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A quantum theoretical description of photoemission by a single laser-driven electron wave packet
is presented. Energy-momentum conservation ensures that the partial emissions from individual
momentum components of the electron wave packet do not interfere when the driving field is unidi-
rectional. In other words, light scattering by an electron packet is independent of the phases of the
pure momentum states comprising the packet; the size of the electron wave packet doesn’t matter.
This result holds also in the case of high-intensity multiphoton scattering. Our analysis is first pre-
sented in the QED framework. Since QED permits the second-quantized entangled electron-photon
final state to be projected onto pure plane-wave states, the Born probability interpretation requires
these projections to be first squared and then summed to find an overall probability of a scattering
event. The QED treatment indicates how a semiclassical framework can be developed to recover
the key features of the correct result.

PACS numbers: 41.60.-m, 42.50.Ct , 42.50.Xa

I. INTRODUCTION

The quantum theory of scattering processes relies on the concept of particle wave packets in order to describe the
incoming and outgoing quantum states. A wave packet is localized both in coordinate and momentum space (within
the constraints of the Heisenberg’s uncertainty principle) and is, thus, the quantum mechanical counterpart of a
classical moving point-particle. In contrast, essentially all concrete calculations in textbooks and the literature are
done for plane-wave states, which have definite momentum and are spread over all space. We show how this traditional
simplified context has high relevance to the interaction between quantum mechanical packets, a connection that has
been under appreciated.

Since the invention of the laser in 1960, many theoretical studies have considered scattering of electromagnetic
radiation by particles (see [1] for a review). Due to its fundamental significance, the first process investigated was
photoemission by an electron, which is kinematically allowed in the presence of a laser field and proceeds via Thomson
(or Compton) scattering of laser photons; see [2] for early work and [3] for more recent treatments. All of these
quantum-mechanical treatments employ plane-wave electron states, following standard practice. The classical theory
of photoemission by free electrons in laser fields has been treated in a seminal paper by Sarachik and Schappert [4]
(see also [5]).

Early considerations of the dynamics of laser-driven single-electron wave packets date back to the 1960s [6]. More
recently, interesting effects have been revealed, such as wave-packet spreading, deformation (tilting and Lorentz
contraction), shearing, and the formation of multiple peaks when the wave packet spreads to the scale of the driving-
field wavelength [7–11]. In fact, a free electron wave packet with an initial spatial size on the scale of an atom
undergoes rapid spreading in a realistic laser focus, the electron packet eventually reaching and even exceeding the
scale of an optical wavelength [12, 13]. This raises the question as to how a single-electron wave packet radiates,
especially when it undergoes such highly nondipole dynamics, where different parts of the same electron wave packet
experience different phases of a stimulating laser field. A classical charge distribution oscillating in this way would
exhibit pronounced suppression of the scattered radiation field, owing to interference. The question therefore arises
as to whether under these conditions quantum (path) interference similarly influences field-induced photoemission by
a single electron.

Theoretical efforts to answer this question have been undertaken recently [12–16]. Cheng et al. performed a
1-D quantum-field simulation showing that scalar bosons emitted by a spatially-diffuse fermion packet exhibit no
interference [16]. The problem is of growing interest since single-atom and single-electron experiments are becoming
feasible where the behavior of the particle’s wave function is relevant. Experiments on multiphoton Thomson and
Compton scattering from many-electron samples in external laser fields have been performed in the past [17].

In this article, we extend our previous study [15] and provide a more comprehensive theoretical discussion of
photoemission by a single-electron wave packet in a laser field. Although the outgoing light constitutes a photon wave
packet, the probability interpretation of quantum mechanics constructs probability amplitudes by projecting the final
state onto individual basis modes (such as plane waves). The probabilities for individual outgoing modes are then
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summed incoherently over the various possibilities [18]. We show then that if the scattered photon is measured to
be in a momentum eigenstate, the different momentum components of the initial electron state do not interfere if
the stimulating field is unidirectional. This result is dictated by energy-momentum conservation. (See [19, 20] for a
discussion of conservation laws in the packet-packet context.) Only one momentum component of the initial electron
wave packet can contribute to a given momentum component of the outgoing electron via photoemission into a given
plane wave. Consequently, we find that the scattered light is insensitive to the spatial size of the electron wave packet.

This article is organized as follows: In Sec. II, we discuss the shortcomings of a first-quantized theory of radiation
scattering by an electron. Section III computes the scattering amplitude in a second-quantized framework and
highlights the requirement that the outgoing photon be projected onto an eigenstate before summing probabilities.
Section IV develops a semiclassical theory where the first-quantized framework is salvaged via an ad hoc procedure
prescribed by QED. Section V generalizes the analysis to the multiphoton regime. In Sec. VI, we comment on the
scenario of multidirectional incident light and argue that unidirectional light is the appropriate context to explore the
possibility of radiative interference in the emission from a large electron packet.

II. FAILURE OF A SELF-CONSISTENT FIRST-QUANTIZED THEORY

We consider a single electron interacting with an electromagnetic field. In the first-quantized picture, the electron
is treated as a wave on equal footing with the classical electromagnetic field. Intuition suggests that the electron
wave packet described by Ψ(r, t) gives rise to the source term J(r, t) (and ρ(r, t)), which in turn is responsible for
the scattered light represented by an electromagnetic potential A(r, t) (and Φ(r, t)). For simplicity, we neglect spin
effects and model electron dynamics by the Klein-Gordon equation:(

i~
∂

∂t
− eΦ

)2

Ψ = c2
(
−i~∇− e

c
A
)2

Ψ +m2c4Ψ, (1)

where the electron has charge e = −|e| and mass m. Similarly, the vector potential satisfies the laws of electromag-
netism, expressed as

∇2A− 1

c2
∂2

∂t2
A = −4π

c
J and ∇2Φ− 1

c2
∂2

∂t2
Φ = 4πρ (2)

in the Lorenz gauge. Throughout this article, we employ the Gaussian system of units.
To follow a self-consistent picture, one solves the Klein-Gordon equation (1) and Maxwell’s equations (2) with

coupling via the current density J = e
2mΨ∗

(
−i~∇− e

cA
)

Ψ+C.C. (and charge density ρ = e
2mc2 Ψ∗ (i~∂/∂t− eΦ) Ψ+

C.C.). Under the initial condition of a light pulse directed towards the electron wave packet, one expects the interaction
to create a classical scattered light field emerging from an altered electron wave packet. Solving these coupled equations
either analytically or numerically is extremely difficult, which necessitates approximations. For long wavelengths, the
equations can be approximately decoupled by including only the incident field in (1) and the expression for J (thereby
forfeiting radiation reaction).

Regardless of the exact approach for generating a solution, this first-quantized approach leads to dramatic suppres-
sion of radiation for many directions when the electron wave packet becomes spatially large [12, 13]. This is evident
in the particular solution to (2) [21]:

As (r, t) =
1

c

∫
d3r′

J (r′, t− |r− r′| /c)
|r− r′|

. (3)

If the direction of J alternates across its distribution (i.e. owing to different phases of a driving field), the spatial sum
resulting in As is severely suppressed for the majority of directions.

The straightforward sourcing of (2) by (1) gives an entirely wrong result. While interference in the radiation field
may seem plausible, consistency requires that one also include ρ and Φ, which leads to the absurd consequence of
electron-wave self repulsion. Classical charge distributions exhibit this effect when different regions of a single charge
density repel each other via Coulomb’s law. Interestingly, (1) and (2), as written, are the launching point for quantum
electrodynamics (QED). The process of second quantization removes both single-particle self repulsion and radiative
interference, as will be highlighted in Sec. III. Moreover, it correctly describes radiation reaction.

Treating the electron as a classical point particle interacting with the Maxwell field gives the correct scattering
cross section in the Thomson limit (which neglects radiation reaction). In contrast, the self-consistent first-quantized
picture described above fails in this respect (unless the electron wave packet happens to be small compared to the
stimulating wavelength). However, after a number of ad hoc procedures are imposed, the results of the first-quantized
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picture can be brought into close agreement with QED. We reserve the word ‘semiclassical’ to refer to this QED-
informed first-quantized theory. The first and obvious procedure is to drop single-electron self repulsion from Φ, as is
routinely done when solving the hydrogen atom. We describe further necessary modifications in Sec. IV.

III. SECOND-QUANTIZED SCATTERING AMPLITUDE

We begin by reminding the reader of a basic tenet of quantum mechanics. When calculating probabilities for
observable measurements, one projects the normalized state onto an eigenstate of the measurement. These projection
amplitudes are first squared and then summed over a subset of the basis eigenvalues. This principle does not change
when the state includes more than one species of particles (i.e. an electron and photon).

When considering light scattered from electrons, we must project onto a complete basis that includes both the
electron and the photon. In the subspace of states that include only a single electron and a single photon, we can
resolve the identity as follows:

1 =
∑
p′

∑
k′λ′

∣∣p′;k′λ′〉〈p′;k′λ′∣∣ , (4)

where we have chosen a momentum plane-wave basis (for the sake of kinematic transparency in upcoming calculations).
If we insert this expression inside the normalization condition of a single-electron-single-photon state |ψ (t)〉, we find
that

1 = 〈ψ (t) |1|ψ (t)〉 =
∑
p′

∑
k′λ′

∣∣〈p′;k′λ′|ψ (t)〉
∣∣2 . (5)

This merely says that, for this state, the probability of measuring a single electron (with any momentum) and a single
photon (also with any momentum and polarization) is equal to 1. Born’s probabilistic interpretation [18] states that
summing over subregions of {p′,k′λ′} yields a corresponding probability of finding the particles in that subregion.

We now proceed with a QED calculation of light scattered from a single electron. If the incident beam of light
contains many photons, as is the case for this paper, the probabilistic statement in (5) must be augmented so as to
contain those occupied states. Suppose that only modes parallel to ẑ (denoted by Vkzλz ) are occupied by the initial
pulse, and that a single photon k′λ′ is radiated into a different mode. Then (5) becomes

1 =
∑
p′

∑
k′λ′ 6∈Vkzλz

∑
{nkzλz}

|〈p′;k′λ′; {nkzλz}|ψ(t)〉|2 , (6)

where {nkzλz} is the set of occupation numbers for modes belonging to Vkzλz . To simulate an incident laser pulse, we
choose the initial photon state to be a multi-mode coherent state |{αkzλz}〉, which is an eigenstate of the annihilation
portion of the quantized photon field operator:

Â(+)(x)|{αkzλz}〉 =

(∑
kλ

(
2π~c
V k

)(1/2)

âkλεkλei(k·x−ckt)

)
|{αkzλz}〉

=

 ∑
Vkzλz

(
2π~c
V kz

)(1/2)

αkzλzεkzλze
ikz(z−ct)

 |{αkzλz}〉
≡ A

(+)
{αkzλz}

(x)|{αkzλz}〉.

(7)

The expectation value of the photon field operator Â(x) = Â(+)(x) + Â(−)(x) in the state |{αkzλz}〉 is equal to the

c-number A
(+)
{αkzλz}

(x) + C.C., which could be a pulse. (Note the absence of the hat for the classical-field function.)

For the packet-packet problem that we wish to address in this paper, we take the initial state of the system to be

|ψ(−∞)〉 =

(∫
d3pβp|p〉

)
⊗ |{αkzλz}〉 =

∫
d3pβp|p; {αkzλz}〉. (8)

The electron wave packet might, for example, be a Gaussian with βp = (p0
√
π)−3/2 exp[−p2/(2p2

0)], where the wave
packet is normalized to ensure 〈Ψ|Ψ〉 = 1. To compute scattering probabilities based on (6), we are interested in
objects of the form ∣∣∣〈p′;k′λ′; {nkzλz}|Ŝ|ψ(−∞)〉

∣∣∣2 . (9)
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FIG. 1: Light pulse (comprised of a range of kz) incident on an electron wave packet (comprised of a range of p). We consider
scattering into a state |p′;k′λ′; {nkzλz}〉.

The scattering operator Ŝ maps the initial state to the final state. Figure 1 depicts the bra and ket of (9). We

approximate Ŝ by its lowest-order, nonvanishing term in the Dyson expansion, given in Scalar QED [22, 23] by the
normally-ordered operator

Ŝ(1) = − ie
2

~c

∫
d4x : Â(x) · Â(x)φ̂†(x)φ̂(x) :, (10)

where the scalar field operator (representing the spinless Klein-Gordon electron) is given by

φ̂(x) =

∫
d3p

1√
2(2π~)3Ep

(
b̂(p)ei(p·x−Ept)/~ + d̂†(p)e−i(p·x−Ept)/~

)
. (11)

The operators b̂, d̂, and their adjoints satisfy the usual bosonic commutation relations: [b̂(p), b̂†(p′)] = δ3(p − p′),

[d̂(p), d̂†(p′)] = δ3(p− p′), with all other commutators vanishing.
A straightforward calculation shows that

〈p′;k′λ′; {nkzλz}|Ŝ(1)|ψ(−∞)〉 = − i

2mc2~
〈{nkzλz}|{αkzλz}〉

∫
d3pβp

∫ ∞
−∞

dt

∫
d3rΨ∗p′VintΨp, (12)

where

Ψp(r, t) =

√
mc2

(2π~)3Ep
e
i
~ (p·r−Ept) (13)

and

Vint =
〈k′; {nkzλz}|e2 : Â · Â : |{αkzλz}〉

〈{nkzλz}|{αkzλz}〉

= 2e2A
(+)
{αkzλz}

(x) ·

(√
2π~c
V k′

ε∗k′λ′e
−i(k′·x−ck′t)

)
.

(14)

Although the final state |ψ (∞)〉 ∼= Ŝ(1)|ψ (−∞)〉 represents an electron-photon packet, it is first projected onto our
basis plane-wave states before squaring and then summing in (6). This is key to the fact that the outgoing scattered
light does not interfere.

When computing probabilities in the state space of {p′,k′λ′}, we should sum over the unobserved, forward-scattered
photons. In this case, the factor 〈{nkzλz}|{αkzλz}〉 in (12) disappears because∑

{nkzλz}

|〈{nkzλz}|{αkzλz}〉|
2

= 1 (15)

owing to completeness. Henceforth in this analysis, we ignore this factor with the understanding that the sum over
{nkz} has already been performed.
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We express the positive-frequency component of the incident light pulse as

A
(+)
{αkzλz}

(z − ct) =

∞∫
0

dkzεkzAkze
ikz(z−ct), (16)

which allows for an arbitrary electromagnetic pulse traveling in the z-direction. For example, the (positive-frequency)

Fourier components for the Gaussian waveform Ai(z − ct) = A0εe−(z−ct)2/(2∆z2)+ikzo(z−ct) + C.C. are given by

εkzAkz = A0∆z/
√

2π
[
εe−∆z2(kz−kzo)2/2 + ε∗e−∆z2(kz+kzo)2/2

]
.

After plugging (16) into (12), we arrive at

〈p′;k′λ′; {nkzλz}|Ŝ(1)|ψ(−∞)〉 = −i

√
(2π)

3 ~ce4

V

∞∫
0

dkz

∫
d3p

Akzβpεkz · ε∗k′λ′√
Ep′Epk′

×

δ3 (p + ~kz ẑ− p′ − ~k′) δ (Ep + ~ckz − Ep′ − ~ck′) .

(17)

The arguments of the delta functions above enforce momentum and energy conservation between the initial and
measured states.

The delta functions in (17) allow us to perform all integration (a benefit of having restricted the analysis to
unidirectional incident light). After performing the momentum integration, the expression reduces to

〈p′;k′λ′; {nkzλz}|Ŝ(1)|ψ(−∞)〉 = −i
√

(2π)3~ce4
V

∞∫
0

dkz
Akzβp̃εkz ·ε

∗
k′λ′√

Ep̃Ep′k
′ δ (Ep̃ + ~ckz − Ep′ − ~ck′) , (18)

where p̃ = p′ + ~k′ − ~kz ẑ so that Ep̃ must now be considered to depend on kz. The remaining delta function may
be rewritten as

δ (Ep̃ + ~ckz − Ep′ − ~ck′) =
Ep̃δ

(
kz − k̃z

)
~c [Ep′ + ~ck′ − c (p′ + ~k′) · ẑ]

, (19)

where k̃z =
k′Ep′−ck

′·p′

Ep′+~ck′−c(p′+~k′)·ẑ . Then (18) collapses to

〈p′;k′λ′; {nkzλz}|Ŝ(1)|ψ(−∞)〉 = −i

√
(2π)

3
e4Ep̃

~cV Ep′k′
Ak̃zβp̃εk̃z · ε

∗
k′λ′

[Ep′ + ~ck′ − c (p′ + ~k′) · ẑ]
. (20)

For a given mode of scattered light k′λ′, the delta functions have ensured that there is only one set of inputs (electron
momentum component and incident photon energy) that give rise to (20). The probability of a scattering event
occurring is

P =
∑
λ′=1,2

V

(2π)
3

∫
d3k′

∫
d3p′

∣∣∣〈p′;k′λ′; {nkzλz}|Ŝ(1)|ψ(−∞)〉
∣∣∣2

=
e4

~c
∑
λ′=1,2

∫
d3k′

∫
d3p′

Ep̃

∣∣Ak̃z ∣∣2 |βp̃|2 ∣∣εk̃z · ε∗k′λ′ ∣∣2
Ep′k′ [Ep′ + ~ck′ − c (p′ + ~k′) · ẑ]

2 .

(21)

Taking the limit of large V , we have replaced the summation over discrete modes by an integral:
∑
k′
→ V

(2π)3

∫
d3k′.

In Appendix A, we recover the traditional single-mode cross section as a suitable limit of the above packet-packet
formula.

The important thing to notice is that (20) contains only one term, which is squared in (21) before the integrations
over d3k′ and d3p′ take place. This means that the probability is insensitive to the complex phases of βp̃ and Ak̃z ,

as is immediately appreciated in (21). This feature is significant in that the initial wave packet may experience an
arbitrary amount of free-particle spreading (described, say, by time T ) before the stimulating field arrives, as this
spreading is determined by relative phases of the form

βp → βpe−iEpT/~. (22)

Thus, the spatial extent of the packets does not impact the likelihood of scattering. We have developed this result
in a packet-packet context, as opposed to standard pedagogy which delocalizes the incident photon and electron with
single-mode initial states.
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IV. SEMICLASSICAL RADIATION SCATTERING

We now return to the first-quantized picture and inject the attributes necessary to bring it into alignment with
QED. It is standard practice simply to neglect J (and Φ) in (2) and to prescribe the form of both the incoming and
scattered portions of the vector potential. This has the virtue of not only decoupling and thus greatly simplifying the
equations, but, as it turns out, also brings the result into agreement with perturbative QED.

The total vector potential is decomposed as

A = Ai + As, (23)

where Ai and As are the incident and scattered vector potentials, respectively. We choose the real-valued incident

field to be A
(+)
{αkzλz}

+ C.C., where we’ve defined A
(+)
{αkzλz}

in (16). We assume that As is small. To the extent that

As is ignored, the Klein-Gordon equation (1) can be solved exactly if the incident field has the form Ai (z − ct).
In this case, a solution may be constructed from Volkov states ΨV

p (r, t), which satisfy (1) and are parameterized by
asymptotic momentum p. For the reader’s convenience, a brief description of Volkov states is provided in Appendix
B.

An arbitrary electron wave packet under the influence of only the incident field may be constructed as

Ψ(r, t) =

∫
d3pβpΨV

p (r, t). (24)

If we also include the scattered light As, with its arbitrary direction, we may still use a superposition of Volkov states
since they form a complete basis, but the coefficients now acquire time dependence. We can write this as

Ψ(r, t) ∼=
∫
d3p

[
β(0)
p + β(1)

p (t)
]

ΨV
p (r, t). (25)

We will allow the initial wave packet to be dictated by the time-independent coefficients β
(0)
p , which might have a

distribution of the example following (8). The time dependence is then carried by β
(1)
p (t), taken to be zero at t = −∞,

which can give rise to scattering phenomena.

The evolution of β
(1)
p (t) is governed by the Klein-Gordon equation (1). If β

(1)
p (t) is approximated by a first-order

correction in a perturbative expansion, one arrives at (see Appendix B)

β
(1)
p′ (t =∞) = − i

2mc2~

∫
d3p β(0)

p

∞∫
−∞

dt

∫
d3rΨV ∗

p′ VintΨ
V
p . (26)

Notice the resemblance between (26) and (12).
Since (26) involves the integration of Volkov states, we can greatly simplify the analysis if we limit the strength of

the incident field such that eAi
~ω � 1. This restricts the intensity to I � 8 × 1018 W/cm2

(
nm
λ

)4
. At low intensities,

the Volkov wave functions (B1) reduce to the plane-wave states defined in (13). The high-intensity case is considered
in Sec. V. For initial packets whose constituent momenta satisfy p� mc, the essential interaction term works out to
be

Vint = 2e2Ai ·As. (27)

The first term in (B4) vanishes at this lowest order of perturbation theory when the integration in (26) is performed
(although it would contribute in the next perturbative iteration if we had not assumed p� mc).

Aside from needing to choose a specific initial electron packet via the coefficients β
(0)
p , the scattered field As must

be specified in (27). This is a key ingredient where QED is needed to guide the semiclassical approach. We want
(26)-(27) to match the QED formulas (12)-(14). Within the semiclassical framework, we are tempted to use the
real-valued field

As(r, t) =

√
2π~c
V k′

εk′λ′e
i(k′·r−ck′t) + C.C., (28)

where εk′λ′ is either of two orthogonal polarizations for k′ (λ′ = 1, 2). This describes a plane wave with an amplitude
chosen such that a large normalizing volume V contains the energy of one photon, ~ck′. However, it is only the second
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term in (28) (represented by C.C.) that gives rise to the correct QED result. We keep the extraneous term for now
to better appreciate the problem that it causes.

Introducing the single-mode potential (28) as a perturbation in the electronic wave equation is typical [24], and it
produces the effect of the projection discussed below (5). Keep in mind that by choosing the scattered field, we have
overwritten what (2) sourced by J would dictate. In a technical sense, referring to (28) as the ‘emitted photon’ is
somewhat of a misnomer. Prior to the measurement, many k-vectors may be present in the scattered field. Projecting
onto a basis mode (in this case a monochromatic plane wave) allows one to connect measurements with calculable
probabilities.

After plugging (27), (28), (16), and (13) into (26), we arrive at

β
(1)
p′ (∞) = −i

√
2πc
~V

e2

(2π~)3

∞∫
0

dkz
∫
d3p

β(0)
p√

EpEp′k
′

∞∫
−∞

dt
∫
d3r e−

i
~ [(p′−p)·r−(Ep′−Ep)t]

×
[
εkz · εk′λ′Akzeikz(z−ct)+i(k′·r−ck′t) + ε∗kz · εk′λ′A

∗
kz

e−ikz(z−ct)+i(k′·r−ck′t)

+εkz · ε∗k′λ′Akzeikz(z−ct)−i(k′·r−ck′t) + ε∗kz · ε
∗
k′λ′A

∗
kz

e−ikz(z−ct)−i(k′·r−ck′t)

]
.

(29)

The integrations over time and space yield energy-momentum delta functions for each of the four terms in (29). One of
the four terms produces the lowest-order QED result (17). Two of the four terms yield products of incompatible delta

functions that vanish, as dictated by the constraints Ep =
√
p2c2 +m2c4 and E p′ =

√
p′2c2 +m2c4. Another term

is proportional to δ3 (p− ~kz ẑ− p′ + ~k′) δ (Ep − ~ckz − Ep′ + ~ck′), describing energy-momentum conservation for
the wrong process. This problematic term does not arise if we keep only the complex-conjugate term in (28), as
mentioned earlier.

The semiclassical result hinges crucially on the ad hoc treatment of the scattered light as a single mode, with
summing over modes k′ coming only after the probability is computed. This rightly seems at odds with the fact that
the outgoing photon is undoubtedly some kind of packet. If the stimulating light has compact temporal support, then
depending on distances involved, one would expect a photodetector monitoring scattered photons to click within a
certain time interval (in the event that there is a click). On the other hand, a single-mode plane wave is unable to
specify a time window. Nevertheless, if we tried to represent an outgoing photon with some sort of plausible packet
(i.e. a superposition of modes) within the semiclassical framework, we would get a result inconsistent with QED.

V. SEMICLASSICAL MULTIPHOTON SCATTERING

We have shown in the previous sections that interference is kinematically forbidden in the low-intensity limit (single-
photon absorption). One might suspect that this conclusion changes at high intensity of the driving laser field which
allows for multiphoton Thomson scattering. However, we show below that this is not the case. The QED treatment in
Sec. III treats the incident field perturbatively; second-quantizing in the Furry picture [25] upgrades the free-particle
states in (12) to Volkov states, improving the agreement between (26) and (12).

We have to evaluate the amplitude (26) with the initial and final states given by Volkov functions (B1). To simplify
the analysis, we consider the incident field to have the form

Ai(η) = A0ε cos(kzη), (30)

where η ≡ z − ct. In this case, the Volkov states defined by (B1) read

ΨV
p (r, t) =

√
mc2

(2π~)3Ep
exp

[
i

~
(q · r− Eqt)−

ieA0p · ε
~kz(Ep − cpz)

sin(kzη) +
ie2A2

0

8~ckz(Ep − cpz)
sin(2kzη)

]
, (31)

where we have introduced the dressed energy and momentum

q ≡ p +
e2A2

0

4c(Ep − cpz)
ẑ

Eq ≡ Ep +
e2A2

0

4(Ep − cpz)
.

(32)

By inserting these wave functions and the first two interaction terms of (B4) into (26), we obtain

β
(1)
p′ (∞) =

−i
mc2~

∫
d3pβ(0)

p

∫
dt

∫
d3rΨV ∗

p′ ΨV
p×

As ·
[
−ecq + e2A0

(
ε +

cp · ε
Ep − cpz

ẑ

)
cos(kzη)− e3A2

0

4(Ep − cpz)
cos(2kzη)ẑ

] (33)
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for the scattering matrix.
The standard method to evaluate matrix elements involving Volkov functions exploits the fact that the periodic

part of these functions can be expanded into a Fourier series. To this end, we write

ΨV ∗
p′ ΨV

p =
mc2

(2π~)3
√
Ep′Ep

e
i
~ [(q−q′)·r−(Eq−Eq′ )t]ei[β1 sin(kzη)+β2 sin(2kzη)], (34)

where we define

β1 ≡
eA0

~kz
ε ·
(

p′

Ep′ − cp′z
− p

Ep − cpz

)
β2 ≡

e2A2
0

8~ckz

(
1

Ep − cpz
− 1

Ep′ − cp′z

) . (35)

The generating function for Bessel functions may be used to produce the following series expansions:

ei[β1 sin(kzη)+β2 sin(2kzη)] =

∞∑
n=−∞

Bneinkzη

cos(η)ei[β1 sin(kzη)+β2 sin(2kzη)] =

∞∑
n=−∞

Cneinkzη

cos(2η)ei[β1 sin(kzη)+β2 sin(2kzη)] =

∞∑
n=−∞

Dneinkzη,

(36)

where the Fourier coefficients

Bn = Jn(β1, β2)

Cn =
1

2
[Jn+1(β1, β2) + Jn−1(β1, β2)]

Dn =
1

2
[Jn+2(β1, β2) + Jn−2(β1, β2)]

(37)

can be expressed in terms of ordinary Bessel functions via Jn(β1, β2) =
∑
l Jn−2l(β1)Jl(β2). Combining (36), (33),

and the complex conjugate term of (28) (in the spirit of (14)) yields:

β
(1)
p′ (∞) = −i2π

√
2π~c
V k′

∫
d3p

β
(0)
p√
EpEp′

∑
n

δ (Eq′ + ~ck′ − Eq − n~ckz) δ (q′ + ~k′ − q− n~kz ẑ)×

εk′λ′ ·
[
−ecqBn + e2A0

(
ε +

cp · ε
Ep − cpz

ẑ

)
Cn −

e3A2
0

4(Ep − cpz)
ẑDn

]
.

(38)

This quantity must be squared and then summed in the sense of (5). The arguments of the energy-momentum delta
functions indicate that a nonperturbative treatment of the incident field allows for the absorption and re-emission of
many photons.

A careful analysis of (38) indicates that the momentum integral indeed collapses. One may substitute from the p(z)

delta function into the energy delta function, yielding

δ (Eq′ + ~ck′ − Eq − n~ckz)→ δ
(
Ep′ + ~ck′ − Ep − cp′(z) − ck

′
(z) + cp(z)

)
. (39)

This final constraint, along with the delta functions for p(x) and p(y), uniquely determines p in terms of k′ and p′ –

parameters that are fixed before (38) is squared. As before, we see that the relative phases of β
(0)
p have no influence

on the emission of radiation. Even for high-intensity light beams, the size of the electron wave packet doesn’t matter.
One should not confuse (the lack of) spatial interferences with the type of strong-field interference studied by

Narozhny and Fofanov [26], where the quantum electron experiences a bichromatic laser field of commensurate fre-
quencies. In this case, interferences occur between the different constituents of incident light pulse.
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FIG. 2: The electron may be inside or outside of a laser focus depending on the phases of βp.

VI. MULTIDIRECTIONAL STIMULATION

In demonstrating that the probability of a scattering event (21) is independent of the phases of both βp and Akz ,
we used an incident pulse (16) traveling strictly in one direction. Since the spatial size of the initial electron packet
can be made arbitrarily large by simply adjusting the phases via (22), one concludes that the strength of photon
scattering is independent of the packet size of the scattering electron. On the other hand, if the stimulating light
is multidirectional, the scattering of the radiation does depend on the phases of both βp and Akz . In this case, the
size and shape of the electron wave packet and the electromagnetic pulse do matter. This, however, is expected and
altogether ordinary. It does not negate the aforementioned conclusion.

Multidirectional light exhibits interference fringes, which means that different regions of space can host dramatically
different amounts of fluence. For example, multiple-direction modes can be used to create a focused laser beam, where
a small lateral translation in position can make the difference between being inside or outside of the beam. The phases

on β
(0)
p determine not only the initial size of an electron packet, but also its location, and in particular the amount of

overlap with regions of high fluence. As illustrated in Fig. 2, the Fourier translation theorem can move the electron
entirely out of the focus via phase adjustments.

In the same way, scattering by a classical point electron shows a similar sensitivity to position under multidirectional
stimulation. It is therefore appropriate that we have addressed the question of whether scattering is sensitive to the
size of the electron wave packet under a scenario of unidirectional stimulation. In this way, it is guaranteed that the
entire electron wave packet experiences the same incident light pulse.

VII. CONCLUSION

In this analysis, we have investigated the possibility of radiative interference from a laser-driven single-electron
wave packet. Born’s probability interpretation of quantum mechanics coupled with energy-momentum conservation
predicts that radiative interference does not occur. We have outlined the various ingredients required to make the
lowest-order semiclassical amplitude (for a single electron) exactly match the lowest-order QED amplitude (for a
single-electron-single-photon system). The ad hoc prescription for this, as evidenced by (14), is to stimulate the
first-quantized electron with the complex-conjugate piece of the single-mode scattered field (28). We then interpret
the inherently single-particle scattering amplitude as a two-particle amplitude, intended to be first squared and then
summed over the two-particle phase space in the sense of (6). Importantly, we find that sourcing Maxwell’s equations
with the single-particle probability current gives a result that disagrees with QED.

Measurements of Compton/Thomson scattering provide an indication that electrons do not radiate as extended
charge distributions. For example, >10 keV photons scattered from electrons bound to helium corresponds to a
scenario where the size of the electron wave packet is larger than the wavelengths involved. In this case, the scattered
photons have energy well below the electron rest energy, and the forward versus back scatter is symmetric (i.e.
Thomson limit) [21, 27]. It is interesting to note that A. H. Compton initially proposed a “large electron” model
to explain the decrease in cross section with angle for harder x rays, which he later abandoned when the effect of
momentum recoil was understood [28].

In conclusion, we have studied the amount of light that an electron scatters out the side of a laser focus. We
have shown that individual electrons radiate with the strength of point emitters. Our results are soon to be tested
in an experiment that combines the sensitive techniques of quantum optics (e.g., single-photon detectors) with the
traditionally opposite and incompatible discipline of high-intensity laser physics.
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Appendix A: Scattering Cross Section

In this appendix, we derive the traditional scattering cross section, applicable to plane waves, starting from the
packet-packet formulation (21). Our approach sidesteps the usual representation of the interaction time as T = 2πδ(0),
which appears in the traditional derivation. We simply take a narrowband limit on the incident light pulse and the
electron momentum spread. For example, we may let p0 and ∆z, defined in the example Gaussian distributions
accompanying (24) and (16), be arbitrarily small positive numbers. In this case, we may approximate the momentum
distributions by

|βp̃|2 = δ3 (p̃) and
∣∣Ak̃z ∣∣2 =

Φ

k2
zo

δ(k̃z − kzo) (A1)

where Φ is the fluence of the incident light pulse (i.e. Poynting vector integrated over time; units of energy per area).

Recall that p̃ = p′ + ~k′ − ~k̃z ẑ and k̃z =
k′Ep′−ck

′·p′

Ep′+~ck′−c(p′+~k′)·ẑ .

Substituting the above distributions into (21) and integrating over momentum (aided by setting k̃z to kzo, as

enforced by δ(k̃z − kzo)), we arrive at

P =
mce4Φ

~k2
zo

∑
λ′=1,2

∫
dΩk′

∫
k′2dk′

|εkz · ε∗k′λ′ |
2
δ(k̃z − kzo)

k′E~kzoẑ−~k′ [E~kzoẑ−~k′ + ~ck′ − c~kzo]2
(A2)

The remaining delta function can be manipulated as follows:

δ
(
k̃z − kzo

)
=
k′E~kzoẑ−~k′

kzomc2
δ

(
k′ −

[
1

kzo
+

~
mc

(1− cos θ)

]−1
)

(A3)

The argument of this delta function equivalently enforces E~kzoẑ−~k′ +~ck′−~ckzo = mc2, as evidenced by (19). The
integration over k′ in (A2) is then easily performed.

The well-known cross-section formula is then obtained by dividing the probability by the number of incident photons
per area:

σ =
P

Φ/(~ckzo)
=

e4

m2c4

∑
λ′=1,2

∫
dΩk′ |εkz · ε∗k′λ′ |

2 k
′2

k2
zo

(A4)

where 1
k′ = 1

kzo
+ ~

mc (1− cos θ).

Appendix B: S Matrix

When the vector potential has (unidirectional) functional dependence Ai (z − ct) and in the absence of a scalar
potential Φ, the Volkov states

ΨV
p (r, t) =

√
mc2

(2π~)3Ep
exp

{
i
p · r− Ept

~
+

i

~(pzc− Ep)

∫ z−ct

−∞

[
ep ·Ai(`)−

e2

2c
A2
i (`)

]
d`

}
(B1)

satisfy the Klein-Gordon equation (1). These states, which form a complete solution basis, are parameterized by

asymptotic momentum p and energy Ep =
√
p2c2 +m2c4. The Volkov states (B1) are normalized according to∫

d3r
[
ΨV ∗

p (r, t)Ψ̇V
p′(r, t)−ΨV

p′(r, t)Ψ̇
V
p (r, t)

]
=

2mc2

i~
δ(p− p′). (B2)
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When the complete vector potential A (r, t) = Ai (z − ct) + λAs (r, t) is inserted into the Klein-Gordon equation
(1), we have

−~2 ∂
2Ψ

∂t2
=
[
(−i~c∇− eAi)

2
+m2c4

]
Ψ + λVintΨ + λ2V

(2)
int , (B3)

where the interaction terms are given by (assuming ∇ ·As = 0)

Vint ≡ 2ie~cAs · ∇+ 2e2Ai ·As and V
(2)
int ≡ e

2A2
s. (B4)

Here λ is the usual expansion parameter of perturbation theory that will later be set to one.
We construct a wave packet comprised of Volkov states using the form (24). Since the full vector potential A (r, t)

is no longer unidirectional, the coefficients must carry time dependence, which we write as

βp(t) = β(0)
p + λβ(1)

p (t) + . . . (B5)

We take β
(0)
p to be time independent, specifying the initial state (implying β

(1)
p (t = −∞) = 0). Installing (B5) into

the Klein-Gordon equation (B3) and keeping terms up to order λ leads to

−~2

∫
d3p

(
β̈(1)
p ΨV

p + 2β̇(1)
p Ψ̇V

p

)
=

∫
d3p β(0)

p VintΨ
V
p . (B6)

Terms that do not involve a power of λ cancel identically, since by definition −~2 ∂2

∂t2 ΨV
p =[

(−i~c∇− eAi)
2

+m2c4
]

ΨV
p .

Next we multiply both sides of (B6) by ΨV ∗
p′ and integrate over r and t. The first term that results on the left-hand

side can be rewritten by performing an integration by parts:∫
dtΨV ∗

p′ β̈
(1)
p ΨV

p = β̇(1)
p ΨV ∗

p′ ΨV
p

∣∣∣+∞
−∞
−
∫
dt β̇(1)

p

(
Ψ̇V ∗

p′ ΨV
p + ΨV ∗

p′ Ψ̇V
p

)
. (B7)

The boundary term is zero because we may assume β̇
(1)
p (t = ±∞) = 0 if the electromagnetic disturbance has a

beginning and end. This yields

−~2

∫
dt

∫
d3pβ̇(1)

p

∫
d3r

(
ΨV ∗

p′ Ψ̇V
p − Ψ̇V ∗

p′ ΨV
p

)
=

∫
d3p β(0)

p

∫
d3r

∫
dtΨV ∗

p′ VintΨ
V
p . (B8)

The spatial integral on the left can be performed using (B2), and the resulting delta function collapses the momentum
integral. The time integration becomes trivial, immediately yielding (26).
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