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We explore the coherent destruction of tunneling (CDT) in a lattice array under selective in-
phase harmonic modulations, in which some selected lattice sites are driven by in-phase harmonic
oscillating fields and other lattice sites are undriven. Due to the occurrence of CDT, if the driving
amplitude A and the driving frequency ω are tuned to satisfy the zeroth-order Bessel function
J0(A/ω) = 0, the driven lattice sites are approximately decoupled with the undriven lattice sites.
The CDT even takes place in lattice systems with high-order couplings between non-nearest lattice
sites. By using the CDT induced by selective in-phase harmonic modulations, we propose a scheme
for realizing directed transport of a single particle. It is possible to observe the CDT in the engineered
optical waveguide array, which provides a new opportunity for controlling light propagation and
designing switch-like couplers.

PACS numbers: 42.65.Wi, 42.25.Hz

I. INTRODUCTION

Controlling quantum states via external driving fields
is a very popular approach for quantum manipulation,
which is a basic tool for implementing quantum technol-
ogy. The external driving fields have been used to ma-
nipulate various systems including spins, quantum dots,
cold atoms and Josephson junctions etc [1, 2]. The co-
herent destruction of tunneling (CDT) [3] and dynamical
localization (DL) [4] are two seminal results in this field.
Moreover, some important generalizations of CDT, such
as selective coherent destruction of tunneling (SCDT) [5],
non-degenerate CDT [6], nonlinear CDT [7], and many-
body CDT [8], have also been explored. Single-particle
CDT and DL [9, 10], which have been observed exper-
imentally in optical traps, attract considerable atten-
tion due to their potential applications in quantum mo-
tor [11, 12] and quantum information processing [13]. A
directed transport in a driven bipartite lattice based on
the idea of CDT has also been demonstrated [14].

Engineered optical devices offer a new platform for
studying quantum dynamical control [15]. In contrast
with a quantum system, an optical device provides the
unique advantage of a direct mapping of the temporal
evolution of the quantum system into spatial propagation
of light waves in engineered lattices. DL in waveguides
and CDT in directional couplers are visualized either by
periodically bending waveguides [16, 17], or by an out-
of-phase harmonic modulation of refractive index [18].
These works focus on considering photonic structures
with out-of-phase modulations of refractive index of adja-
cent waveguides [18]. For a single-band quantum lattice
system of periodic modulations on left part of the lat-
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tice [19], the occurrence of dissipationless directed trans-
port has been demonstrated. However, the question of
whether quantum tunneling can be suppressed or even
inhibited via selective in-phase modulations is still not
clear. Here, the selective in-phase modulation means
that the refractive indices for the waveguides oscillate
in-phase in selected waveguides, while they are propa-
gation invariant for all other waveguides. Within the
context of a driven optical lattice, the in-phase modula-
tion is termed when the selected lattice sites are shaken
up and down in-phase while all other lattice sites re-
main static. In addition, a major limitation of previ-
ous schemes for quantum dynamical control is that it is
only suitable for systems under nearest-neighbor tight-
bing approximation (NNTB), but fails to explain lattices
with long-range interaction.

In this article, we analyze how CDT is induced by se-
lective in-phase harmonic modulations and discuss some
possible applications of CDT in quantum motor and
switch-like coupler. Due to CDT occurs only between the
modulated lattice site and the unmodulated ones, one can
get the precise location of a particle in the lattice arrays.
Under the selective in-phase harmonic modulations, the
coupling between a driven lattice site and an undriven
lattice site is rescaled by a factor of the zeroth-order
Bessel function, while the coupling among the driven lat-
tice sites or the undriven lattice sites keeps unchanged.
By tuning the driving frequency and the driving ampli-
tude, the effective tunneling between a driven lattice site
and an undriven lattice site can be completely suppressed
and therefore the lattice array divides into some sets of
disconnected lattice. By using CDT, it is possible to se-
lectively move the quantum particles and design a new
type of optical switch-like devices.

The article structure is as follows. In the next section,
we give the Hamiltonian for the quantum lattice systems
studied in this work. In section III, we explore how CDT
is induced by the selective in-phase harmonic modula-
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tions. We obtain some analytical results which are con-
firmed by our numerical simulation. In section IV, we
discuss some possible applications of CDT in quantum
motor and switch-like coupler. In the last section, we
briefly conclude our results.

II. HAMILTONIAN

We consider a single particle in an array of lattice sites,
which is described by a single-band tight-binding model.
In addition to the tunneling between nearest-neighboring
sites, we take account into the high-order coupling be-
tween non-nearest-neighboring sites. The Hamiltonian
reads as

H =
∑

j

Ω(â†j+1âj + h.c.) +
∑

j

v(â†j+2âj + h.c.)

+
∑

j

εj(t)â
†
j âj , (1)

where Ω and v are the tunneling amplitudes connecting
nearest-neighboring sites and next-nearest-neighboring

sites, respectively. The â†j (âj) are the particle creation

(annihilation) operators in the j-th site.
The in-phase harmonic oscillating fields are applied to

modulate the on-site energy εj(t). We consider a type of
selective in-phase harmonic modulations of εj(t) = 0 for
the undriven lattice sites and εj(t) = A sin(ωt) for the
driven lattice sites. Here, A is the driving strength and
ω is the driving frequency. The case of εi(t) = εi+1(t) =
A sin(ωt) and εj(t) = 0 for j 6= i, i+1 is a typical example
of selective in-phase harmonic modulation, where the i-
th and (i + 1)-th sites are modulated in phase while all
other sites are unmodulated.

III. COHERENT DESTRUCTION OF

TUNNELING INDUCED BY SELECTIVE

IN-PHASE MODULATIONS

Taking the Wannier state |j〉 = â†j |0〉 localized in the

jth site as basis, we expand the quantum state |Ψ(t)〉 of
system (1) in the form

|Ψ(t)〉 =
∑

j

aj(t)|j〉, (2)

where aj(t) represents the occupation probability am-
plitudes in the site j, with the normalization condition
∑

j |aj |2 = 1.

From the Scrödinger equation, i∂t|Ψ(t)〉 = H |Ψ(t)〉,
the evolution equation for the probability amplitudes
aj(t) reads

i
daj
dt

= Ω(aj−1 + aj+1) + v(aj−2 + aj+2) + εj(t)aj . (3)

The transformation aj = bj exp[−i
∫

εj(t)dt] yields

i
dbj
dt

= Ωbj−1 exp[−i

∫

(εj−1 − εj)dt]

+Ωbj+1 exp[−i

∫

(εj+1 − εj)dt]

+vbj+2 exp[−i

∫

(εj+2 − εj)dt]

+vbj−2 exp[−i

∫

(εj−2 − εj)dt]. (4)

For a N -site system under in-phase modulation, the
values of εj(t) (j = 1, ....., N) are only either εj(t) = 0
or εj(t) = A sin(ωt), so the values of εj(t) − εj′(t) for
j 6= j′ should be either 0 or ±A sin(ωt). The former
case of εj(t)− εj′(t) = 0 indicates that the j-th andj′-th
sites are simultaneously modulated in-phase or unmodu-
lated, and the latter case of εj(t) − εj′(t) = ±A sin(ωt)
means that one site is modulated while the other is un-
modulated. For the case of εj(t) − εj′(t) = 0, one
finds that the effective tunneling parameters between
the jth and j′th sites remain unchanged. For the case
of εj(t) − εj′(t) = ±A sin(ωt), using the expansion
exp[±iA cos(ωt)/ω] =

∑

k(±i)kJk(A/ω) exp(±ikωt) in
terms of Bessel functions and neglecting all orders ex-
cept k = 0 in the high frequency region, one finds that
the effective tunneling parameters between the j-th and
j′-th sites are renormalized by a factor of J0(A/ω).
In our analysis, we focus on the dynamics for three

sites. However, similar behaviors may appear in other
lattice systems as well. For a three-site system, the cou-
pled equation (3) reads as

i
da1
dt

= Ωa2 + va3 + ε1(t)a1,

i
da2
dt

= Ωa1 +Ωa3 + ε2(t)a2,

i
da3
dt

= Ωa2 + va1 + ε3(t)a3. (5)

We consider two typical in-phase modulations for the
above three-site system: (a) ε1(t) = A sin(ωt), ε2(t) =
ε3(t) = 0; and (b) ε1(t) = 0, ε2(t) = ε3(t) = A sin(ωt).
In the high-frequency limit, taking time average of high
frequency terms, we find the same effective equation of
motion for both modulations,

i
db1
dt

= ΩJ0 (A/ω) b2 + vJ0 (A/ω) b3,

i
db2
dt

= ΩJ0 (A/ω) b1 +Ωb3,

i
db3
dt

= Ωb2 + vJ0 (A/ω) b1. (6)

According to the Floquet theorem, the approxi-
mate Floquet solutions of Eq.(5) can be constructed
as aj = exp[−i

∫

εj(t)dt]bj(t) (j = 1, 2, 3) with
(b1(t), b2(t), b3(t))

T = (B1, B2, B3)
T exp(−iEt) being the

stationary solution for Eq. (6).
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If J0(A/ω) = 0, b1(t) does not couple with b2(t) and
b3(t). This means that the population in state |1〉 does
not change with time. However, b2(t) and b3(t) are still
coupled and so that the populations in states |2〉 and |3〉
may exchange. There are several roots for J0(A/ω) = 0
such as A/ω ≃ 2.4 and 5.5. For a system of type-(a)
modulation and J0(A/ω) = 0, the approximate Floquet
solutions for Eq. (5) read as

|u1(t)〉 = exp[iA cos(ωt)/ω]|1〉+ 0|2〉+ 0|3〉,

|u2(t)〉 = [0|1〉+ 1√
2
|2〉+ 1√

2
|3〉] exp(−iΩt),

|u3(t)〉 = [0|1〉+ 1√
2
|2〉 − 1√

2
|3〉] exp(iΩt). (7)

Clearly, the Floquet state |u1(t)〉 is localized in the site 1,
and |u2,3(t)〉 are localized in the sites 2 and 3 with equal
probability. In Fig. 1, we show the dependence of the
quasienergy on the ratio A/ω. The quasienergy spectra
are identical for type-(a) (solid lines) and type-(b) (cir-
cles) modulations. The vertical dashed line corresponds
to J0(A/ω) = 0. In Fig. 1 (b), for the Flqouet state
at J0(A/ω) = 0, we show the probability of finding the
particle in different lattice sites. Generally, the Floquet
states are either localized in the site 1 or equally dis-
tributed on both site 2 and site 3, which confirm the
approximate Floquet solutions very well.

FIG. 1: (color online) (a) Quasienergies versus A/ω. The
vertical dashed line labels the position of J0(A/ω) = 0. The
solid lines and circles correspond to type-(a) and type-(b)
modulations, respectively. (b) The probability distribution
of the Floquet states for the system of J0(A/ω) = 0 labeled
by the vertical dashed line in (a). The other parameters are
chosen as Ω = 1, v = 0.2 and ω = 10.

Our numerical simulation is implemented by directly
integrating the time-dependent Scrödinger equation (5)
with type-(a) or type-(b) modulations. For different
initial conditions, we calculate the probabilities Pj =
|aj |2, (j = 1, 2, 3) of finding the particle in lattice site
j. In Fig. 2(a), we show the time evolution for the
system of A/ω ≃ 2.405 and the particle is initially lo-
calized in the site 1. Since the tunnelling between the

site 1 and the other two sites are suppressed, the par-
ticle is frozen in the site 1. On the other hand, if we
start a particle in the site 2, the particle indeed simply
tunnels back and forth between the sites 2 and 3, see
Fig. 2 (b). These results indicate that only the tun-
neling between the site 2 and 3 is allowed. This is a
kind of selective CDT, which is also evidenced by the
probability distribution of the Flqouet states shown in
Fig. 1 (b). One can use the effective Scrödinger equa-
tion (6) to explain the CDT induced by selective in-phase
modulations. Under the condition of J0(A/ω) = 0 and
b1 = 1, b2 = b3 = 0, one can immediately give the an-
alytical solution as b1 = 1, b2 = b3 = 0. Similarly, if
the initial condition takes b1 = 0, b2 = 1, b3 = 0, the
analytical solution is given as b1 = 0, b2 = cos(Ωt) and
b3 = −i sin(Ωt).

FIG. 2: (color online) Time evolution of the probability dis-
tribution for the system of A/ω ≃ 2.405. The particle is
initialized in site 1 [column (a)], and site 2 [column (b)]. The
modulations and the parameters are the same as the ones for
Fig. 1.

Although the above analysis is applied to three-site
systems, similar analysis can be applied to systems of
arbitrary number of lattice sites and similar CDT phe-
nomena can be found. The effective inter-site tunnelings
are illustrated by the cartoon shown in Fig. 3. If system is
driven by a high-frequency field such that J0(A/ω) = 0,
as illustrated in Fig. 3, then the coupling parameters
between the unmodulated and modulated site are ef-
fectively rescaled by the factor J0, while the couplings
among modulated sites or unmodulated sites keep un-
changed. The upper cartoon in Fig. 3 represents the
systems of modulation on site i only, in which the site i
becomes a true trap for the particle, since tunneling in
both directions are suppressed, which is marked by the
red cross. If in-phase modulations are applied to both
sites i and i + 1, the lattice array divides into three sets
of disconnect sites (..., i − 3, i − 2, i − 1), (i, i + 1) and
(i + 2, i + 3, ...), see the lower cartoon. If the particle is
initialized in site i or i + 1, Rabi oscillation will occur



4

between site i and i+1, and the frequency of this oscilla-
tion is determined by the value of the original tunneling
strength Ω.

FIG. 3: (color online) The schematic diagram for the dy-
namics of lattice arrays under selective in-phase harmonic
modulations. Upper cartoon: the modulation is only ap-
plied to site i (marked by l), that is, εi(t) = A sin(ωt) and
εj(t) = 0 for (j 6= i). Lower cartoon: in-phase modula-
tions are applied to sites i and i + 1 (marked by l), that
is, εi(t) = εi+1(t) = A sin(ωt) and εj(t) = 0 for (j 6= i, i+ 1).

IV. POSSIBLE APPLICATIONS

Based on the CDT in a lattice system under selective
in-phase modulations, we propose a scheme for directed
single-particle transport, which can be used to realize
a quantum motor. The transport process is illustrated
in Fig. 4, in which A/ω ≃ 2.405 and ω/Ω = 10. The
particle is initially loaded into site i and in-phase mod-
ulations are applied to sites i and i + 1, see Fig. 4. The
Rabi oscillation between sites i and i + 1 has a period
τ = π/Ω. At t = τ/2, the particle arrives at site i + 1
and the in-phase modulations are suddenly changed to
address sites i+1 and i+2. Therefore the particle enters
into a new Rabi oscillation between sites i+ 1 and i + 2
with the same period τ . Similarly, at t = τ , the modu-
lations are suddenly switched to address sites i + 2 and
i + 3, the particle has completely tunneled to site i + 3
after another time interval of τ/2. If the in-phase modu-
lations are repeatedly applied to the lattice site occupied
by the particle and its right-side neighbor at t = nτ/2 for
n = 0, 1, 2, 3..., the particle will propagate solely to the
right. Similarly, the in-phase modulations are repeatedly
applied to the lattice site occupied by the particle and
its left-side neighbor at t = nτ/2 for n = 0, 1, 2, 3..., the
particle will propagate solely to the left.
The directed quantum transport based upon CDT pro-

vides an optional scheme for designing a quantum motor.

FIG. 4: (color online) Schematic diagram for transporting
a particle from left to right in a lattice array. The symbol
l denotes the high-frequency modulation ε = A sin(ωt), in
which A/ω ≃ 2.4. After a time interval of t = τ/2 with
τ = π/Ω, the particle has completely transported from one
site to its right-side neighbor.

To illustrate the possibility of realizing a quantum motor
via the directed quantum transport, we show our numeri-
cal results of a single particle in a 11-site system with the
procedure described above, see Fig. 5. Obviously, the di-
rected single-particle transport is perfectly confirmed by
our results.
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FIG. 5: (color online) Simulation of a single particle in a 11-
site system. The situation is illustrated in Fig 4.

In addition to the application in designing a quan-
tum motor, the CDT may be used to realize a quan-
tum beam splitter. If the in-phase modulations are
initially applied to the sites i − 1, i and i + 1, that
is, εi−1 = εi = εi+1 = A sin(ωt) and εj(t) = 0 for
j 6= i − 1, i, i + 1. Therefore the three sites i − 1, i and
i+1 are disconnected with other sites, and the couplings
among the three sites keeps unchanged. The dynamics
can be well effectively described by Eq. (5) for the case
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of no modulations (i.e., ε1 = ε2 = ε3 = 0). Initializ-
ing the system into a state of a2 = 1 and a1 = a3 = 0,
we can derive the analytical solution for Eq. (5) with
ε1 = ε2 = ε3 = 0, which has equal probability ampli-
tudes for the first and third sites(P1 = P3). The particle
has same probability for tunneling to sites i− 1 and i+1
and therefore the state splits into two parts. At the time
of zero probability for finding the particle in the site i,
we switch off the in-phase modulations on the site i and
simultaneously switch on in-phase modulations on sites
i− 2 and i+2. After a time interval of τ/2, one will find
the particle in site i−2 or i+2 with equal probability. Af-
ter a time interval of τ/2, we switch off the modulations
on sites i− 2 and i+2 and simultaneously switch on the
modulations on sites i−3 and i+3. Again and again, after
each time interval of τ/2, we switch off the modulations
on sites i− k and i+ k and simultaneously switch off the
modulations on sites i−(k+1) and i+(k+1). Under this
sequence of applying the in-phase modulations to some
certain lattice sites, the particle initially localized in the
central site will form an equal-probability superposition
of left and right propagating components. This means
that a perfect quantum beam splitter is realized by the
CDT caused by the in-phase modulations.
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FIG. 6: (color online) A quantum beam splitter for a particle
in a 11-site system. If the in-phase modulations initially acts
on the site 6 and its nearest neighbors (the sites 5 and 7), the
state splits into two equal parts propagating along opposite
directions.

Although some other good schemes for directed trans-
port of single-particle has been previously proposed in a
driven lattice [14], we stress here that one advantage of
our approach is that it can be applied to lattices with
high-order coupling among non-nearest sites.

V. OPTICAL REALIZATION

By mapping the temporal evolution of quantum sys-
tems into the spatial propagations of light waves, the

engineered waveguides offer an alternative platform to
investigate the classical wave analogues of a wide variety
of coherent quantum effects. Below, we discuss how to
simulate the CDT induced by selective in-phase modula-
tions via the engineered waveguides.
The propagation of a cw light wave along the z axis is

described as the Schrödinger equation for its dimension-
less field amplitude φ(x, z)[18, 20]

i
∂φ

∂z
= −1

2

∂2φ

∂x2
− pR(x, z)φ. (8)

Here (x and z) are the normalized (transverse and longi-
tudinal) coordinates, and p describes the refractive index
contrast of the individual waveguide. The refractive in-
dex distribution of the waveguide lattice is given by

R(x, z) =
M
∑

j=−M

[1 + fj(z)] exp

[

−
(

x− jws

wx

)6
]

, (9)

fj(z) = Fjµ sin (ωz) ,

with the waveguide spacing ws, the channel width
wx, the longitudinal modulation amplitude µ, and the
modulation frequency ω. The super-Gaussian function
exp(−x6/w6

x) describes the profile of individual waveg-
uides with widths wx. 2M +1 is the total number of the
waveguides. The function Fj determines the modulation
type. Here we consider the selective in-phase harmonic
modulations, such that the value of Fj can only be either
Fj = 1 or Fj = 0. The case of Fj = 1 indicates that the
j-th waveguide is modulated, while Fj = 0 means that
the j-th waveguide is unmodulated.
Under the tight-binding condition, one can expand the

total electric envelope in form of

φ(x, z) =
∑

j

ajφj(x) exp(−iβ0z), (10)

β0 =

∫

φ∗
j (x)H0φj(x)dx,

H0 = −1

2

∂2

∂x2
− p

M
∑

j=−M

exp

[

−
(

x− jws

wx

)6
]

,

where φj(x) are the eigen-modes for the j-th waveguide,
and the expanding coefficients are normalized to one,
∑

j |aj |2 = 1. Substituting the expansion (10) into the

Schrödinger equation (8) and taking into account cou-
plings between next-nearest and nearest waveguides, one
can obtain the resulting coupled-mode equation in the
same form as Eq. (3) with t replaced by z. Therefore,
the temporal evolution of the probability amplitudes aj
obeying Eq. (3) can be simulated by the light propaga-
tion in an array of tight-binding waveguides with longi-
tudinal modulation, in which the temporal evolution of
aj is mapped into the spatial evolution of the modal field
amplitudes of light waves in the j-th waveguide along the
axial direction x. The light power distribution P (x, z)
corresponds to the probability distribution |aj(t)|2.
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To demonstrate the quantum control based on the
CDT, we simulate the three-channel couplers (M = 1)
by integrating the field propagation equation (8). In our
numerical simulation, the initial states are chosen as the
lowest Wannier modes for isolated individual waveguides,
and the parameters are set as wx = 0.3, ws = 3.2 and
p = 2.78. As same as the units used in Refs. [18, 20], wx

and ws are in units of 10 µm, and p = 2.78 corresponds
to a real refractive index of 3.1× 10−4.

According to the analytical analysis in Section III, if
not all three waveguides are modulated simultaneously
and modulations satisfy J0(A/ω) = 0, the three-channel
couplers can be decoupled into a coupled two-waveguide
system and an isolated single-waveguide system. To com-
pare with the sub-systems decoupled from the original
system, we also simulate the tunneling dynamics of light
in an unmodulated two-waveguide system corresponding
to the two waveguides decoupled from the original sys-
tem, see Figs. 7(b).

Similar to the discrete systems, the in-phase modu-
lations applied to the continuous system (3) may sup-
press the tunneling between modulated and unmodulated
waveguides for some specific modulation amplitudes and
frequencies. We find that the tunneling between modu-
lated and unmodulated waveguides is strongly suppressed
if the modulation frequency ω = 3.45 × (2π/100) and
µ = 0.4. This strong suppression of the tunneling be-
tween modulated and unmodulated waveguides is a new
extension of CDT.

We simulate a three-channel coupler under two typical
in-phase modulations: (i) in-phase modulation is only
applied to one waveguide [see Figs. 7 (c) and (e)], i.e.
F1 = 1 and F−1 = F0 = 0; and (ii) in-phase modulations
are applied to two next-nearest-neighboring waveguides
[see Figs. 8 (a) and (c)], i.e. F1 = F−1 = 1 and F0 =
0. We numerically explore the light propagation in a
three-channel coupler under these two modulations. In
these two figures, the left columns show the refractive
index distributions R(x, z) and the right columns show
the light propagation |φ(x, z)|2 which are obtained by
numerically integrating the Schrödinger equation (8). In
our simulation, the parameters are set as wx = 0.3, ws =
3.2, p = 2.78, µ = 0.4 and ω = 3.45× (2π/100).

In Fig. 7 (c)-(f), for a three-channel coupler under
type-(i) modulation, we show the refractive index dis-
tribution R(x, z) [see panels (c) and (e)] and the light
propagation |φ(x, z)|2 [see panels (d) and (f)] for different
input beams marked by ◮. The first row shows R(x, z) =
exp[−x6/w6

x]+ exp[−(x+ws)
6/w6

x] and |φ(x, z)|2 for the
unmodulated two-waveguide system corresponding to the
subsystem decoupled from the original three-channel sys-
tem, see Figs. 7 (a) and (b). If the input beam is cen-
tered in the middle waveguide marked by ◮ [see panel
(c)], which is one of two unmodulated waveguides, the
light periodically tunnels between the two unmodulated
waveguides. The tunneling dynamics is almost the same
as the one in the unmodulated two-waveguide coupler
with R(x, z) = exp[−x6/w6

x] + exp[−(x + ws)
6/w6

x], see

Fig. 7(b). While the input beam is centered in the sole
modulated waveguide marked by ◮ in Fig. 7 (e), the light
propagates in this modulated waveguide almost with-
out tunneling into the two unmodulated waveguides, see
Fig. 7 (f). The light propagation shown in Figs. 7 (d) and
(f) clearly shows the strong suppression of the coupling
between modulated and unmodulated waveguides.

FIG. 7: (color online). Light propagation in a three-channel
coupler under type-(i) modulation. First row: (a) the refrac-
tive index distribution R(x, z) and (b) the light propagation
|φ(x, z)|2 for the unmodulated two-waveguide system corre-
sponding to the two unmodulated waveguides decoupled from
the original three-channel system. Second row: (c) R(x, z)
and (d) |φ(x, z)|2 with the input beam centered in the middle
waveguide marked by ◮ in (c). Third row: (e) R(x, z) and (f)
|φ(x, z)|2 with the input beam centered in the top waveguide
marked by ◮ in (e).

For a three-channel coupler under type-(ii) modula-
tion, in which the top and bottom waveguides are mod-
ulated, we show the corresponding light propagation for
different input beams in Figs. 8 (a) and (c). Similarly, if
the input beam is centered in one of the two modulated
waveguides, the light only oscillates between the two
modulated waveguides, see Fig. 8 (a) and (b). While the
input beam is centered in the middle waveguide marked
by ◮ in Fig. 8 (c), the light almost perfectly keeps prop-
agating in this waveguide, see Fig. 8 (d). Obviously,
the numerical results indicate the decoupling between the
modulated and unmodulated waveguides.
For a quantum lattice system, it is generally thought

that the nearest-neighboring tunneling is more signif-
icant than the next-nearest-neighboring one. How-
ever, due to the in-phase periodic modulations, even
the nearest-neighboring tunneling strength is stronger
than the next-nearest-neighboring one, the appearance
of significant tunneling between next-nearest-neighboring
waveguides and almost no tunneling between nearest-
neighboring waveguides updates this conventional under-
standing. This provides an optional approach for directly
transporting a particle to its non-nearest-neighboring
sites.



7

FIG. 8: (color online) Light propagation in a three-channel
coupler under type-(ii) modulation. First row: (a) R(x, z) and
(b) |φ(x, z)|2 with the input beam centered in the top waveg-
uide marked by ◮ in (a). Second row: (c) R(x, z) and (d)
|φ(x, z)|2 with the input beam centered in the middle waveg-
uide marked by ◮ in (c).

For different input beams, we have also numerically
explored the light propagation |φ(x, z)|2 in a three-
channel coupler under in-phase modulations applied to
two nearest-neighboring waveguides. Again, the light
propagation (not shown here) clearly indicates that the
modulated and unmodulated waveguides are almost de-
coupled each other and there is almost no tunneling be-
tween them.
Moreover, we have simulated the multi-waveguide sys-

tems of other numbers of waveguides by directly inte-
grating the Schrödinger equation (8). The predictions
from the coupled-mode equation (3) are demonstrated
and confirmed perfectly in this optical system (not shown
here). Therefore, such a waveguide array under in-phase
modulations may be used as a switch-like device, which
can function as input-dependent single-mode fibers, dual-
channel couplers and multi-channel couplers as well.

VI. SUMMARY

In conclusion, we have studied how to control the tun-
neling dynamics in one-dimensional quantum lattice sys-

tems via CDT induced by selective in-phase modulations,
in which only some selected lattice sites but not all lattice
sites are driven by periodic in-phase fields. Tuning the
frequency and amplitude of the selective in-phase modu-
lations to some specific values, it is possible to find that
the CDT only occurs between modulated and unmodu-
lated sites while the tunneling dynamics among modu-
lated or unmodulated sites keeps unchanged. In partic-
ular, by applying in-phase modulations to next-nearest-
neighboring sites, it is possible to switch off the tunnel-
ing between the nearest-neighboring sites. Therefore, one
can utilize the in-phase modulations to produce ratchet-
like motions and even to transport directly a particle be-
tween non-nearest-neighboring lattice sites with the high-
order coupling among those lattice sites.

Furthermore, we have shown that our results on CDT
can be experimentally tested with an array of optical
waveguides, in which the spatial propagation of light in
an optical material system corresponds to the temporal
evolution of state in a quantum system. Comparing with
previous works on light propagation in optical waveguides
under out-phase modulations [18, 20], the in-phase mod-
ulations provide a new possibility for controlling light
propagation in periodic waveguide arrays.
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[5] J. M. Villas-Bôas, S. E. Ulloa, and N. Studart, Phys.
Rev. B 70, 041302(R) (2004).

[6] J. T. Stockburger, Phys. Rev. E 59, R4709 (1999).
[7] X. Luo, Q. Xie, B. Wu, Phys. Rev. A 76,

051802(R)(2007); X. Luo, Q. Xie, B. Wu, Phys. Rev.
A 77, 053601(2008).

[8] J. Gong, L. Morales-Molina, and P. Hänggi, Phys. Rev.
Lett. 103, 133002 (2009).

[9] E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic,
and M. K. Oberthaler, Phys. Rev. Lett. 100, 190405
(2008).



8

[10] H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zen-
esini, O. Morsch, and E. Arimondo, Phys. Rev. Lett. 99,
220403 (2007).

[11] T. Salger, S. Kling, T. King, C. Geckeler, L. M. Molina,
and M. Weitz, Science 326, 1241 (2009).

[12] G. Lu, W. Hai, Phys. Rev. A 83, 053424 (2011).
[13] O. Romero Isart and J. J.Garćıa-Ripoll, Phys. Rev. A
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