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On the basis of general theoretical results developed previously in JETP 112, 246 (2011) we
analyze the atomic polarization created by weak monochromatic light in an optically thick, dense
and cold atomic ensemble. We show that the amplitude of the polarization averaged over a uniform
random atomic distribution decreases exponentially beyond the boundary regions. The phase of
this polarization increases linearly with increasing penetration into the medium. On these grounds,
we determine numerically the wavelength of the light in the dense atomic medium, its extinction
coefficient, and the complex refractive index and dielectric constant of the medium. The dispersion
of the permittivity is investigated for different atomic densities. It is shown that for dense clouds,
the real part of the permittivity is negative in some spectral domains.
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I. INTRODUCTION

Improvements in techniques for cooling of atomic gases
in atomic traps make their use very promising for prac-
tical applications in various areas of fundamental science
and technology such as metrology, development of fre-
quency standards, and quantum information problems
[1–9]. The largest number of applications envisioned for
cold and ultracold atomic ensembles have at their foun-
dation the interaction between the medium and electro-
magnetic radiation. This interaction also underlies many
methods for diagnostics of the states of these ensembles.
Recently, dense atomic clouds, in which the average inter-
atomic distances are comparable with the optical wave-
length, have attracted much attention. This interest is in
part generated by such fundamental and practically im-
portant physical effects as Anderson (strong) localization
of light [10–13] and lasing in a disordered medium [14–
18] which can take place in dense ensembles. The aim
of recent studies in this field was to observe these effects
experimentally and to describe them theoretically.

One challenging problem in the area of disordered
atomic systems is that the studied atomic ensembles nor-
mally consist of a large number of atoms in samples that
are produced with a low duty cycle. The larger number
of atoms is required in order to obtain sufficient signal
to noise to study the subtle effects of interest. Such ex-
periments require realistic modeling in order to extract
the essential physics of the observed processes. However,
it is challenging to treat these problems as a multi-atom
scattering process, and such studies have been limited to
several thousand atoms [19–21]; this should be compared
with the characteristic 106 atom-sized samples of recent
experiments. Alternative theoretical approaches, even if
approximate in nature, are then desirable.

The present paper is devoted to the theoretical descrip-
tion of optical properties of dense and cold atomic clouds.
The problem of a dense atomic ensemble belongs obvi-

ously to the field of macroscopic electrodynamics. The
main approach here is based on usage of such averaged
characteristics as the field strength and atomic polariza-
tion. The key point in a macroscopic approach is in find-
ing the susceptibility or dielectric constant of the dense
ensemble. The influence of density of the medium on its
susceptibility can be analyzed on the basis of the idea of a
local field and, following from it, the Lorentz-Lorenz for-
mula [22]. This formula is sufficient to solve completely
the problem of the dependence on density only if the dif-
ference between the polarizability of a free atom and its
polarizability in the medium can be neglected [23]. As we
will show below, for the considered cold atomic ensemble
this is not the case. The resonant dipole-dipole inter-
atomic interaction causes atomic level shifts and broad-
ening and thereby essentially modifies the atomic polar-
izability. An explicit analytical expression for the sus-
ceptibility, which takes into account this modification,
was obtained earlier in [20]. The calculation in [20] was
based on the relevant macroscopic statistical description
of the polarization response of the medium to an external
field. Part of the approximations made in [20] are valid
only for relatively low density ensembles and thus the
corresponding results have a restricted range of applica-
bility. Constitutive relations connecting atomic polariza-
tion and an external field can be obtained consistently
only in the framework of a microscopic approach based
on the notion of the discrete structure of matter consist-
ing of separate atoms.

A consistent microscopic approach has been already
applied for analysis of influence of interatomic interac-
tions on spontaneous decay of an impurity atom embed-
ded in a dielectric [24–27]. Quite a number of works were
devoted to collective decay in dense homogeneous mul-
tiatomic media and to properties of spontaneous emission
of such media initially excited by a weak external field
(see, for example [28–39] and references therein). In these
works the main attention was focused on the influence of
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the density of the ensemble on its afterglow, i.e. on sec-
ondary radiation. In the present paper we consider the
influence of interatomic interaction on the properties of
the ensemble itself. We study the spatial distribution of
atomic polarization created by weak monochromatic light
in a cold atomic ensemble. We show that in the case of
a uniform random atomic distribution amplitude of po-
larization averaged over space configurations decreases
exponentially beyond the boundary regions. Its phase in-
creases linearly with distance into the medium. On this
ground we determine numerically the wavelength of the
light in the dense atomic clouds, its extinction coefficient
as well as complex index of refraction and dielectric con-
stant of the medium. We also analyze the dispersion of
the permittivity for different atomic densities. Note that
similar problems arise in classical electrodynamics when
studying light scattering from a medium with random di-
electric inclusions [40]. Such inclusions strongly influence
light propagation in such media, giving rise manifold in-
ternal scattering and essentially modifying its averaged
dielectric constant.

An important feature of the present work is in taking
into account the polarization properties of light. Nearly
all the mentioned above papers on multiatomic systems
used only a two-level model for the atoms. This pre-
vents a correct consideration of the light polarization,
adequate description of the resonance dipole-dipole in-
teraction at small distances and, as a consequence, cor-
rect calculation of shifts and broadenings of atomic levels.
We also do not use a model of an averaged continuous
medium in our calculations. That is, the influence on
the intrinsic spatial disorder of the atoms in the ensem-
ble is considered. As a specific illustration of this, recent
approaches to atomic physics-based localization studies
have considered systems of reduced dimensionality. One
way to achieve this for light localization is to optically
create a quasi one dimensional system through modifica-
tion of spatially larger samples. Such optical channels,
with wavelength-scale transverse dimensions, can be cre-
ated through quantum optical techniques based on elec-
tromagnetically induced transparency, for instance. Al-
ternatively, a strongly focused far-off-resonance laser can
generate a type of optical wave guide through the dense
sample, allowing quasi one dimensional localization for
a much weaker, but near-resonance probe beam. Theo-
retical modeling the average properties of such generated
optical wave guides, essential to interpretation of experi-
ments, may be done using the effective optical responses
of the resulting medium, as we discuss in the current pa-
per.

The remainder of this paper is organized as follows. In
Section 2 we describe our basic physical assumptions and
the calculational approach. Section 3 presents results of
numerical simulations. We conclude with a brief synopsis
of the results, highlighting the main points of the present
report.

II. BASIC ASSUMPTIONS AND APPROACHES

Consider the temporal dynamics of a system consist-
ing of N + 1 motionless atoms. Let N atoms form the
cloud. These atoms are identical and have a ground state
J = 0 separated by the frequency ωa from an excited
J = 1 state. The natural linewidth of this state is γ.
One atom is located far from the cloud and has the same
J = 0 ↔ J = 1 structure of levels but a different transi-
tion frequency ωs and a different decay constant γs. We
will assume that initially all atoms of the cloud are in
the ground state and the separated atom, which we will
refer to as a source atom or simply the source, is in a co-
herent state which is a superposition of the ground and
a small admixture of the excited state. In the course of
spontaneous decay such an atom creates an electromag-
netic field which is a superposition of vacuum and a small
admixture of a one photon state. As is known, this super-
position approximates a weak coherent state of the field
with good accuracy. Under the influence of the field, the
atoms of the cloud are excited and in due course emit sec-
ondary radiation which can be absorbed by other atoms
of the cloud. The process of manyfold photon exchange
determines the dipole-dipole interatomic interaction and
manifests itself in such phenomena as spontaneous decay
modification, collective atomic state formation and so on.
The microscopic description of dynamics of the consid-

ered ensemble is based on the non stationary Schrodinger
equation for the wave function ψ of the joint system con-
sisting of atoms and the field generated in the process of
the evolution

i~
∂ψ

∂t
= Hψ, (2.1)

The Hamiltonian of the system H can be presented as
the sum of the Hamiltonians of the free atoms and the
free field H0, and the operator V of their interaction. In
the dipole approximation used here, we have

V = −
∑

a

d
(a)

E(ra), (2.2)

E(r) = E
(+)(r) +E

(−)(r) = (2.3)

= i
∑

k,α

√
2π~ωk

V
ekαakα exp(ikr) + h.c.

where E
(±) are the operators of the positive and nega-

tive frequency components of the field; akα is the photon
annihilation operator in a mode with wave vector k and
polarization α; V is the quantization volume; d(a) is the
dipole moment operator of the atom a, ekα are polariza-
tion unit vectors.
We will seek the wave function ψ as an expansion in a

set of eigenstates {|l〉} of the operator H0:

ψ =
∑

l

bl(t)|l〉. (2.4)
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Here, the subscript l defines the state of all atoms and
the field.
The key simplification of the approach employed is in

restriction of total number of states |l〉 taken into ac-
count. We will calculate all radiative correction up to
the second order of the fine structure constant. In this
case we can consider only the following states (see [41])

ψg = |g, g, ...g〉 ⊗ |kα〉 (2.5)

ψg′ = |g, g, ...g〉 ⊗ |vac〉 (2.6)

ψea = |g, g, ...g, e, g, ...g〉 ⊗ |vac〉 (2.7)

ψeaeb = |g, ...g, e, g...g, e, g, ...g〉 ⊗ |kα〉 (2.8)

In the rotating wave approximation it is enough to take
into account only the states (2.5) and (2.7). States with-
out excitation both in atomic and field subsystem (2.6)
allow us to describe coherent states of the source atom.
Non resonant states with two excited atoms and one pho-
ton (2.8) are necessary for a correct description of the
dipole-dipole interaction at short interatomic distances.
Note that, in considered case, there are three excited
states for each atom e = |J,m〉, which differ by the value
of angular momentum projection m = −1, 0, 1. There-
fore, the total number of one-fold excited states (2.7) is
3(N + 1).
Equation (2.1) should be supplemented by an initial

condition. According to our previous discussion, we will
consider the case when initially the field is in a vacuum
state, all atoms of the cloud are in the ground state and
the source atom which we denote by index s is in super-
position of ground and one of the excited states |J,m〉.
Designating the corresponding amplitudes as b′0 and b0,
we can write

ψ(0) = b′0|g
′〉+ b0|es0〉, (2.9)

where the index es0 corresponds to the one of the three
possible states of atom s which is populated in the initial
moment of time.
In the framework of the assumptions made, the am-

plitude of state ψg′ = |g′〉 does not change during the
evolution of the system bg′(t) = b′0, because transitions
to this state from other states taken into account are im-
possible. The transition from (2.6) to any of the states
is also impossible.
To determine all other amplitudes we have to solve the

set of equations which follows from (2.1). In spite of the
performed restriction of the number of states, this set
of equations is infinite because of the infinite number of
degrees of freedom of the field. We can however exclude
amplitudes of states with one photon and obtain a finite
closed system of equations for be(t) ≡ bea(t); a 6= s. For
Fourier components be(ω) we have (at greater length see
[19])

∑

e′ 6=s

[(ω − ωa)δee′ − Σee′(ω)] be′(ω) = Λes(ω). (2.10)

Matrix elements Σee′(ω) for e and e′ corresponding
to different atoms describe excitation exchange between

these atoms. Assuming that in state ψe′ and ψe atoms
b and a are excited correspondingly, in the framework of
the pole approximation (see [42]), we have

Σee′ (ω) =
∑

µ,ν

d
µ
ea;gad

ν
gb;eb

~r3
× (2.11)

[
δµν

(
1− i

ωar

c
−
(ωar

c

)2
)
exp

(
i
ωar

c

)
−

−
rµrν

r2

(
3− 3i

ωar

c
−
(ωar

c

)2
)
exp

(
i
ωar

c

)]
.

Here rµ is the projection of the vector r = ra − rb on the
axis of the chosen coordinate system and r = |r| is the
separation between atoms a and b.
If e and e′ correspond to excited states of one atom

then Σee′ (ω) differs from zero only for e = e′ (m = m′).
In this case Σee(ω) determines the Lamb shift and the
decay constant of corresponding excited state. Including
Lamb shifts in the transition frequency ωa we get

Σee(ω) = −iγa/2. (2.12)

The term Λes(ω) in the right-hand side of Eq. (2.10)
describes excitation of the cloud atoms by the radiation
of the source. Assuming that the size of the atomic en-
semble is negligible compare with the distance from it
to the source, and neglecting the secondary excitation of
the source atom s by reradiation from the cloud, we have

Λes(ω) =
ib0

(ω − ωs + iγs/2)
Σ̃es(ω), (2.13)

Σ̃es(ω) = −
∑

µ,ν

k2dµ
e;gd

ν
gs;es

~rs

[
δµν −

kµkν

k2

]
×

× exp (ikrs + ikre) . (2.14)

Here k =ωn/c. Relation (2.14) is written in a coordinate
frame originating at some point inside the cloud; re are
radii locating the atoms; n is a unit vector oriented from
the source to the cloud. In obtaining the expression for

Σ̃es(ω) we took into account the non-applicability of the
pole approximation because of the large separation be-
tween the cloud and source, we used the rotating wave
approximation for the same reason and kept only one
term which decreases most slowly with re. All these fac-

tors generate the differences between Σ̃ and the elements
of matrix Σ.
Knowledge of explicit expressions for Λes(ω) and

Σee′(ω) allows us to determine the amplitudes of all one-
fold excited states (2.7). Note that system (2.10) can
be reduced to an integral equation by using the continu-
ous medium approximation. This significantly simplifies
the solution of the problem for a two-level atom system
[35–39]. Moreover, in this case, even an analytic solution
is possible for spatially homogeneous spherical clouds.
This solution neglects, however, the important proper-
ties of real physical systems, and therefore we will solve
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the linear system (2.10) numerically. In a numerical so-
lution we can correctly describe all polarization effects
and take into account the random inhomogeneities of the
medium.
Introducing the inverse matrix which, as shown in [20],

is a resolvent operator of the considered multi atomic
cloud

Ree′ (ω) = [(ω − ωa)δee′ − Σee′ (ω)]
−1
, (2.15)

we can write the solution of the system (2.10) as follows

be(ω) =
∑

e′ 6=s

Ree′ (ω)Λe′s(ω). (2.16)

For amplitude be(t) we get

be(t) =

∞∫

−∞

idω

2π

b0 exp(−iωt)
∑
e′ 6=s

Ree′ (ω)Σ̃e′s(ω)

ω − ωs + iγs/2
.

(2.17)

This relation give us the possibilities to find the dis-
tribution of excited states at any instant of time. In this
work we are interested in the spatial distribution under
quasi static conditions. Such conditions can be realized
if decay times of all collective states of the dense atomic
ensemble are much less than the decay time of the source
atom s.
Let us consider the relation (2.17) for a time inter-

val much less that γ−1
s but larger than the mentioned

collective relaxation times. Formally, relations for the
quasi steady state regime can be obtained by two limit-
ing processes. First we should pass to the limit γs → 0
and then to t → ∞. Realizing these limiting processes
and taking into account that lim

γs→0
(ω − ωs + iγs/2)

−1 =

ς(ω − ωs), where ς(x) is a singular function and that
lim

t→+∞
ς (ω − ωs) exp(−iωt) = −2πiδ(ω − ωs) exp(−iωst)

we get

be(t) = b0 exp(−iωst)
∑

e′ 6=s

Ree′(ωs)Σ̃e′s(ωs).

(2.18)

By using be(t) we can obtain amplitudes of all states
taken into account in our calculations (see [19]) and con-
sequently, the wave function of the considered system.
Among other things, this allows calculation of the po-
larization as the averaged dipole moment of unit volume
of the atomic ensemble. For a given projection µ of the
polarization vector we have

Pµ(r, t) =
1

∆V

∑

a∈∆V

〈d̂(a)µ 〉. (2.19)

Here d̂
(a)
µ is the operator of the corresponding projection

of the dipole moment of atom a. The summation in (2.19)

is made over all atoms located in a mesoscopic volume
∆V near the point r. Quantum-mechanical averaging is
performed over the wave function of the system.
In analyzing the polarization it is convenient to select

positive and negative frequency parts and use a basis of
circular polarization (µ = 0,±1):

Pµ(r, t) = P(−)
µ (r, t) + P(+)

µ (r, t). (2.20)

Using the known wave function and taking into account
the short life time of the nonresonant virtual states with
two excited atoms and consequently its small contribu-
tion to the polarization, we find

P(+)
µ (r, t) = P(+)

µ (r) exp(−iωst); (2.21)

P(+)
µ (r) =

b′∗0 b0
∆V

∑

a∈∆V

∑

eb

Rem
a
eb(ωs)Σ̃ebs(ωs).

The additional index m at ea means that under sum-
mation we have to include only those states ema of atom
a which give contributions to the corresponding projec-
tion of the polarization vector. In the basis of circular
polarization such contribution comes only from one Zee-
man sublevel with m = µ. Due to the optical isotropy
of the atomic ensemble, the orientation of the atomic
polarization vector coincides with the orientation of the
polarization of light exciting the atoms. The latter, in
turn, depends on the specific Zeeman sublevel ms of the
source atom which was excited initially. In the case when
the quantization axis coincides with the vector n the con-
figurationally averaged atomic polarization has only one
nonzero projection µ = ms. Thus to determine the po-
larization we have to take into consideration only the
Zeeman state with m = ms.
In the next section, we will use relation (2.21) to cal-

culate the spatial distribution of atomic polarization and
analyze on this foundation coherent light propagation
through ensembles of different densities.

III. RESULTS AND DISCUSSION

A. Atomic polarization

Expression (2.21) allows us to consider atomic clouds
with different shapes and with different atomic spatial
distributions. We however will further consider mainly
model cylindrical clouds with random but (on average)
uniform atom distributions along the vector n. For defi-
niteness let us assume that the statems = 1 of the source
atom is excited initially. In such a case the source creates
a nearly plane right-hand circularly polarized wave in the
area of the cloud and the vector of the atomic polariza-
tion has only one nonzero component, which we will refer
to without index.
Fig. 1 shows the spatial dependence of the absolute

value (Fig. 1a) and phase (Fig. 1b) of the complex
quantity P(+)(r) for different detunings ∆ = ωs − ωa
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of the source probe radiation from exact bare atomic res-
onance. The calculations were made for a cloud with
length L = 10 and radius R = 20. Hereafter in this
paper we use the inverse wavenumber of the resonant
probe radiation in vacuum k−1

0 = λa/2π = c/2πωa as a
unit of length. In these units, the mean density of atoms
is n = 0.2. To avoid the influence of boundary effects
at the lateral surface of the cylinder as well as diffrac-
tion effects caused by the sharp boundary we calculate
atomic polarization P(+)(r) only for an area near the axis
of the cylinder where we can neglect the dependence of
the polarization on r. In this area we deal with a quasi
one-dimension case. The polarization depends only on
z. Our analysis shows that for the considered parame-
ters this take place for the inner portion of the cylinder
with r ≤ 15. Results shown in Fig. 1 are obtained by
averaging of the atomic polarization over the region with
radius r = 10.

The curves in Fig. 1 were obtained by averaging over
the random locations of atoms inside the cloud. The to-
tal number of statistical tests was about 6 · 104. Despite
such a large number the curves which were not smoothed
additionally keep indications of fluctuations. These fluc-
tuations manifest themselves most clearly far from the
front edge of the cloud. Here the averaged polarization
is extremely small in comparison with the polarization
corresponding to any random specific spatial configura-
tion of the ensemble.

In spite of the fluctuations the results shown in Fig.
1 allow us to make several important conclusions about
the spatial dependence of the polarization. First, beyond
the boundaries and near the ends of the cylinder (z = 0
and z = 10) the phase of polarization wave increases
linearly. Second, beyond these areas we have a single-
exponential decay of the atomic polarization. And last,
in the boundary regions with size of about 1.5÷2 we see
peculiarities connected with the fact that atoms located
here interact mainly with atoms situated on one side of
them, inside the cloud. This causes some modification of
the dipole-dipole interatomic interaction. Besides that,
the electromagnetic wave reflects from the base edges of
the cylindrical clouds. This leads to formation of a stand-
ing wave of polarization. This effect is most evident at
the far edge of the cloud (z = 10) for the wave strongly
detuned from resonance (curves corresponded to ∆ = −γ
and ∆ = 2.5γ). For these waves absorption is small and
the amplitude of the reflected wave slightly decreases in-
side the medium. At the very edge of the cloud we have
either a node or an antinode of the standing wave de-
pending on the optical density of the medium. In our
case there is a vacuum beyond the cloud. Its refractive
index is equal to unity so for large positive detunings we
have a node (curve ∆ = 2.5γ in Fig.1a) at the edge and
for negative ones we have an antinode (∆ = −γ).

Data shown in Fig. 1 were obtain for several differ-
ent detunings and one given density of the cloud. Note
however that all peculiarities discussed above were ob-
served in our calculation for the full range of considered

parameters; that is, for all different detunings and for all
considered densities of atoms.
Knowledge of the polarization of the atomic ensemble

allows us to make some conclusions about light propa-
gation in it. Three averaged quantities, these being the
polarization, the field strength, and the electric displace-
ment are proportional to each other. The coefficients
of proportionality for regions away from the boundaries
cannot depend on the spatial coordinates because here
we deal with a quasi uniform medium. The linear in-
creasing of the phase of the polarization and the single-
exponential decay of its amplitude means that in the cor-
responding area the spatial dependence of the polariza-
tion and of the averaged field strength E are as follows

P(z) = P0 exp(i(k
′ + ik′′)z);

E(z) = E0 exp(i(k
′ + ik′′)z). (3.1)

Here we have taken into account that only one compo-
nent of each vector is nonzero and that these components
depend only on z. The real k′ and imaginary k′′ parts
of the wave number can be determined from the decay
coefficient and wavelength of the polarization, i.e. from
the angles of inclination in the region of the linear de-
pendence of the curves shown in Fig. 1. The results of
corresponding calculations are depicted in Fig. 2
Fig. 2 shows how interatomic interactions modify

the spectral dependencies of absorption and reflection
in dense media. In dilute media, both absorbtion and
refraction indexes increase linearly with density accord-
ing to the relation k = k0 + nσ(ω)/2, where n is the
density, k and σ(ω) are the complex wave number and
the complex cross section of light scattering from free
atoms. In the case when atomic motion and atomic col-
lisions can be neglected the latter gives a Lorentz profile
for the absorption coefficient and a corresponding dis-
persion curve for the refractive index. The influence of
collective effects causes essential distortion of the spec-
tra. The absorption spectrum is nonsymmetric, there are
noticeable shifts of the maximum of absorbtion which, in
the considered range of densities, are in the blue wing.
The amplitude of the absorbtion increases slowly with
density and there is an evident tendency towards satura-
tion. A density increasing from n = 0.2 to n = 0.5 leads
only to a 25% increase of maximum absorption, which is
much less that under density increasing from n = 0.1 to
n = 0.2. Saturation effects in our interpretation connects
with level shifts caused by strong dipole-dipole interac-
tion for dense media. These shifts cause also essential
nonhomogeneous broadening of the spectral profiles, this
being clearly seen in Fig. 2.
Calculation of the real and imaginary parts of the wave

number permits us to assess qualitatively the Ioffe-Regel
criterium for strong light localization in atomic media.
According this criterium, localization can be observed if
the transport length of a photon is less than its wave
length in the medium. The wave length of the photon
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is determined by the inverse real part of the wave num-
ber λ/2π = 1/k′. The transport length of a photon can
be estimated by the absorption coefficient because in the
considered media there is no real absorption and atten-
uation of the coherent component of light connects only
with exit of photons from the corresponding mode, i.e.
with scattering. Taking into account that the amplitude
of the field decreases twice slower the light intensity, the
ratio of transport length to wave length can be estimated
as k′/2k′′. Fig. 3 shows the spectral dependence of this
ratio for clouds with different densities.
It is seen that even for a density n = 0.1 there is a

region of frequencies where the considered ratio is less
than unity. As density increases, the width of the cor-
responding spectral region also increases. The minimal
value of the ratio k′/2k′′, however, decreases very slowly
and shifts into the blue wing. It is also noticeably greater
than that predicted for the case of independent scatterers
(see for comparison Fig. 3 and Fig. 4 in [23]. Here we see
directly the influence of the resonant dipole-dipole inter-
action. Increasing the density results in a decreasing of
the portion of atoms which interact effectively with the
light at a given frequency.

B. Dielectric constant and atomic susceptibility of

dense cold atomic gases

With knowledge of the complex refractive index we can
also calculate the dielectric constant. The latter can be
found by the following relations

ε′ = Re(ε) = (k′2 − k′′2)/k20 ;

ε′′ = Im(ε) = 2k′k′′/k20 . (3.2)

In the spectrum of the real and imaginary parts of the
dielectric constant (Fig.4) we see all regularities which
were previously observed in the spectrum of the complex
refractive index. But there is one important additional
difference. For dense cold atomic media the real part of ε
can be negative at some frequencies. The dipole dynam-
ics is in phase opposition with the driving field. At the
considered densities however, and in the corresponding
spectral area the imaginary part ε′′ is not negligible and
the electromagnetic field keeps wave nature.
The complex refractive index as well as the dielectric

constant are used for macroscopic description of the light
in media. One of the main characteristics in the micro-
scopic approach is a single atom polarizability α which is
the proportionality factor between averaged dipole mo-
ment of an atom and averaged strength of electric field
acting on it. The difference between the free atom polar-
izability and the polarizability in the medium permits us
to analyze the mutual influence of atoms in the medium.
The key point in the calculation of the polarizability is
the idea of an effective field acting on the atoms and its
distinction from the mean field. In this work we will use
the well-known Lorentz-Lorenz formula connecting the

mean atomic polarizability and the dielectric constant
[22].

α =
3

4πn

ε− 1

ε+ 2
. (3.3)

Substituting the known dielectric constant in this equa-
tion give us the real and imaginary parts of the polar-
izability. The results of corresponding calculation are
shown in Fig. 5. The main result here is the essential
decreasing of the polarizability as the density increases.
At higher densities the collective atomic states are dis-
tributed over a wider region of frequency and polarizabil-
ity at a given frequency per one atom is smaller.
To conclude this section, let consider the quality of

the derived dielectric constant and its application in a
macroscopic approach. We compare two different results
for the total cross section of light scattering from a ho-
mogeneous sphere. The first result is obtained in [19] by
means of a microscopic calculation. The second one is
the cross section calculated in the framework of the well
known Debye-Mie model with the permittivity from this
paper. The result of comparison is shown in the Fig. 6.
The quantitative difference between these two results

does not exceed a few percents. It is very good agreement
especially taking into account the approximate numerical
determination of the permittivity. We have also noticed
that Debye-Mie model is exactly valid for a homogeneous
sphere whereas our atomic cloud has boundary regions
with different local permittivity and hence is not com-
pletely uniform.

IV. CONCLUSION

In the present paper we consider the influence of the
resonant dipole-dipole interatomic interaction in dense
atomic clouds on their optical properties. Dispersion of
the permittivity and atomic polarizability are determined
under different conditions. Atomic clouds with densities
up to n = 0.5 are considered. It is observed that for a
dense cloud the real part of the dielectric constant can
be negative.
The expression for the dielectric constant found here

was used for calculation of the resulting spectrum with
that of a previous self-consistent approach [19]. This
comparison was restricted to the case of ensembles con-
taining several thousand atoms, but good agreement al-
lows us to use the obtained permittivity for macroscopic
calculations in cases when the microscopic approach can
not be utilized because of technical difficulties, as indi-
cated in the introduction to this paper.
In this work we also determine the spectral regions,

for each considered atomic density, for which the mean
free path is smaller than the wavelength, i.e. we specify
conditions when the Ioffe-Regel criterium for strong lo-
calization of light in cold dense atomic gases is satisfied.
However more definitive conclusions about the possibil-
ities of strong localization need additional study of its
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direct manifestation in, for instance, the distribution of
fluctuations of the transmitted light intensity or in the
afterglow delay.
Finally, all calculations in this work were made under

the assumption of motionless atoms but for non degener-
ate gases. In our opinion the developed approach is ap-
plicable to the case of quasi-resonant compressible dipole
[23] or quasistatic electric dipole traps [21]. The typi-
cal temperature of 30-100 mK achieved for the dense Rb
cloud in such traps (see for example [21]) is large enough
to ignore all effects of degeneracy which can strongly af-
fect light scattering from quantum gases [43]. On the
other hand, the atomic velocity is sufficiently small here
to neglect the Doppler shift (it is several times smaller
than the natural width of the excited atomic levels) and
to allow us to consider the dipole-dipole interaction as
resonant. Averaging over all possible random position of
the motionless atoms in our model allows us to take into
account the residual motion of real atoms in the traps.
It seems important to further generalize the developed

approach to the cases when atomic motion plays a more
significant role, for example to the case of hot gases. Such
generalization is important for a wider range problems of
precision spectroscopy, particularly spectroscopy of se-
lective reflection from the boundary of a dielectric-dense
atomic gas [44–50]. In this case, however, the dipole-
dipole interaction loses its resonant behavior and colli-
sional broadening should be taken into account, along
with essential Doppler effect.
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Figures

FIG. 1: (Color online) Spatial distribution of atomic polariza-

tion. (a) Amplitude of polarization abs(P(+)(z)), semi loga-

rithmic scale; (b) Phase of polarization arg(P(+)(z)). Calcu-
lations were made for a cylindrical cloud with length L = 10
and radius R = 20, atomic density is n = 0.2.

FIG. 2: (Color online) Spectrum of imaginary (a) and real (b)
parts of the wave number of a plane electromagnetic wave in
atomic ensembles of different density; k0 = ωa/c is the wave
number of the resonant source radiation in vacuum.

FIG. 3: (Color online) Spectral dependence of the Ioffe-Regel
parameter for atomic ensembles with different densities.

FIG. 4: (Color online) Imaginary (a) and real (b) parts of the
dielectric constant for atomic ensembles with different densi-
ties.

FIG. 5: (Color online) Imaginary (a) and real (b) parts of the
atomic polarizability in ensembles with different densities.

FIG. 6: (Color online) Spectrum of the total cross section
of light scattering from a spherical cloud with radius R =
15. The atomic density is n = 0.2. The first curve is the
results of consistent microscopic [19] calculations. The second
curve is calculated on the basis of Debye-Mie model with the
permittivity obtained in this paper.
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