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Interaction and motion of multiple solitons in passively mode-locked (PML) fiber lasers are 

investigated numerically. Three types of relative motions of two solitons are found in PML fiber 

lasers. The numerical results show that the relative motion of solitons attributes to the phase shift, 

which corresponds to the instantaneous frequency of soliton to be nonzero. Different from the 

classical dynamics of billiard balls, the interaction of solitons is similar to Feynman diagram that is a 

pictoral way to represent the interaction of particles. After solitons interact with one another, their 

shapes do not change, but their phases shift and relative motions change. The theoretical results 

demonstrate that the separation of neighboring solitons in laser cavity is about several hundreds of 

picosecond to several nanosecond. The theoretical predictions are in good agreement with the 

experimental results.  

PACS number(s): 42.65.Tg, 42.81.Dp, 42.55.Wd, 42.65.Re 

 

I. INTRODUCTION 

Passively mode-locked (PML) fiber lasers can provide the simple and economic ultrashort-pulse 

sources [1]-[4]. They constitute an ideal platform for exploring new areas of nonlinear dynamics [5]. 

Multiple soliton operation in PML fiber lasers, which has been investigated extensively [2]-[6], is 

the typical result of the conjunction of a relatively strong pumping power. Solitons observed in fiber 

lasers exhibit special features such as the soliton bounding, the soliton bunching, and the 

quasi-harmonic and harmonic mode locking. Bound solitary pulses, so-called soliton molecules 



[2][7], have attracted a great deal of interest due to their important potential applications. Bound 

states of solitons can be predicted in the coupled nonlinear Schrödinger equations (NLSEs) [7][8] 

and the quintic complex Ginzburg-Landau equation [9]. Investigations on the interaction between 

the bound solitons show that the bound pulses always behave as a unit. Usually, the peak-to-peak 

(P2P) separation of bound solitons is less than several pulse-duration [2][7]-[9].  

Different from the bound states of solitons, the P2P separation of soliton bunching can be over 

tens of times larger than the pulse width. Pulse bunching is a special behavior that corresponds to the 

ability of several identical soliton pulses to cluster themselves in a packet. 

The formation and evolution of multiple solitons are studied numerically and experimentally by 

many authors [3][8][10][11]. Various features such as the pump power hysteresis, multi-soliton 

generation, and various modes of multi-soliton operation were observed experimentally and 

investigated theoretically. Tang et al. proved that the soliton shaping of the dispersive waves or the 

continuous-wave (cw) components plays a key role on the generation of additional solitons [8]. In 

our previous reports, it is proved that the mechanism of pulse splitting determines the dual- and 

multi-soliton generation in the net-anomalous-dispersion fiber lasers [12], whereas two pulses are 

gradually formed at the cost of dropping off a pulse in the net-normal-dispersion fiber lasers [7]. 

Theoretical and experimental results show that the PML fiber lasers alternately evolve on the stable 

and unstable mode-locking states as a function of the pump strength [3].  

An important characteristic of the multi-soliton operation of the laser is that solitons always have 

erratic motions. A typically experimental result is demonstrated in Fig. 1. The experimental setup 

and parameters are shown in our previous report [12]. The experimental observations show that 

solitons in the cavity have erratic relative motions. It is import to have a clear understanding of the 

physical mechanism responsible for the relative motion of solitons in the PML fiber lasers. 
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FIG. 1. (Color online) A typical example for the experimentally measured oscilloscope trace of the 

multi-soliton operation of the PML fiber laser. The separation of neighboring solitons is about 

several hundreds of ps to several ns. The output average power is about 1.2 mW. 

 

Although some numerical and experimental investigations for multi-soliton operation were 

reported [3][8][13][14], the investigations for physical mechanism describing the multi-soliton 

behavior are scarce. In our previous report [12], although the multi-soliton formation and evolution 

were studied numerically and experimentally in PML fiber lasers, the physical mechanism is ignored. 

How may types of the relative motions of intracavity solitons are there in PML fiber lasers? What is 

the inherent mechanism that the intracavity solitons have erratic relative motions and stabilize 

themselves at more or less random relative positions? The current work answers these questions. 

Three types of the relative motions of solitons are found in this report. The numerical simulations 

show that solitons have exactly the same pulse properties when they are the steady state. It is found 

that the phase shift determines what and how solitons move. Soliton collision in PML fiber lasers is 

similar to Feynman diagram, rather than the billiard ball collision. 

II. MODELING 

In current work, the nonlinear polarization evolution technique contributes to the passive mode 

locking of the laser. The two coupled NLSEs that involve a vector electric field can model the 

lightwave propagation in the weakly birefringent fibers accurately. The coupled equations are 

expressed by [3][15][16] 
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where u and v denote the envelopes of the optical pulses along the two orthogonal polarization axes 

of the fiber. They are complex functions that depend on T and z. T and z represent the time and the 

propagation distance, respectively. α, δ, β2, γ, and Ωg are the loss coefficient of fiber, the group 

velocity difference between the two polarization modes, the fiber dispersion, the cubic refractive 

nonlinearity of the medium, and the bandwidth of the laser gain, respectively. g is the net gain, 

which describes the gain function of doped fiber. It is expressed by ( )0 exp /p sg g E E= −  [17], 

where g0, Es, and Ep are the small-signal gain, the gain saturation energy (it is pump-power 

dependent [3]), and the pulse energy, respectively. When the soliton propagates through the laser 

cavity, the intensity transmission Ti is expressed as 

2 2 2 2
1 2sin ( )sin ( ) cos ( ) cos ( ) 0.5sin(2 )sin(2 ) cos( )iT θ ϕ θ ϕ θ ϕ φ φ= + + + ,    (2) 

where φ1 is the phase delay caused by the polarization controllers and φ2 is the phase delay resulting 

from the fiber, including both the linear phase delay and the nonlinear phase delay. The polarizer and 

analyzer have an orientation of angles θ and ϕ with respect to the fast axis of the fiber, respectively 

[3]. The diagram for θ and ϕ is illustrated in Refs. [3][15] in detail.  

The following parameters are employed for our simulations for possibly matching the 

experimental conditions: α=0.2 dB/km, g0=2 m-1, θ=π/3.5, ϕ=π/10, φ1=0.9+π/2, γ=4.5 W-1km-1 for 

EDF and 1.3 W-1km-1 for SMF, Ωg=30 nm, and β2=53.5×10-3 ps2/m for EDF and -21.7×10-3 ps2/m 

for SMF. The length of EDF and SMF is 11 and 702 m, respectively. The above parameters are from 

the data sheets of fiber products. Obviously, the net dispersion of laser cavity is anomalous so that 

the laser can deliver the conventional solitons. The schematic diagram of experimental setup is 



shown in Ref. [12].  

 

III. SIMULATION RESULTS  

A. Intracavity two-soliton and relative motion 

To find the characteristics and behaviors of solitons in the proposed laser, the simulation starts 

from a noise signal and converges into a stable solution at different Es. Since the saturation energy Es 

is proportional to the pumping strength, the increase of Es in simulations corresponds to increasing 

the pump power in the experiments [15]. Numerical results show that the pulse number over a cavity 

round-trip time is generated one by one with the increase of the pumping strength Es. When Es is 

lower than about 15 pJ, no soliton solution exists in the proposed laser. When Es is from about 15 to 

50 pJ, only a soliton exists in the laser cavity. However, there are two solitons simultaneously in the 

laser cavity while Es is from about 50 to 90 pJ.  

Figure 2 shows the formation and evolution of two solitons from a noise signal at Es=70 pJ. In 

simulations, a noise wave is assumed as an initial value. A soliton is formed first and successively it 

is split into two solitons. The detailed process is shown in Fig. 2(a). Figure 2(b), which is the 

planform of Fig. 2(a), shows the soliton trajectory in round-trip number N and time space. We can 

see from Figs. 2(a) and 2(d) that there is chaos process when a soliton is split into two solitons. From 

Figs. 2(a) and 2(b), one can see that the P2P separation of two solitons increases in the beginning of 

the round trips and then it gradually approaches a fixed value of about 1.9 ns. Numerical results 

show that two solitons have exactly the same physics properties (e.g., the same pulse duration and 

peak power) throughout the evolution of solitons. It is found from Fig. 2(d) that the peak power and 

pulse duration are oscillating at N<120 and successively they approach about 20.9 W and 3.4 ps, 

respectively. In the steady state, the P2P separation of solitons is about 560 times as large as the 

pulse duration.  
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FIG. 2. (Color online) (a) Formation and evolution of solitons from a noise wave. (b) Soliton 

trajectory in round-trip number N and time space. (c) Instantaneous frequency at pulse peak, FP, 

versus N. (d) Peak power and pulse duration versus N. (b) is the planform of (a). Es=70 pJ.  



Figures 2(c) shows the relationship between the instantaneous frequency of soliton at pulse 

peak, FP, and round-trip number N. We can observe that, for N<11, there is only a soliton (Fig. 2(b)) 

and FP is equal to zero. Successively, a soliton is split into two solitons. When N is from about 13 to 

400, two solitons separate from each other gradually (Figs. 2(a) and 2(b)) whereas FP inchmeal 

approaches zero (Fig. 2(c)). For N>600, two solitons reach the steady state with the fixed separation 

of about 1.9 ns and FP approximately is equal to zero. 
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FIG. 3. (Color online) Evolution of two solitons at Es=81 pJ. (a) Soliton trajectory in round-trip 

number N and time space. (b) Instantaneous frequency at pulse peak, FP, versus N.   

 

When Es is from about 75 to 82 pJ, the relative motion of two solitons is different from Fig. 2 

where each soliton approaches a certain position. An example for the evolution of two solitons at 

Es=81 pJ is shown in Fig. 3. One can see from Fig. 3(a) that one of solitons evolves to a fixed 

position whereas the other soliton oscillates with a amplitude of about 100 ps and a period of 118 of 

round trips. The P2P separation of two solitons periodically oscillates from about 360 to 460 ps for 



N>400. It is found that FP of the oscillating soliton also periodically oscillates along N (Fig. 3(b)), 

while FP≈0 for the fixed soliton.  
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FIG. 4. (Color online) Evolution of two solitons at Es=85 pJ. (a) Soliton trajectory in round-trip 

number N and time space. (b) Instantaneous frequency at pulse peak, FP, versus N.   

 

When Es is from about 82 to 90 pJ, both FP and two solitons oscillate along N. Figure 4 

demonstrates the evolution of two solitons at Es=85 pJ. Figure 4(a) exhibits that two solitons 

oscillate with the amplitude of about 117 ps and the period of 119 of round trips. Two solitons attract 

and repel each other periodically along N. The P2P separation of solitons periodically oscillates from 

about 415 to 690 ps for N >150 (Fig. 4(a)).  

Obviously, there are three types of relative motions for two solitons in the laser cavity. They 

evolve with the fixed trajectory (Fig. 2) and the oscillating trajectory for both of two solitons (Fig. 4), 

as well as the fixed trajectory for a soliton and the oscillating trajectory for another soliton (Fig. 3). 

The instantaneous frequency at pulse peak, FP, governs the relative motion of solitons. Solitons 

evolve to the steady state when FP approaches zero, whereas they oscillate in the cavity for FP ≠0. 



For an example as shown in Fig. 2, two solitons have the same pulse properties (e.g., the same pulse 

duration, pulse energy, and phase) with a fixed separation. In this case, the unit of two solitons is 

very similar to the bound-state solitons except that they have different P2P separations. This type of 

solitons can be regarded as static soliton pairs. When the relative motion of one or two solitons is 

oscillating (e.g., Figs. 3 and 4), this kind of solitons can be regarded as dynamic soliton pairs. The 

theoretical results explain why the intracavity multi-solitons can have erratic relative motions in the 

experimental observations. 

 

B. Intracavity multi-soliton and collision 

When Es is from about 90 to 125 pJ, three solitons with the same physical properties coexist in 

the cavity. An example for Es=96.2 pJ is shown in Fig. 5. One can see that, for N >900, FP per 

soliton approximately is equal to zero (Fig. 5(c)) and each soliton evolves to the steady state (Fig. 

5(a)). The three solitons have the same pulse profile, pulse duration, and peak power. From Figs. 5(a) 

and 5(b), we can find a strange phenomenon when N is from about 475 to 500. At this stage, two 

solitons repel each other and never be merged. The inset of Fig. 5(b) shows that the minimum 

separation of neighboring solitons is about 35 ps.  

According to soliton theory, when solitons interact with other solitons, their shapes do not 

change, but their phase shifts. Actually, the phenomenon of "phase shift" is a standard feature of 

soliton interactions. The change of phase leads to the variation of FP. Note that the instantaneous 

frequency is the first derivative of phase [18]. Obviously, the numerical simulations here are in 

excellent agreement with the results in the traditional soliton theory. The theoretical prediction in this 

paper is very similar to KdV soliton in Ref. [19]. Moreover, Fig. 5(c) shows that FP at the soliton 

collision (N≈475 to 500) has the strong fluctuation and the strong phase shift occurs.  
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FIG. 5. (Color online) (a) Interaction and evolution of three solitons at Es=96.2 pJ. (b) Soliton 

trajectory in round-trip number N and time space. (c) Instantaneous frequency at pulse peak, FP, 

versus N. In (b), inset is the local view of the soliton collision. In (c), FP at N≈475 to 500 has the 

strong fluctuation and the strong phase shift is incurred.  



When Es is from about 125 to 155, 155 to 185, and 185 to 205 pJ, numerical results shows that 

four, five, and six solitons coexist in the laser cavity, respectively. Figures 6(a), 6(b), and 6(c) 

demonstrate three examples at Es=130, 165, and 200 pJ, respectively. In the simulation, the phase 

shifts are imposed on some solitons initially. The simulation results exhibit that the solitons imposed 

by the initial phase shift have the relative motion in the beginning of round trips. After enough round 

trips, all solitons approach the steady state and FP of each soliton is near zero. In simulating Fig. 6(c), 

only a soliton is initially imposed on the phase shift, but the soliton collisions occur four times. 

Figures 5 and 6 illustrate that the separation of neighboring solitons is nonuniform and the numerical 

predictions well agree to the experimental observations as shown in Fig. 1. From Figs. 2-6, one can 

see that the P2P separation of neighboring solitons is about several hundreds of ps to several ns. The 

experimental results (e.g., Fig. 1) confirm the theoretical predictions.  

We can see from Figs. 5 and 6 that, as two solitons get close, they never pass through each 

other and the transfers of energy and information of solitons are transited by a virtual soliton. 

Obviously, Figs. 5 and 6 show that the soliton collision in PML fiber lasers is not similar to the 

billiard ball collision. Rather than the classical dynamics of billiard balls, the interaction of solitons 

can similarly be interpreted by the Feynman diagram, in which the interaction of two electrons 

exchange a (virtual) photon and then repel one other [20]. In fact, the particle-like behavior of 

solitons is discovered in the KdV two-soliton collision, where a virtual "transfer" soliton steal energy 

from the faster one in the rear and pass it to the soliton in front [19][21]. As a result, solitons are 

waves that act like particles and even the particle-like behavior of solitons can help us to better 

understand real particles. 
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FIG. 6. (Color online) Soliton trajectory in round-trip number N and time space at (a) Es=130 pJ, (b) 

Es=165 pJ, and (c) Es=200 pJ. Four, five, and six solitons coexist in the laser cavity for (a), (b), and 

(c), respectively. Although some neighboring solitons get close and collide, they nerve pass through 

each other. In (c), only a soliton is initially imposed on a phase shift, but the soliton collisions occur 

four times. 

IV. MECHANISM OF MOTION OF SOLITONS 

When the separation of solitons is over tens of times larger than the pulse duration, the interaction 

between solitons is very weak. What is the key role that governs the motion of solitons? From Figs. 

2-6, the relative motion of soliton originates from the phase shift.  

Our laser is mode-locked by using the nonlinear phase rotation (NPR) technique. The laser 



cavity can be simplified to a setup as shown in Fig. 7 [3][8]. The intensity transmission Ti from input 

to output, as shown in Fig. 7, can be achieved by numerical solving Eqs. (1) and (2). When no phase 

shift is imposed on solitons (corresponding to FP =0), the intensity transmission Ti is symmetrical 

with respect to the relative time (Fig. 8(a)). As a result, no relative motion occurs except that the 

soliton intensity is attenuated (Fig. 8(b)). However, when the phase shift is imposed on soliton 

(corresponding to FP ≠0), Ti is asymmetrical with respect to the relative time (dashed curve in Fig. 

8(a)) and then soliton has the relative motion (dashed curve in Fig. 8(b)).  
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FIG. 7. (Color online) An equivalent setup to NPR element for determining the cavity transmission. 
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FIG. 8. (Color online) (a) Intensity transmission at FP =0 and FP ≠0. (b) Power spectra of solitons before 

and after NPR element. The solid curve in (a) is symmetric with respect to the relative time, but the 

dashed curve is asymmetric. 



Figure 9 shows the soliton trajectory in intracavity position and time space. In simulations, the 

phase shift is imposed on soliton-1, but no phase shift on soliton-2. It is easily found from Fig. 9 that 

there is no relative motion for a soliton without the phase shift, whereas another soliton with the 

phase shift has the relative motion along the intracavity position. In our previous report, the chirped 

solitons are narrowed in the beginning of propagation distance and successively they are broadened 

due to the dispersive effect (Figs. 8 and 9 in Ref. [12]). But, no relative motion occurs for them, 

similar to the soliton-2 in Fig. 9. Besides the dispersion-induced narrowing and broadening of pulses, 

the relative motion occurs for the solitons imposed by the phase shift (Soliton-1 in Fig. 9 shows an 

example). Therefore, the dispersion-induced phase shift plays a key role on the relative motion of 

soliton in the laser cavity.  
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FIG. 9. (Color online) Soliton trajectory in intracavity position and time space. The phase shift is 

imposed on soliton-1, but no phase shift on soliton-2. There is and is not the relative motion for 

soliton-1 and soliton-2 along the intracavity position, respectively.  

 

In practice, many parameters of lasers are fluctuant, such as pump power, environmental 

temperature, refractive index of fiber, and polarization state. These fluctuations will perturb the laser 

system and may contribute on the phase shift of solitons. Additionally, the soliton collision can 

induce the strong phase shift, as shown in Fig. 5(c). Figure 6(c) shows that the soliton collision 

induces the relative motions of multiple solitons along N. Therefore, intracavity solitons are easily 



imposed by the phase shift in a practical environment so that they often have erratic relative motions 

and stabilize themselves at more or less random relative positions. The theoretical results are 

consistent with the experimental observations. 

 

V. CONCLUSIONS 

In this paper, we have numerically investigated the evolution and interaction of two and multiple 

solitons and their relative motions in PML fiber lasers with the net anomalous dispersion. Three 

types of relative motions of solitons are found by solving the coupled complex NLSEs. When the 

pumping strength Es is lower (e.g., Es=70 pJ), two solitons always have exactly the same physics 

properties throughout their evolution and their separation approaches a fixed value (e.g., 1.9 ns). In 

this case, two solitons behave as a unit and are regarded as a static soliton pair. Contrarily, one of 

two solitons or both oscillate with approximately fixed amplitude of relative motions and a periodic 

round-trip number by appropriately enhancing Es (e.g., Es=81 or 85 pJ). Two solitons periodically 

attract and repel each other with respect to the round-trip number N. In this case, two solitons are 

regarded as a dynamic soliton pair. The P2P separation of static and dynamic soliton pairs is over 

two orders of magnitude larger than the pulse duration (Figs. 2 to 4).  

The numerical simulations show that the relative motion of solitons attributes to the phase shift, 

which corresponds to the instantaneous frequency at pulse peak to be nonzero. When two solitons 

collide, they never pass through each other and the transfers of energy and information of solitons 

are transited by a virtual soliton. After the collision between two solitons, their shapes do not change, 

but their phases shift and relative motions change. The theoretical results demonstrate that the 

separation of neighboring solitons in laser cavity is about several hundreds of ps to several ns. The 

theoretical predictions are in good agreement with the experimental results. Our theoretical results 



successfully interpret why the intracavity solitons have erratic relative motions and stabilize 

themselves at more or less random relative positions. In addition, the particle-like behavior of 

solitons can help us to better understand real particles. 
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