pair must be contracted
with some wm↑ and some wn↓, giving a term

Anm = wn↓wm↑
∑
k

fkc
†
k↑c
†
−k↓

=
∑
k

φ̃n,−kfkφ̃m,k =
∑
k

φ̃∗n,kfkφ̃m,k .

(14)

Taking all the different possible full contractions,

〈W |BCS〉 = detA , (15)

where the elements of the N
2 ×

N
2 matrix A are the Anm

of Eq. 14.
The overlap, Eq. 15, is positive when, as in the stan-

dard singlet paired BCS solutions, fk ≥ 0. We write
detA = det

[
BB†

]
where B† is the hermitian conjugate

matrix of B and the matrix elements of the N
2 ×N

3
k ma-

trix B are Bnk = φ̃n,k
√
fk . Applying the Cauchy-Binet

theorem, each of the determinants of the submatrices of
B is multiplied by the determinant of the corresponding
hermitian conjugate submatrix. The determinant of A is
a sum of positive terms, so that our BCS trial function
gives no sign problem.

Two estimates of the energy are used, the growth en-
ergy just measures the growth of the weights in the ran-
dom walk. The local energy can be calculated using con-
tractions similar to those above. Other observables can
be calculated similarly. A complete derivation for a gen-
eral BCS state will be published elsewhere. Here we give
the result

EL(W ) =
〈W |H|BCS〉
〈W |BCS〉

= 2tr
[
A−1C

]
+ U

∑
q

{
tr
[
A−1E(q)

]
tr
[
A−1E†(q)

]
−tr

[
A−1E(q)A−1E†(q)

]
+ tr

[
A−1D(q)

]}
,

(16)

where Dnm(q) =
∑

k φ̃
∗
n,k+qfkφ̃m,k+q, Cnm =∑

k φ̃
∗
n,kεkfkφ̃m,k, and Enm(q) =

∑
k φ̃
∗
n,k+qfkφ̃m,k.

The matrix elements of D and E are convolutions which
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FIG. 1. (color online) The calculated ground state energy
shown as the value of ξ versus the lattice size for various
particle numbers and Hamiltonians.

are efficiently computed with fast Fourier transforms.
The computational cost of using the BCS |ΨT 〉 is sim-
ilar to using a single Slater determinant.

We have calculated the ground-state energy for dif-
ferent particle numbers and lattice sizes. The time-step
errors have been extrapolated to zero within statistical
errors, and walker population biases have been checked
and were found to be negligible for the population sizes
used. The imaginary time step is ≈ 0.01 - 0.05 E−1

F , the
total propagation time is of order 10 - 30 E−1

F and 2,000-
20,000 random walkers are used in the simulations.

For N = 4, we found that the use of BCS importance
functions reduced the statistical error by a factor of 10, or
100× reduction in computer time, compared to the usual
FG importance function. The improvement increased to
1500× for N = 38 in a 123 lattice. For larger systems,
the discrepancy is much larger still; indeed the statistical
fluctuations from the latter are such that often meaning-
ful results cannot be obtained with the run configurations
described above.

In Fig. 1 we summarize our calculations of the energy
as a function of ρ1/3 where ρ = N/N3

k , and the particle
number is N = 38, 48 or 66. We plot ξ, Eq. 1, where we
have in all cases used the infinite system free-gas energy

EFG = 3
5
~2k2F
2m with k3

F = 3π2 N
α3N3

k
as the reference.

DMC calculations have found converged results when
using 66 particles[11, 12], and our results confirm this.
The differences between 38 and 66 particles are rather
small. Our calculations with 14 particles show a signif-
icant size dependence, and with 26 particles the effects
are still noticeable. These are not shown on the figure.
We have also computed the energy for 4 particle systems
for a variety of lattice sizes and find agreement with Ref.
[25]. The error bands in the figure provide least-squares
estimates for the one sigma error based upon quadratic
fits to the finite-size effects. The fits are of the form
E/EFG = ξ+Aρ1/3 +Bρ2/3. For the interactions tuned

Hamiltonian N ξ err A err

ε
(2)
k 14 0.39 0.01 0.21 0.12

38 0.370 0.005 0.14 0.04

66 0.374 0.005 0.11 0.04

ε
(4)
k 38 0.372 0.002

48 0.372 0.003

66 0.372 0.003

ε
(h)
k 4 0.280 0.004 -0.28 0.05

38 0.380 0.005 -0.17 0.03

48 0.367 0.005 -0.05 0.03

66 0.375 0.005 -0.13 0.03

TABLE II. Energy extrapolations to infinite volume, zero
range limit for various particle numbers N and different
Hamiltonians. The term linear in the effective range, A, is
also shown where it is not tuned to zero.

to re = 0, a fit with A fixed to zero is used. Including
a linear coefficient in the fit yields a value statistically
consistent with zero.

The extrapolation in lattice size for the k2 and Hub-
bard dispersions show opposite slope as expected from
the opposite signs of their effective ranges. The extrap-
olation to ρ → 0 is consistent with ξ = 0.372(0.005) in
all cases. Our final error contains statistical component
and the errors associated with finite population sizes and
finite time-step errors. This value is below previous ex-
periments, but more compatible with recent experimental
results of the Zwierlein group[8].

0 0.1 0.2 0.3 0.4

k
F
 r

e

0.36

0.37

0.38

0.39

0.4

0.41

0.42

ξ

N = 66

N = 38 DMC

FIG. 2. (color online) The ground-state energy as a function
of kF re: comparison of DMC and AFQMC results. Dashed
lines are DMC results, shifted down by 0.02 to enable com-
parison of the slopes.

We have also examined the behavior of the energy as a
function of kF re for finite effective ranges. The available
length scales at low energy restrict ξ to be a function
of kFa, kF re, kFL, and kFα. At unitarity (kFa)−1 = 0.
(kFL)−3 is proportional to N−1 so for large enough num-
ber of particles it can be neglected. The lattice has in-
version symmetry so we expect a lowest order contribu-
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tion proportional to (kFα)2. Therefore the only linear in
kF correction to ξ is proportional to kF re. It has been
conjectured[28, 29] that the slope of ξ is universal in con-
tinuum Hamiltonians: ξ(re) = ξ + SkF re. Of course a
finite range purely attractive interaction is subject to col-
lapse for a many-particle system, but a small repulsive
many-body interaction or the lattice, where double oc-
cupancy of a single species is not allowed, is enough to
stabilize the system. Our results are consistent with the
universality conjecture. In particular our results for zero
effective range approach the continuum limit with a slope
consistent with zero.

Figure 2 compares the AFQMC results for the ε
(2)
k in-

teraction with the DMC results [11, 12] for various values
of the effective range. The AFQMC produces somewhat
lower energies than the DMC, consistent with the upper-
bound nature of the DMC calculations. For the slope S of
ξ with respect to finite re, the fit to the N = 66 AFQMC
results yields S = 0.11(.03). Similar fits to the AFQMC

data with the Hubbard dispersion ε
(h)
k for N = 66 yield

a linear term of S = 0.12(.03). Both are in agreement
with the DMC results of S = 0.12(.01).[30]

In summary, we have developed a new exact lattice
technique to treat strongly-paired fermion systems. We
find that the energy of the Fermi Gas at unitarity and
zero effective range is ξ = 0.372(.005) using a variety of
interactions tuned to unitarity. We also find results con-
sistent with a universal dependence of the ground state
energy upon the effective range: E/EFG = ξ+SkF re+...
with S = 0.12(.03) for the different lattice and continuum
Hamiltonians. The method we describe should be useful
without modification for the entire BCS/BEC transition
and for studying many other properties of cold Fermi
gases. It can also be applied to a wide variety of prob-
lems in other strongly-correlated fermions, in areas rang-
ing from cold atoms to condensed matter to quantum
chemistry to nuclear physics.
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