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A general, exact formula is derived for the expectation value of the electromagnetic energy density
of an inhomogeneous absorbing and dispersive dielectric medium in thermal equilibrium, assuming
that the medium is well approximated as a continuum. From this formula we obtain the formal
expression for the Casimir force density. Unlike most previous approaches to Casimir effects in
which absorption is either ignored or admitted implicitly through the required analytic properties
of the permittivity, we include dissipation explicitly via the coupling of each dipole oscillator of the
medium to a reservoir of harmonic oscillators. We obtain the energy density and the Casimir force
density as a consequence of the van der Waals interactions of the oscillators and also from Poynting’s
theorem.

PACS numbers: 42.50.-p, 03.70.+k,

I. INTRODUCTION

Analyses of quantum fluctuations of the electromag-
netic field in dielectric media typically take a macroscopic
approach in which the field is quantized under the as-
sumption that the medium is characterized by an elec-
tric permittivity [1]. Much of this work is restricted to
fields at frequencies for which absorption is negligible,
and some of it assumes furthermore that dispersion is
negligible. An important exception is the work of Hut-
tner and Barnett [2], who allow for both absorption and
dispersion; as in virtually all work in this area, they
treat the (unexcited) atoms of a homogeneous dielectric
medium [3] as harmonic oscillators [4], and dissipation is
accounted for by coupling each of these oscillators to a
“bath” of reservoir oscillators. The atoms are also cou-
pled to the electromagnetic field, and the entire system
of atoms, reservoirs, and field oscillators is then diag-
onalized along the lines of Fano’s method [4] to yield
expressions for quantized electric and magnetic fields.
In a less elegant approach one writes Heisenberg equa-

tions of motion for the atom, reservoir, and field vari-
ables. The effect on each atom of its coupling to its reser-
voir is to introduce a damping force and a Langevin force,
the latter ensuring the preservation of canonical commu-
tation relations. The Langevin force on each atom results
in a fluctuating “noise polarization” of the type intro-
duced in Rytov’s theory of fluctuational electrodynamics
[5], and used by Lifshitz [6] in his theory of the van der
Waals-Casimir force per unit area between two dielec-
tric half-spaces. The operator Maxwell equations with
this noise polarization yield expressions for the quantized
transverse fields having the same form as those obtained
by Huttner and Barnett [7, 8].
One purpose of the present paper is to extend earlier

work [8, 9], hereafter referred to as I, to the case of inho-
mogeneous dielectric media. This leads to a formula for
the total energy density of a dispersive, dissipative, and

inhomogeneous dielectric medium in terms of the dyadic
Green function G. We derive the force density at finite
temperature T associated with spatial variations of the
complex electric permittivity ǫ(r, ω) of the medium:

f(r) = −
~

8π2c2
Im

∫ ∞

0

dωω2 coth
(

~ω

2kBT

)

∇ǫ(r, ω)

×Gii(r, r, ω). (1)

Gii(r, r, ω) is the sum of the three diagonal components
of the Fourier transform of the Green dyadic in the sum-
mation convention for repeated indices used throughout
this paper. From (1) one obtains, for instance, the Lif-
shitz formula [6] for the force per unit area between two
semi-infinite dielectric media separated by a distance d,
as was shown in the early work of Dzyaloshinskii et al.

[10] and Schwinger et al. [11], and from that formula one
obtains in various limits, as is well known, the Casimir
force between perfectly conducting plates, the van der
Waals interaction between two atoms, the Casimir-Polder
interaction between an atom and a conducting plate, etc.
The main motivation for the present work is not just to

rederive the general force density (1) by different meth-
ods, but rather to obtain it by allowing from the outset
for absorption. Derivations of the (T = 0) Lifshitz for-
mula based on changes in electromagnetic energy [12],
following Casimir’s original calculation [13], are based on
the zero-point electromagnetic energy

∑

j ~ωj/2, the sum
being over all possible modes of the field. The frequencies
ωj in such calculations are first determined for the case
of nondissipative media (real permittivities), and dissi-
pation is later accounted for by making in effect an ana-
lytic continuation based on the requirement from causal-
ity that the permittivity is analytic in the upper half of
the complex frequency plane. The question of how to ap-
ply this approach by admitting dissipation from the start
is an old one in the theory of Casimir forces. Agarwal
[14], for instance, remarks that “if the damping of the di-
electric function is included, then the [method based on
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zero-point energy] seems to fail. In presence of damping
the normal-mode frequencies are complex, and it is not
clear what one should sum over to obtain the interaction
energy.” In Reference [15], similarly, it is noted that “it
is not obvious how to extend [the zero-point-energy ap-
proach] to the case of absorbing media, where the [per-
mittivities] are complex.” Ginzburg [16] observes that,
“Apart from a general maxim that ‘victors should not
be judged’ one can justify the derivation of [the Lifshitz
formula] on the basis of [the assumption that a mode
of frequency ω has zero-point energy ~ω/2] for absorbing
media as follows. Firstly, the permittivities [appearing in
the Lifshitz formula] are functions. Secondly, the func-
tion ǫ(ω) is always real on the imaginary axis. The result
obtained for transparent media ... must therefore clearly
be the same as the appreciably more general one which
is applicable to absorbing media. However, this would
hardly confirm such a conclusion unless it had been ob-
tained earlier without additional assumptions. Both for
this reason and also bearing in mind other related or
similar problems one must somehow consistently gener-
alize the expansion in eigenoscillations with frequencies
ωα ... to absorbing media.” Ginzburg proceeds to intro-
duce the concept of (orthogonal) “auxiliary” field modes
associated with the immersion of the entire system “in
some auxiliary resonator with perfectly conducting walls
... The frequency ω is considered to be a parameter, while
the eigenfrequencies of the resonator ωα are determined
from the homogeneous field equations” corresponding to
Maxwell’s equations without a fluctuating polarization
density.
There are arguably more direct ways of explaining the

success of calculations that “consider directly only trans-
parent media” and attribute Casimir forces to changes in
zero-point energy due to the presence of material media.
A clue in this direction is provided by the case of a homo-
geneous dielectric medium: the zero-point energy has the
same form regardless of whether one allows “directly” for
absorption [8].
In the following section we derive the Casimir free en-

ergy and force density for a dispersive and absorbing,
linear, inhomogeneous dielectric medium based on an ex-
tension of the classical formula

Wc = −
1

2
α(ω)E2(r) (2)

for the change in energy when an electric field E of fre-
quency ω induces an electric dipole moment α(ω)E in a
particle having a real polarizability α(ω). For an atom
in a state characterized by the polarizability α(ω) this
is just the quadratic Stark shift of its energy level. The
generalization needed to obtain the Casimir free energy
only requires allowance for a complex polarizability and
the effect on each dipole of the fields from all the other
dipoles. We explicitly include dissipation and Langevin
forces resulting from the coupling of the dipole oscilla-
tors to their reservoirs and show that the force density
obtained in this way is equivalent to that obtained in

the seminal work of Dzyaloshinskii et al. [10] using dia-
grammatic methods and subsequently by other authors
by various other techniques. In Section III we rederive,
from Poynting’s theorem, the expression for the energy
density obtained in Section II, and show that it reduces
to the result obtained in I in the special case of a homoge-
neous medium in which the complex permittivity has no
spatial dependence. Section IV presents a brief derivation
of the Casimir force density for a dispersive and dissipa-
tive dielectric based on the Maxwell stress tensor. Our
conclusions are briefly summarized and discussed further
in Section V. As in I we focus mainly on the case of zero
temperature. The extension to finite equilibrium temper-
atures is straightforward and so we simply summarize it
in the Appendix, where we also briefly outline the deriva-
tion of the Lifshitz formula based on the force density (1)
or its finite-temperature generalization.

II. ENERGY AND FORCE DENSITY FROM

COUPLED DIPOLES

A. Interaction Energy in Terms of Free-Space

Green Dyadic

We start by considering a collection of N electric
dipoles in free space. The nth dipole (“atom”) has associ-
ated with it an electric dipole moment operator p̂n = ex̂n

and a resonance frequency ω0, and it is coupled to a reser-
voir that results in a damping rate γ and a Langevin force
F̂Ln. It is also coupled to the total electric field Ê(rn, t)
at its position rn. The Heisenberg equation of motion
for the electron coordinate operator for the nth atom is
derived in I [Eq. (51)][17]

¨̂xni + γ ˙̂xni + ω2
0x̂ni =

1

m
F̂Lni(t) +

e

m
Êi(rn, t). (3)

The first subscript (n) on x̂ identifies the nth atom, while
the second subscript (i) denotes the ith Cartesian com-
ponent of x̂n. As in I we use a circumflex to denote
quantum-mechanical operators, and we define Fourier-
transformed operators p̂ni(ω) = ex̂ni(ω), etc. by writing

p̂ni(t) =

∫ ∞

0

dω[p̂ni(ω)e
−iωt + p̂ni(−ω)eiωt], (4)

F̂Lni(t) =

∫ ∞

0

dω[F̂Lni(ω)e
−iωt + F̂Lni(−ω)eiωt], (5)

Êi(r, t) =

∫ ∞

0

dω[Êi(r, ω)e
−iωt + Êi(r,−ω)eiωt], (6)

with p̂ni(−ω) = p̂†ni(ω), etc., which follows from the re-

quirement that the operators p̂, F̂L, and Ê be Hermitian.
From (3),

[ω2
0 − ω2 − iγω]p̂ni(ω) =

e

m
F̂Lni(ω) +

e2

m
Êi(rn, ω). (7)
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The electric field in (7) is the sum of the source-free

(“vacuum”) field Ê0i(rn, ω) at rn and the fields from all
the dipole sources:

Êi(rn, ω) = Ê0i(rn, ω) +
ω2

c2

N
∑

m=1

G0
ij(rn, rm, ω)p̂mj(ω),

(8)
where G0(r, r′, ω) is the Fourier transform of the (re-
tarded) free-space dyadic Green function satisfying

∇×∇×G0(r, r′)−
ω2

c2
G0(r, r′) = 4πδ3(r− r′). (9)

Equation (7) is therefore

[ω2
0 − ω2 − iγω]p̂ni(ω) =

e

m
F̂Lni(ω) +

e2

m
Ê0i(rn, ω)

+
e2

m

ω2

c2

N
∑

m=1

G0
ij(rn, rm, ω)p̂mj(ω),

(10)

or, in matrix form,

p(ω) = A(ω)

[

e

m
FL(ω) +

e2

m
E0(ω)

]

, (11)

where p(ω), FL(ω), and E0(ω) are 3N -dimensional col-
umn vectors (N dipoles, 3 Cartesian coordinates) and
the 3N × 3N matrix

A(ω) =

[

ω2
0 − ω2 − iγω −

e2

m
G0

]−1

, (12)

where

G0(r, r
′, ω) =

ω2

c2
G0(r, r′, ω). (13)

We are interested in the change in energy involved in
bringing the N dipoles from a configuration where they
are infinitely far apart and not interacting to one where
they are separated by finite distances and interacting
with themselves as well as with the source-free, fluctu-
ating electric field. Consider first the simple example of
a single dipole with real polarizability α(ω). According
to the Hellmann-Feynman theorem [18] the change in en-
ergy when the dipole is brought from infinity (E = 0) to
a point r where the electric field of frequency ω is E is

W = −

∫ 1

0

dλ

λ
〈p̂ ·E†〉 = −

∫ 1

0

dλ

λ
α(ω, λ)〈E(r) · E†(r)〉,

(14)
where the coupling constant in the integrand, in this case
the electric charge, is taken to be λe. Since α(ω) is pro-
portional to e2, i.e., α(ω, λ) = λ2α(ω), Eq. (14) simply
generalizes the classical formula (2). The relation [19]
[see also Eq. (87) below] between the vacuum expecta-

tion value of the free-field operator Ê0(r, ω) · Ê
†
0(r, ω

′)
and the Green dyadic G0

〈Ê0(r, ω) ·Ê
†
0(r, ω

′)〉 =
~

π
ImTrG0(r, r, ω)δ(ω−ω′), (15)

where Tr is the 3× 3 trace, suggests that

W = −
~

π

∫ 1

0

dλ

λ

∫ ∞

0

dωα(ω, λ)ImTrG0(r, r, ω) (16)

when the field is the source-free electric field including
all frequencies. But of course the polarizability cannot
be real at all frequencies, and the correct form of W is
not (16) but [20]

W = −
~

π
Im

∫ 1

0

dλ

λ

∫ ∞

0

dωTrα(ω, λ)G0(r, r, ω). (17)

Thus if we again use α(ω, λ) = λ2α(ω), we recover the
expression

W = −
~

2π
Im

∫ ∞

0

dωTrα(ω)G0(r, r, ω) (18)

obtained by other methods [20].
For our collection of dipoles we identify from (11) the

polarizability matrix (e2/m)A(ω) and define the expec-
tation value of the interaction energy as [21]

E = −
~

π
Im

∫ ∞

0

dωTr

∫ 1

0

dλ

λ

×
λ2(e2/m)G0

ω2
0 − ω2 − iγω − λ2(e2/m)G0

=
~

2π
Im

∫ ∞

0

dωTr log[1− α0G0], (19)

where we define the polarizability

α0(ω) =
e2/m

ω2
0 − ω2 − iγω

. (20)

(Spatial coordinates rn, rm are treated here along with
Cartesian components i, j as matrix indices.)
The integrand in (19) can be expanded in powers of

α0:

E = −
~

2π
Im

∫ ∞

0

dωTr[α0G0 +
1

2
α2
0G0G0

+
1

3
α3
0G0G0G0 + ...]. (21)

The first term in brackets is part of a single-particle self-
energy, while the terms that are non-diagonal in the space
coordinates rn, rm correspond successively to two-body,
three-body, etc. van der Waals interactions [10, 14, 22,
23]. Thus, for instance, the second term in brackets,
written out explicitly using

Tr[
1

2
α2
0G0G0] =

1

2

N
∑

m,n=1

α2
0(ω)G0ij(rn, rm, ω)

×G0ji(rm, rn, ω), (22)

is found to be just the sum of pairwise van der Waals
interaction energies of the N atoms when terms with
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m = n are excluded (these correspond to self-energies).
In the model in which the atoms form a continuum we
replace the summation in (22) by

∫

d3r

∫

d3r′N(r)N(r′)α2
0(ω)G0ij(r, r

′, ω)G0ji(r
′, r, ω)

≡ Tr

[

ǫ − 1

4π

]2

[G0]
2, (23)

where N(r) is the number of atoms per unit volume at
r. Using the formula

ǫ(ω) = 1 + 4πNα0(ω) = 1 +
Ne2/m

ω2
0 − ω2 − iγω

(24)

for the permittivity, we similarly replace (21) by

E = −
~

2π
Im

∫ ∞

0

dωTr

∞
∑

n=1

1

n

[

ǫ− 1

4π

]n

[G0]
n

(25)

and define the energy density

u(r) =
~

2π
ImTr

∫ ∞

0

dω log

[

1−
ǫ − 1

4π
G0

]

(26)

in the continuum approximation [24]. We have presumed
in deriving this expression that the polarizability α0 does
not depend on r, so that the dependence of the permittiv-
ity on r stems solely from the r-dependence of the number
density N(r). However, it is straightforward to rederive
(26) with an r-dependent α0, so that different parts of
the medium can have different resonance frequencies as
well as different number densities.

B. Energy Density in Terms of the Full Green

Dyadic

G0 satisfies (9), while the Green dyadic G in the case
of a medium with complex permittivity ǫ(r, ω) satisfies

∇×∇×G(r, r′)−
ω2

c2
G(r, r′) = 4πδ3(r− r′), (27)

together with appropriate boundary conditions. There-
fore

∇×∇× (G−G0)−
ω2

c2
(G−G0) =

ω2

c2
[ǫ− 1]G, (28)

and the solution of this equation obtained using the
Green function G0 implies the Born-Dyson-type relation

G = G0 +G0

[

ω2

c2
ǫ− 1

4π

]

G, (29)

i.e.,

Gij(r, r, ω) = G0
ij(r, r, ω) +

ω2

c2

∫

d3r′G0
ik(r, r

′, ω)

×
ǫ(r′, ω)− 1

4π
Gki(r

′, r, ω). (30)

From (26) and (29) it follows that

u(r) = −
~

2π
Im

∫ ∞

0

dωTr log[(G0)−1G], (31)

which is the well-known “trace-log formula” [25]. The
free-space Green dyadic G0 is independent of the atoms
or the properties of the medium formed by them. The
term log[(G0)−1] in the above expression therefore sub-
tracts from the total Green function G the “bulk” con-
tribution G0, and therefore u(r) contains only the “scat-
tering” part of the Green function, that comprises the
interaction between the atoms.
We can express this energy in a different form by par-

tial integration as in Reference [26]. Omitting the “bulk”
contribution in (31),

u(r) =
~

2π
ImTr

∫ ∞

0

dωω
∂

∂ω
logG

=
~

2π
ImTr

∫ ∞

0

dωωG−1G′, (32)

where we use a prime to denote differentiation with re-
spect to ω. Now from (27),

∇×∇× δG−
ω2

c2
ǫδG =

ω2

c2
δǫG, (33)

and therefore, formally,

δG =
1

4π

ω2

c2
δǫGG, (34)

where of course there is an integration over space implied
on the right-hand side. Similarly

∇×∇×G′ −
ω2

c2
ǫG′ =

2ω

c2
ǫG+

ω2

c2
ǫ′G, (35)

and therefore

G′ =
1

4π

ω

c2
[2ǫ+ ωǫ′]GG. (36)

Using this result in (32), we obtain

u(r) =
~

8π2c2
ImTr

∫ ∞

0

dωω2[2ǫ(r, ω) + ωǫ′(r, ω)]

×G(r, r, ω). (37)

This is our general expression for the energy density. We
discuss it further and give an alternative derivation of it
in Section III.
Two points concerning the derivation of (37) are worth

noting here. First, we have seen that the energy density
(26) is associated with many-body van der Waals inter-
actions, and therefore vanishes when the polarizability
α0(ω) → 0 and the permittivity ǫ(ω) → 1 for all fre-
quencies, as can also be seen from (31). However, when
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ǫ(ω) → 1 the energy density (37) that was derived from
(26) becomes

u(r) =
~

4π2c2
Tr

∫ ∞

0

dωω2ImG0(r, r, ω)

= 2

∫ ∞

0

dω
(1

2
~ω

)( ω2

2π2c3

)

, (38)

where we have used the fact that TrImG0(r, r, ω) = 2ω/c.
Thus we recover the correct vacuum electromagnetic en-
ergy density in the limit ǫ(ω) → 1. The reason for this
is that in obtaining the trace-log formula (32) from (31)
we have effectively added the part of the energy den-
sity needed to make u(r) have the correct (nonvanishing)
vacuum-field energy density when ǫ(ω) → 1.
The second point is that there are other contributions

to the total energy density that are not included in (37)
and that do not contribute to the Casimir force density.
Of course this is not surprising, as in deriving (37) we
considered only the energy involved in the induction of
dipole moments by the electric field and in the interac-
tion of these dipoles. Thus our derivation does not ac-
count for the constant energy (density) absorption rate
of a medium with permittivity ǫ(r, ω); this absorption
rate Rabs has exactly the form expected from classical
electromagnetic theory:

Rabs =
1

4π
Tr

∫ ∞

0

dωωǫI(r, ω)〈Ê(r, ω) · Ê†(r, ω)〉,

=
~

4π2c2
Tr

∫ ∞

0

dωω3ǫI(r, ω)ImG(r, r, ω), (39)

where in the second line we have used the generalization
of (15) given in (87) below. This flow of power into the
atoms’ reservoirs is of course exactly cancelled by the
power lost by the field, so that there is no net change in
total energy density. In the calculation using the Poynt-
ing theorem in the following section, all contributions to
the total energy density are included, and this cancella-
tion is seen explicitly.

In addition to the fluctuating dipoles induced by the
electromagnetic field, whose interaction is responsible for
van der Waals (Casimir) forces, there are fluctuating
dipoles due to the Langevin noise forces acting on the in-
dividual atoms. These “noise” dipole moments do not re-
sult in forces among the atoms, since the Langevin forces
acting on different atoms, unlike the electric fields induc-
ing dipole moments in different atoms, have no spatial
correlations. In the presence of the fluctuating electric
field they do, however, contribute (K̂ = 4πP̂noise is the
noise polarization defined in Eq. (68) of I)

uN(r) =
1

8π
〈Ê · D̂noise〉 =

1

2
〈Ê · P̂noise〉

=
1

2
Re

∫ ∞

0

dω

∫ ∞

0

dω′〈P̂noise(r, ω) · Ê
†(r, ω′)〉e−i(ω−ω′)t =

1

8π
Re

∫ ∞

0

dω

∫ ∞

0

dω′〈K̂(r, ω) · Ê†(r, ω′)〉e−i(ω−ω′)t

=
1

8π
Re

∫ ∞

0

dω

∫ ∞

0

dω′ ω2

4πc2
Gij(r, r, ω

′) 〈K̂i(r, ω)K̂
†
j (r, ω

′)〉e−i(ω−ω′)t

=
~

8π2c2

∫ ∞

0

dωω2ǫI(ω)GRii(r, r, ω) (40)

to the total energy density. This is a single-particle
self-energy resulting in effect from the interaction of the
Langevin-force-induced dipole moment of each particle
with the part of the electric field due to this same dipole
moment. As such it has the effect in our model of deter-
mining in part the equilibrium positions of the particles
within the medium, but does not contribute to interpar-
ticle interactions.

C. Force Density

The force density can be obtained from either expres-
sion (26) or (37) for the energy density. Consider first
(26). The fact that G0 is independent of any properties
of the medium means that a variation δE of E due to a
deformation of the medium depends only on the variation
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δǫ of ǫ that accompanies the deformation [10]. Therefore

δE = −
~

2π
Im

∫ ∞

0

dωTr
δǫ

4π

∞
∑

n=0

[

ǫ− 1

4π

]n

[G0]
n+1

= −
~

8π2
Im

∫ ∞

0

dω

∫

d3rδǫ(r, ω)
{

G0ii(r, r, ω)

+

∫

d3r′G0ik(r, r
′, ω)

[

ǫ(r′, ω)− 1

4π

]

G0ki(r
′, r, ω)

+

∫

d3r′
∫

d3r′′G0ik(r, r
′, ω)

[

ǫ(r′, ω)− 1

4π

]

×G0kp(r
′, r′′, ω)

[

ǫ(r′′, ω)− 1

4π

]

G0pi(r
′′, r, ω)

+ ...
}

. (41)

It follows from (30) that the quantity in curly brackets is
just the trace of the Green dyadic G(r, r, ω), and conse-
quently the variation in the energy density is

δu(r) = −
~

8π2c2
Im

∫ ∞

0

dωω2δǫ(r, ω)TrG(r, r, ω). (42)

Following Dzyaloshinskii et al. [10], we consider an in-
finitesimal local displacement R(r) of the medium. This
transport of the medium implies a variation in ǫ at r such
that ǫ(r, ω)+δǫ(r, ω) = ǫ(r−R, ω), or δǫ(r, ω) = −∇ǫ·R.
Therefore

δu(r) = −
~

8π2c2
Im

∫ ∞

0

dωω2[−∇ǫ ·R]TrG(r, r, ω)

≡ −

∫

d3rf(r) ·R, (43)

where the Casimir force density f(r) obtained in this way
is given by equation (1):

f(r) = −
~

8π2c2
Im

∫ ∞

0

dωω2∇ǫ(r, ω)Gii(r, r, ω), (44)

where we used that TrG ≡ Gii. This is equivalent to
the result of Dzyaloshinskii et al. obtained by summing
a sequence of diagrams, each successive one including a
number n of closed loops corresponding to n-body van
der Waals interaction energies. As these authors discuss,
equation (1) does not in general give the total force den-
sity, as one must account for the variation in ǫ due to
changes in density as well as to the displacements con-
sidered in obtaining (43). Ignoring the former amounts
to assuming displacements R such that ∇ · R = 0. For
the calculation of forces on bodies embedded in uni-
form fluids in mechanical equilibrium, however, the addi-
tional contribution to the total force resulting from den-
sity variations must be balanced by pressure arising from
non-electromagnetic forces, and may in effect be omitted
[10]. It must also be noted that G(r, r, ω) diverges un-
less spatial frequencies are cut off at some large value
on the order of 1/(interatomic spacing). However, again
as discussed by Dzyaloshinskii et al., the contributions

from high spatial frequencies are the same at each point
r for an inhomogeneous medium as for a homogeneous
medium having the same value of ǫ at r as the inhomo-
geneous medium. The divergent Green dyadic appearing
in (1) should therefore be replaced by [10]

G(r, r, ω)−G(r, r, ω), (45)

where G is the Green function of a homogeneous medium
with the same value of ǫ at r as the inhomogeneous
medium under consideration [27]. This subtraction of
the singular G(r, r, ω) is discussed further below.
Consider now the derivation of the force density from

the energy density as expressed by (37). A variation δǫ
in the permittivity results in a variation

δu(r) =
~

8π2c2
Im

∫ ∞

0

dωω2
{

[2δǫ+ ωδǫ′]Gii

+ [2ǫ+ ωǫ′]δGii

}

(46)

in u(r). From (34) and (36),

[2δǫ + ωδǫ′]G+ [2ǫ+ ωǫ′]δG = [2δǫ+ ωδǫ′]G

+ [2ǫ+ ωǫ′]
1

4π

ω2

c2
δǫGG = [2δǫ+ ωδǫ′]G+ ωδǫG′

= 2δǫG+ ω
∂

∂ω
[δǫG]. (47)

Partial integration of (46) then gives

δu(r) = −
~

8π2c2
Im

∫ ∞

0

dωω2δǫ(r, ω)Gii(r, r, ω), (48)

implying again the force density (1) when ǫ varies with
position. Essentially the same calculation was presented
by Milton et al. [26] under the assumption that ǫI = 0.
An “inhomogeneous medium” as defined here includes

the important case of spatially separated homogeneous
bodies, as in the case of the two parallel dielectric slabs
treated by Lifshitz [6]. Except for such simple geome-
tries, the calculation of Casimir forces based on (1)—
which amounts in effect to the calculation of the (classi-
cal) dyadic Green function—must be performed numeri-
cally. Our interest here, as discussed in the Introduction,
is only in the general question regarding what effect dissi-
pation has on the derivation of (1) by different methods,
especially in derivations based on energy variations.

D. Remarks Relating to Early Work

In their diagrammatic approach Dzyaloshinskii et al.

obtained the following expression for the force density (in
addition to the aforementioned contribution that arises
from displacements R with ∇ ·R 6= 0):

f(r) = −
kBT

4πc2

∞′

∑

n=0

ω2
nGii(r, r, iωn)∇ǫ(r, iωn). (49)
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Here the (Matsubara) frequencies ωn = 2πnkBT/~, and
the prime on the zero below the summation sign means
that a factor 1/2 multiplies the n = 0 term. For T → 0
the sum can be replaced by an integral, and (49) becomes

f(r) = −
~

8π2c2

∫ ∞

0

dξξ2∇ǫ(r, iξ)Gii(r, r, iξ). (50)

G, like ǫ, is analytic in the upper half of the complex fre-
quency plane. Using this fact, it is easy to show that (50)
is equivalent to (1). The appearance of the permittivity
at imaginary frequencies in the work of Dzyaloshinskii et
al. can be traced to an analytic continuation of a Green
function obtained with ǫ evaluated at real frequencies
to one in which ǫ is evaluated at imaginary frequencies.
Thus, consistent with the remarks in the Introduction
about ǫ being a function that is real-valued on the imag-
inary axis, the validity of the derived force density for
dissipative media rests on the formal analytic properties
of ǫ. The same is true of the analysis of Schwinger et

al. [11]. Our more “brute-force” approach does not ex-
plicitly invoke these properties; we calculate the Casimir
free energy by exhibiting explicitly, albeit with a simple
model, the dissipative character of the dielectric.
Mahan [22] considered essentially equation (3) without

damping and Langevin forces and without coupling to
the fluctuating source-free field. The eigenfrequencies Ωj

of the coupled-oscillator system are obtained by writing
xn = xn(Ω) exp(−iΩt) and then applying the argument
theorem to obtain the difference in the zero-point ener-
gies

∑

j(1/2)~Ωj between a given configuration and that
when all the interatomic distances are infinite. Renne
[23] noted inconsistencies in this approach in the case of
retarded interactions, and proceeded in a similar fashion
by solving for the eigenfrequencies of the coupled system
of dipole oscillators and field oscillators.
Renne includes radiative reaction, as does Agarwal

[14] in a general response-function formulation, and con-
sequently the polarizabilities of the material oscillators
are complex; radiative reaction makes the only contribu-
tion to the imaginary part of the polarizability in their
work. However, this imaginary part is connected not
with dissipation of field energy as such but with (energy-
conserving) Rayleigh scattering of radiation, consistent
with the optical theorem. To compare with the result of
Renne, for instance, for the interaction energy of a sys-
tem of ground-state harmonic dipole oscillators, we use
the identity Tr logX = log detX [28] to write (19) as

E =
~

2π
Im

∫ ∞

0

dω log det[1− α0(ω)G0(ω)]

=
~

2π

∫ ∞

0

dξ log det[1− α0(iξ)G0(iξ)], (51)

which is equivalent to equation (18) of Renne [23]. In
his derivation, however, the damping rate γ in the defi-
nition (20) of α0(ω) is obtained from an approximation

to the radiative reaction field in which the third deriva-
tion with respect to time of a dipole moment is replaced

by minus the square of an oscillation frequency times a
first derivative with respect to time, and in this approx-
imation the imaginary part of α0(ω) provides in effect
for a collisional- or ohmic-type dissipation rather than
for elastic scattering of radiation. (Without this approx-
imation the permittivity in Renne’s approach would not
be analytic in the upper half of the complex frequency
plane, and it would preclude the analytic continuation
of a Green function that was alluded to earlier.) In our
approach γ is obtained, without approximation, from the
coupling of each oscillator to its reservoir, and ǫ(ω) [Eq.
(24)] has no contribution from radiative reaction. Dis-
sipation of field energy is due, as usual, simply to the
transfer of energy from the field to the atoms and the
subsequent transfer of this energy to the reservoirs rather
than back to the field.

Radiative reaction is of course naturally included in our
approach; it is associated with the term G0

ij(rn, rn, ω) in
equation (10) and with a renormalizable self-energy. The
complex permittivity (24) appearing in equation (27) for
the Green function, however, has no contribution from
radiative reaction. This is related to the implicit assump-
tion in our continuum model that there are no density
fluctuations and therefore that the extinction coefficient
due to Rayleigh scattering vanishes [30]. In the case of
two spatially separated homogeneous bodies, for exam-
ple, the only “scattering” that occurs is in the form of
reflection and refraction at boundaries.

III. MACROSCOPIC QED APPROACH TO THE

ENERGY DENSITY OF A DISSIPATIVE

DIELECTRIC MEDIUM

In I we derived expressions for quantized electric and
magnetic fields and for the energy density in a dispersive
and absorbing, homogeneous dielectric medium. We now
extend these considerations to inhomogeneous media.

A. Poynting’s Theorem

As in I we base our approach essentially on the macro-
scopic, Heisenberg-picture Maxwell equations and the
Poynting’s theorem that follows from them. In the
conventional notation Poynting’s theorem for the sym-
metrized Poynting vector operator Ŝ = (c/8π)[Ê × Ĥ −

Ĥ× Ê] takes the form

∮

S

〈Ŝ〉 · n da = −
1

8π

∫

V

〈Ê ·
∂D̂

∂t
+

∂D̂

∂t
· Ê〉d3r

−
1

8π

∫

V

〈Ĥ ·
∂B̂

∂t
+

∂B̂

∂t
· Ĥ〉d3r

= −

∫

V

∂

∂t
U(r, t)d3r, (52)
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or, after a time-integration,

∫ t

0

dt′
∮

S

〈Ŝ〉 · n da = −

∫

V

[U(r, t)− U(r,−∞)] d3r,(53)

where the expectation values refer to the ground state
of the system consisting of the field, the atoms, and
the reservoir oscillators responsible for the damping and
Langevin forces acting on the atoms, and also

U(r, t)− U(r,−∞) =
1

8π

∫ t

−∞

dt′〈Ê ·
∂D̂

∂t′
+

∂D̂

∂t′
· Ê

+ Ĥ ·
∂B̂

∂t′
+

∂B̂

∂t′
· Ĥ〉. (54)

The left-hand side of (52) is the electromagnetic energy
flux through a surface S enclosing the volume V , meaning
that U(r, t) − U(r,−∞) is the energy density variation
associated to this flux (through S) between t′ = −∞
and t′ = t. The latter is immediately seen to vanish for
static systems in equilibrium, but this can be circum-
vented by imagining that we bring our system adiabati-
cally from some reference configuration [29]. We can then
use the approximation that the system is stationary at
both t′ = −∞ and t′ = t, but as those instants are now
characterized by different configurations, the subtraction
in (54) does not vanish anymore. In addition, by choos-
ing our reference configuration as one where the different
parts of the system do not interact, we can just subtract
U(r,−∞) from (54) (as an irrelevant constant) and write

U(r, t) =
1

8π

∫ t

−∞

dt′〈Ê ·
∂D̂

∂t′
+

∂D̂

∂t′
· Ê

+ Ĥ ·
∂B̂

∂t′
+

∂B̂

∂t′
· Ĥ〉. (55)

We remark that the energy density U(r, t), being a quan-
tity that is associated with the electromagnetic energy
flux, is not necessarily the same as the energy density
u(r) of the previous section; in particular, as we shall
see, it contains the energy of the bath field. In terms of
the Fourier components of the fields [cf. (6)], the total
equilibrium energy density is

U(r, t) =
1

8π

∫ ∞

−∞

dω

∫ ∞

−∞

dω′ e
−i(ω′+ω)t

ω′ + ω

×
[

ω′〈Ê(r, ω) · D̂(r, ω′)〉+ ω〈D̂(r, ω) · Ê(r, ω′)〉

+ ω′〈Ĥ(r, ω) · B̂(r, ω′)〉+ ω〈B̂(r, ω) · Ĥ(r, ω′)〉
]

. (56)

For zero temperature we can write this in terms of strictly
positive frequencies as follows:

U(r, t) = Ue(r, t) + Um(r, t), (57)

where

Ue(r, t) =
1

8π

∫ ∞

0

dω

∫ ∞

0

dω′ e
i(ω′−ω)t

ω′ − ω

×
[

ω′〈Ê(r, ω) · D̂†(r, ω′)〉

− ω〈D̂(r, ω) · Ê†(r, ω′)〉
]

(58)

and, for the non-magnetic media under consideration,

Um(r, t) =
1

8π

∫ ∞

0

dω〈Ĥ(r, ω) · Ĥ†(r, ω)〉. (59)

We have used the fact that Ê(r,−ω) = Ê†(r, ω), etc.
and, for ω, ω′ > 0,

〈Ê(r, ω) · D̂(r, ω′)〉 = 〈Ê†(r, ω) · D̂†(r, ω′)〉 = 0, (60)

and likewise for the corresponding bilinear magnetic field
products. We have also made use of the fact that, for zero
temperature, only the positive-frequency field operators
Ê†(r, ω), etc. produce a nonvanishing result when act-
ing on the initial state of the system, i.e., they act as
creation operators, whereas the positive-frequency oper-
ators Ê(r, ω) are annihilation operators and yield zero
when acting on the initial zero-temperature state.

B. Electric and Magnetic Fields

The electric field operator Ê(r, ω) satisfies

[∇×∇×−
ω2

c2
ǫ(r, ω)]Ê(r, ω) =

ω2

c2
K̂(r, ω). (61)

The solution for Ê(r, ω) in the medium can be written in
terms of the Green dyadic satisfying (27):

Êi(r, ω) =
ω2

4πc2

∫

d3r′Gij(r, r
′, ω)K̂j(r

′, ω), (62)

while for D̂(r, ω) we have

D̂(r, ω) = ǫ(r, ω)Ê(r, ω) + K̂(r, ω). (63)

Based on the harmonic-oscillator reservoir model, it is
shown in I, for instance, that the noise polarization K̂

has the thermal equilibrium properties

〈K̂i(r, ω)〉 = 〈K̂†
i (r, ω)〉 = 0,

〈K̂i(r, ω)K̂j(r
′, ω′)〉 = 〈K̂†

i (r, ω)K̂
†
j (r

′, ω′)〉 = 0, (64)

and

〈K̂†
i (r, ω)K̂j(r

′, ω′)〉 = 4~ǫI(ω)δijδ(ω − ω′)δ3(r− r′)

×
1

e~ω/kBT − 1
, (65)
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〈K̂i(r, ω)K̂
†
j (r

′, ω′)〉 = 4~ǫI(ω)δijδ(ω − ω′)δ3(r− r′)

×

[

1

e~ω/kBT − 1
+ 1

]

. (66)

The expression for Ĥ(r, ω) in the medium follows from

the Maxwell equation ∇× Ê = −(1/c)∂Ĥ/∂t:

Ĥ(r, ω) = −i
c

ω
∇× Ê(r, ω)

= −i
c

ω

∫

d3r′[∇×G(r, r′, ω)] · K̂(r′, ω).

(67)

C. Total Energy Density

Consider first the energy density Ue. The expression
(63) for D̂(r, ω) results in two contributions to Ue. The

contribution from ǫ(r, ω)Ê(r, ω) is

U (1)
e (r, t) =

1

8π
Re

∫ ∞

0

dω

∫ ∞

0

dω′ e
i(ω′−ω)t

ω′ − ω

×
[

ω′ǫ∗(ω′)− ωǫ(ω)
]

〈Ê(r, ω) · Ê†(r, ω′)〉

=
~

8π2c2
ReTr

∫ ∞

0

dωω2

∫ ∞

0

dω′ e
i(ω′−ω)t

ω′ − ω

×
[

ω′ǫ∗(ω′)− ωǫ(ω)
]

GI(r, r, ω)δ(ω − ω′),

(68)

where to simplify notation we have suppressed the r de-
pendence of ǫ. We have employed the identity [19] [see
also Eq. (87) below]

〈Ê(r, ω) · Ê(r, ω′)〉 =
~

π

ω2

c2
TrGI(r, r, ω)δ(ω − ω′), (69)

with GI denoting the imaginary part of the Green dyadic.
In order to evaluate (68) we write the permittivity in
terms of its real and imaginary parts, ǫ(ω) = ǫR(ω) +
iǫI(ω)). In the term containing ǫR(ω) we use

lim
ω′→ω

f(ω′)− f(ω)

ω′ − ω
=

df(ω)

dω
. (70)

with f(ω) = ωǫR(ω), while in the term containing ǫI(ω)
we use

lim
ω′→ω

ei(ω
′−ω)t − e−i(ω′−ω)t

ω′ − ω
= 2it. (71)

After straightforward manipulations we obtain

U (1)
e (r) =

~

8π2c2
Tr

∫ ∞

0

dωω2 ∂

∂ω
[ωǫR(ω)]GI(r, r, ω)

+t
~

4π2c2
Tr

∫ ∞

0

dωω3ǫI(ω)GI(r, r, ω). (72)

The contribution to Ue(r, t) from the noise polarization

part of D̂ is

U (2)
e (r, t) = Re

1

8π

∫ ∞

0

dω

∫ ∞

0

dω′ e
i(ω′−ω)t

ω′ − ω

[

ω′〈Ê(r, ω) · K̂†(r, ω′)〉 − ω〈K̂(r, ω) · Ê†(r, ω′)〉
]

= Re
1

8π

∫ ∞

0

dω

∫ ∞

0

dω′ e
i(ω′−ω)t

ω′ − ω

1

4π

[ω′ω2

c2

∫

d3r′Gij(r, r
′, ω)〈Kj(r, ω)K

†
i (r

′, ω′)〉

−
ωω′2

c2

∫

d3r′G∗
ij(r, r

′, ω′)〈Ki(r, ω)K
†
j (r

′, ω′)〉
]

. (73)

Using (66) with T = 0, and the same sort of manipula-

tions used to evaluate U
(1)
e (r), we obtain

U (2)
e (r, t) = −

~

8π2c2

∫ ∞

0

dωω2ǫI(ω)
∂

∂ω
[ωTrGR(r, r, ω)]

− t
~

4π2c2

∫ ∞

0

dωω3ǫI(ω)TrGI(r, r, ω).(74)

Thus the terms proportional to t in (72) and (74) cancel,
as discussed in I for the special case of a homogeneous

medium, and then

Ue(r) =
~

8π2c2

∫ ∞

0

dωω2
{ ∂

∂ω
[ωǫR(ω)]TrGI(r, r, ω)

− ǫI(ω)
∂

∂ω
[ωTrGR(r, r, ω)]

}

. (75)

Integrating by parts the integral involving the second
term on the right, we obtain

Ue(r) =
~

8π2c2
Im

∫ ∞

0

dωω2 ∂

∂ω
[ωǫ(ω)]TrG(r, r, ω)

+
~

8π2c2

∫ ∞

0

dωω2ǫI(ω)TrGR(r, r, ω). (76)
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It follows similarly from (59) that

Um(r) =
~

8π2c2
Im

∫ ∞

0

dωω2ǫ(ω)TrG(r, r, ω). (77)

The total zero-point energy density of the dispersive and
dissipative dielectric medium is therefore

U(r) =
~

8π2c2
Im

∫ ∞

0

dωω2
{ ∂

∂ω
[ωǫ(ω)] + ǫ(ω)

}

× TrG(r, r, ω)

+
~

8π2c2

∫ ∞

0

dωω2ǫI(ω)TrGR(r, r, ω)

=
~

8π2c2
Im

∫ ∞

0

dωω2
{ ∂

∂ω
[ωǫ] + ǫ

}

TrG(r, r)

+ uN(r)

= u(r) + uN (r), (78)

where u(r) is the energy density (37) obtained in Section
II.

Two “additional” contributions to the energy density
have appeared naturally in the calculation of U(r) based
on Poynting’s theorem. The first one is the energy
−Rabst [Eq. (39)] associated with the absorptive loss
of field energy, which is exactly cancelled by the energy
+Rabst picked up by the reservoir oscillators, as already
indicated in Eqs. (72)-(75) in Section IIB.

The second additional contribution, given by uN(r), is
exactly the same as in Eq. (40):

uN (r) =
~

8π2c2

∫ ∞

0

dωω2ǫI(r, ω)TrGR(r, r, ω)

=
1

2

1

8π
〈Ê · K̂+ K̂ · Ê〉. (79)

As in the discussion that led to Eq. (40), this shows that
uN(r) is the polarization energy acquired by the “noise”
dipole moments of the atoms as they interact with the
electromagnetic field.

D. Homogeneous Medium

When spatial dispersion is negligible, equation (78)
is a general expression for the zero-point energy den-
sity of a linear dielectric medium, including the effects
of the fluctuating electric and magnetic fields, the mate-
rial medium, and the reservoir. We now show that this
expression reduces to the expected energy density in the
limit of a homogeneous medium.

The (retarded) Green dyadic for a homogeneous dielec-
tric medium is given by [31]

Gij(r, r
′, ω) =

(

1 +
1

k2m
∇∇

)eikm|r−r
′|

|r− r′|
, (80)

where k2m = ǫ(ω)ω2/c2. Thus,

Gij(r, r
′, ω) = −

4π

3k2m
δijδ

3(r− r′)

+
[

δij −RjRj/R
2 − (δij − 3RiRj/R

2)

× (
1

k2mR2
−

i

kmR
)
]eikmR

R
, (81)

where R = |r− r′|. For R → 0,

Gij(r, r
′, ω) = −

4π

3k2m
δijδ

3(r− r′)

+
2i

3
kmδij −

1

k2mR3
(δij − 3RiRj/R

2). (82)

Ignoring for the moment the terms that diverge forR → 0
(see below), we put

GIij(r, r, ω) = [2nR(ω)ω/3c]δij,

GRij(r, r, ω) = −[2nI(ω)ω/3c]δij (83)

in (78) and obtain

u(r) =
~

4π2c3

∫ ∞

0

dωω3
{

[2ǫR + ωǫ′R]nR

− nI
∂

∂ω
(ωǫI)− 2nIǫI

}

. (84)

Evaluating the second term in curly brackets by partial
integration we obtain

u(r) =
~

2π2c3

∫ ∞

0

dωω3n2
R(ω)

∂

∂ω
[ωnR(ω)]. (85)

This is exactly the energy density derived in I for the
special case of a homogeneous dielectric medium.
A few other points regarding the model of a homoge-

neous medium may be worth noting. First, the Green
dyadic (81) for a homogeneous dielectric leads via equa-
tion (62) to the (Huttner-Barnett) expression (80) of I for
the quantized (transverse) electric (and magnetic) field in
a homogeneous dielectric, as is easily verified; these ex-
pressions reduce to the standard ones in the limit of free
space, as is shown by considering their limiting forms as
ǫR → 1, ǫI → 0. Second, equation (83) and the zero-
temperature expectation value [cf. Eq. (82) of I]

〈Ê(r, ω) · Ê†(r, ω′)〉 =
2~ω3

πc3
nR(ω)δ(ω − ω′) (86)

imply

〈Ê(r, ω) · Ê†(r, ω′)〉 =
~

π

ω2

c2
TrGI(r, r, ω)δ(ω−ω′), (87)

consistent with (69).
The delta function term in (81) and (82) has its origin

in the singular divergence of R̂/R2 as R → 0,

1

k2m
∇i∇j

1

|r− r′|
= −

4π

3k2m
δijδ

3(r− r′). (88)
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Physically, this is a direct consequence of the continuum
and (spatial) local approximation, and can be remedied
by allowing for spatial dispersion or/and the granular
structure of matter [32]. As remarked earlier, such a sin-
gularity is to be subtracted from Gij . Its contribution
to equation (1) is a force density whose integral over all
the space vanishes for bounded dielectric in a vacuum,
as expected. Also, the 1/R3 divergence in (82) can be
remedied by replacing the point dipole to which it cor-
responds with a dielectric sphere of radius R and then
allowing R → 0; the result is [33]

Gij(r, r
′, ω) = −

4π

3k2m
δijδ

3(r− r′) (89)

for |r − r′| infinitesimally small. Again, as noted ear-
lier, this term is to be subtracted from Gij , and gives a
vanishing contribution to the force density (1).
Finally we note that throughout this paper we are

working, albeit formally, with the full (transverse plus
longitudinal) electric field and Green dyadic, as is re-
quired when the permittivity can vary with r. If we con-
sider, for example, the spontaneous emission rate A of
a guest atom in a homogeneous dielectric, which is pro-
portional to the imaginary part of G, we find that, in
addition to the familiar contribution equal to the free-
space emission rate times the real part of the refractive
index at the transition frequency ω0 (and possibly also in-
cluding local field corrections), A has a contribution pro-
portional to Im(1/k2m) = (c2/ω2

0)ǫI(ω0)/|ǫ(ω0)|2, where
ω0 is the transition frequency [cf. Eq. (88)]. Follow-
ing the approach of Barnett et al. [33], this part of A,
which is attributable to the longitudinal part of the elec-
tric field, is found to depend on an unspecified parame-
ter R related to the effective distance between the guest
atom and the host medium. Without modifying the con-
tinuum model to allow for such a parameter, we would
obtain no such contribution to A. The same is true in
I, where we considered only the transverse component of
the field, in line with the assumption of a homogeneous,
continuous medium made in that paper, where there was
no allowance for the finite distances between atoms and
the near-field interactions between atoms associated with
longitudinal fields.

E. Parallel Plates

Equation (1) as such is not in general very useful for the
calculation of Casimir forces between arbitrarily shaped
media [34]. One exception is the force between two di-
electric media occupying the half-spaces z ≤ 0 and z ≥ d
and separated by a third dielectric [10, 11]. In this case

ǫ(r, ω) = ǫ1(ω)θ(−z) + ǫ2(ω)θ(z − d)

+ ǫ3(ω)[θ(z)− θ(z − d)] (90)

where θ(z) is the unit step function. Then the integral
over space of the force density is simplified by the fact

that ∇ǫ(r, ω) involves simple delta functions in z, yield-
ing

F(d) =

∫

d3r f(r) = −ẑ
~A

8π2c2
Im

∫ ∞

0

dωω2 coth
(

~ω

2kBT

)

×
{

ǫ3(ω)Gii(0
+, 0+, ω)− ǫ1(ω)Gii(0

−, 0−, ω)

+ ǫ2(ω)Gii(d
+, d+, ω)− ǫ3(ω)Gii(d

−, d−, ω)
}

, (91)

where Gii(0
±, 0±, ω) and Gii(d

±, d±, ω) stand for
Gii(z → 0±, z′ → 0±, ω) and Gii(z → d±, z′ → d±, ω),
respectively. The Green dyadic for this geometry can
be evaluated without difficulty [10, 35], and its trace at
coincidence can be written as

Gii(z, z, ω) =
i

2π

c2

ω2ǫ1

∫

d2k‖

κ1

{

[

−κ2
1 + k2‖

]

Rtm
1

+
ω2

c2
ǫ1R

te
1

}

e−2iκ1z (z ≤ 0), (92)

Gii(z, z, ω) =
i

2π

c2

ω2ǫ3

∫

d2k‖

κ3
×

{

κ2
3

Dtm

[

2 rtm1 rtm2 e2iκ3d − rtm1 e2iκ3z − rtm2 e2iκ3(d−z)
]

+
ω2

c2
ǫj
Dte

[

2 rte1 rte2 e2iκ3d + rte1 e2iκ3z + rte2 e2iκ3(d−z)
]

+
k2‖

Dtm

[

2 rtm1 rtm2 e2iκ3d + rtm1 e2iκ3z + rtm2 e2iκ3(d−z)
]

}

(0 < z < d), (93)

Gii(z, z, ω) =
i

2π

c2

ω2ǫ2

∫

d2k‖

κ2

{

[

−κ2
1 + k2‖

]

Rtm
2

+
ω2

c2
ǫ2R

te
2

}

e2iκ2z (z ≥ d), (94)

where κj =
√

ǫjω2/c2 − k2‖ (the ω-dependence of ǫj is

implicit throughout), the Fresnel transverse electric (te)
and transverse magnetic (tm) reflection coefficients are
given by

rtej =
κ3 − κj

κ3 − κj
, rtmj =

ǫjκ3 − κj

ǫjκ3 − κj
, (95)

and we defined

Rp
1 =

−rp1 + rp2e
2iκ3d

1− rp1r
p
2e

2iκ3d
, (96)

Rp
2 =

−rp2 + rp1e
2iκ3d

1− rp2r
p
1e

2iκ3d
, (97)
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Dp = 1− rp1r
p
2e

2iκ3d (p = te, tm). (98)

Substituting (92)-(94) into (91) we get, after straightfor-
ward (if a bit long) manipulations

F(d) =

∫

d3r f(r) = −ẑ
~A

4π3
Im

∫ ∞

0

dω coth

(

~ω

2kBT

)

×

∫

d2k‖ κ3

∑

p=te,tm

rp1r
p
2 e

2iκ3d

Dp
, (99)

that is just the force between two parallel half-spaces
separated by a dielectric [10].

IV. CASIMIR FORCE DENSITY FROM THE

MAXWELL STRESS TENSOR

The force on the material resulting from the Lorentz
forces acting on the particles constituting the medium
can be obtained from the Maxwell stress tensor [37]. We
now show that this force is equal to the Casimir force
density (1).
Recall first the classical theory for the force density in

a dielectric medium in which there are no free charges or
currents. From the macroscopic Maxwell equations one
derives a force density fi = ∂jTij , where the stress tensor
is

Tij =
1

4π
[EiDj +HiHj −

1

2
(E ·D+H ·H)δij ]. (100)

It follows that

fi =
1

8π
[(∂iEj)Dj − Ej(∂iDj)]. (101)

In identifying f(r) as the force per unit volume on the
medium at the point r we are assuming conditions such
that (∂/∂t)(D × H)/4πc can be taken to be zero, since
we are dealing with a stationary equilibrium situation
(see also [36]). We continue to restrict ourselves here,
as in I, to isotropic media, in which case the Minkowski
form of the stress tensor defined by (100) is symmetric,
consistent with angular momentum conservation.
In quantum theory we replace Ej and Dj in (101) by

operators, symmetrize, and take expectation values:

fi =
1

8π
Re

[

〈(∂iÊj)D̂j〉 − 〈Êj(∂iD̂j)〉
]

, (102)

or

fi(r) =
1

8π
Re

∫ ∞

−∞

dω

∫ ∞

−∞

dω′
{

〈[∂iÊj(r, ω)]D̂j(r, ω
′)〉

− 〈Êj(r, ω)[∂iD̂j(r, ω
′)]〉

}

. (103)

Since the electric displacement vector D̂(r, ω) =

ǫ(r, ω)Ê(r, ω) + K̂(r, ω),

〈Êj(r, ω)D̂j(r
′, ω′)〉 = ǫ(r′, ω′)〈Êj(r, ω)Êj(r

′, ω′)〉

+ 〈Êj(r, ω)K̂j(r
′, ω′)〉. (104)

In the second term on the right we use (62), while in the
first term we use (69). Then

Re〈Êj(r, ω)D̂j(r
′, ω′)〉 =

~ω2

πc2
Im[ǫ(r′, ω)Gjj(r, r

′, ω)]

× δ(ω − ω′), (105)

which leads us again to the force density (1):

fi(r) =
1

8π
Im

∫ ∞

0

dω

∫ ∞

0

dω′

× lim
r
′→r

{

〈[∂iÊj(r, ω)]D̂j(r
′, ω′)〉

− 〈Êj(r
′, ω)[∂iD̂j(r, ω

′)]〉
}

= −
~

8π2c2
Im

∫ ∞

0

dωω2∂iǫ(r, ω)Gjj(r, r, ω).

(106)

V. CONCLUDING REMARKS

In Section II we considered a collection of station-
ary electrically polarizable particles in free space and
at zero temperature and obtained formal expressions for
the many-body van der Waals interaction energies among
these particles. The results are equivalent to those ob-
tained by various other methods, but unlike most of ear-
lier work we accounted explicitly for dissipation by cou-
pling each particle to a reservoir of harmonic oscillators
rather than by invoking analytic properties of the permit-
tivity. Within the continuum approximation we obtained
expressions for the electromagnetic energy density and a
Casimir force density; as shown in the Appendix, these
expressions are easily generalized to the case of thermal
equilibrium. The force density obtained is in agreement
with that originally derived by Dzyaloshinskii et al. [10].
In Section III we derived the formula (37) for the energy
density starting from the continuum approximation and
Poynting’s theorem in macroscopic quantum electrody-
namics, and in Section IV we derived the formula (1) for
the force density using the Minkowski form of the stress
tensor.

Under the assumption of a continuous medium, and ig-
noring single-particle self-energies, the expression (37) is
exact [38]. Similar expressions are well known in classical
electromagnetic theory [39] as approximations applicable
for frequencies at which absorption is negligible. The rea-
son our expression is exact is not, strictly speaking, due
to our quantum treatment of the field, but rather to the
fact that Fourier components of the zero-point field field
at different frequencies are uncorrelated [8] (as they are
at finite equilibrium temperatures).

Under the (unrealistic) assumption that absorption
can be completely ignored, so that ǫ is real, we would
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write

u(r) =
1

8π

∫ ∞

0

dω
{ ∂

∂ω
[ωǫ(r, ω)] + ǫ(r, ω)

}

× 〈Ê(r, ω) · Ê†(r, ω)〉

=
~

8π2c2
Im

∫ ∞

0

dωω2
{ ∂

∂ω
[ωǫ(r, ω)] + ǫ(r, ω)

}

×Gii(r, r, ω). (107)

Since both ǫ and G as functions of complex frequency
are analytic in the upper half of the complex frequency
plane, we can perform a Wick rotation and write

u(r) =
~

8π2c2
Im

∫ ∞

0

dξξ2
{ ∂

∂ξ
[ξǫ(r, iξ)] + ǫ(r, iξ)

}

×Gii(r, r, iξ), (108)

where we have used the relation between 〈Ê(r, ω) ·

Ê†(r, ω)〉 and G(r, r, ω) for purely imaginary frequencies
iξ. In other words, consistent with the remarks in the
Introduction, we can obtain the correct energy density
from the formula (107), which assumes there is no ab-
sorption, by formally replacing ǫ(r, ω) and G(r, r, ω) by
their (real) values ǫ(r, iξ) and G(r, r, iξ). Similarly we
can formally interpret the energy density (37) as an in-
tegral over zero-point energies (1/2)~ν by writing it as

u(r) =

∫ ∞

0

dνρ(r, ν)
(1

2
~ν

)

, (109)

where

ρ(r, ν) =
ν

4π2c2

{ ∂

∂ν
[νǫ(r, iν)] + ǫ(r, iν)]

}

(110)

is a local density of states [40].
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Appendix. Generalization to Finite Temperature

It is an easy matter to generalize our approach and
results to finite equilibrium temperatures T . In the ap-

proach of Section II we replace 〈E(r) ·E†(r)〉 in Eq. (14)
by 〈E(r) ·E†(r) +E†(r) ·E(r)〉, since the quantized field
E involves photon annihilation operators and does not
give zero when acting on a thermal state. We similarly
replace (15) by [19]

〈Ê0(r, ω) · Ê
†
0(r, ω

′) + Ê
†
0(r, ω) · Ê0(r, ω

′)〉 =

~

π
coth

(

~ω

2kBT

)

ImTrG0(r, r, ω)δ(ω − ω′). (111)

Then formulas such as (17)-(19) and (37) are general-
ized to finite temperature by simply inserting the factor
coth(~ω/2kBT ) in the integrations over ω. Thus, for ex-
ample, the energy density (37) generalizes to

u(r) =
~

8π2c2
ImTr

∫ ∞

0

dωω2 coth
(

~ω

2kBT

)

× [2ǫ(r, ω) + ωǫ′(r, ω)]G(r, r, ω). (112)

The same arguments leading from the energy density to
the force density apply regardless of the temperature, so
that the generalization of (1) is simply

f(r) = −
~

8π2c2
Im

∫ ∞

0

dωω2 coth
(

~ω

2kBT

)

∇ǫ(r, ω)

×Gii(r, r, ω). (113)

We can convert in the standard fashion the integral over
the real ω axis to an integral over the imaginary ω axis.
Using the fact that ǫ(r, ω) and G(r, r, ω) are analytic in
the upper half of the complex frequency plane, and that
coth(~ω/2kBT ) has poles at ωn = (2πikBT/~)n = iξn
for all integers n, the result is that the integration over
ω is replaced by a sum over n:

∫ ∞

0

dωf(ω) → −
2πkBT

~

∞′

∑

n=0

f(iξn), (114)

where f(ω) denotes the integrand in (113) and the prime
on the summation sign indicates that the n = 0 term is
multiplied by 1/2. Then

f(r) = −
kBT

4πc2

∞′

∑

n=0

ω2
nGii(r, r, iωn)∇ǫ(r, iωn), (115)

which is the result of Dzyaloshinskii et al. quoted earlier
[Eq. (49)]. The same finite-temperature results are easily
shown to emerge from the approach of Section III when
the temperature-dependent terms in the noise polariza-
tion correlation functions (65) and (66) are retained.
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