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Motivated by recent experimental results, we present a systematic theoretical analysis of dark-bright soliton
interactions and multiple-dark-bright soliton complexesin atomic two-component Bose-Einstein condensates.
We study analytically the interactions between two dark-bright solitons in a homogeneous condensate and, then,
extend our considerations to the presence of the trap. We illustrate the existence of robust stationary dark-
bright soliton “molecules”, composed by two or more solitons, which are formed due to the competition of the
interaction forces between the dark and bright soliton components and the trap force. Our analysis is based
on an effective equation of motion, derived for the distancebetween two dark-bright solitons. This equation
provides equilibrium positions and characteristic oscillation frequencies of the solitons, which are found to be
in good agreement with the eigenfrequencies of the anomalous modes of the system.

PACS numbers: 03.75.Mn, 05.45.Yv, 03.75.Kk

I. INTRODUCTION

Over the past few years, the macroscopic nonlinear struc-
tures that can be supported in atomic Bose-Einstein conden-
sates (BECs) have been a topic of intense investigation (see,
e.g., Refs. [1–4] for reviews in this topic). The first experi-
mental efforts to identify the predominant nonlinear structure
in BECs with repulsive interatomic interactions, namely the
dark soliton, were initiated over a decade ago [5–9]. However,
these efforts suffered from a number of instabilities arising
due to dimensionality and/or temperature effects. More re-
cently, a new generation of relevant experiments has emerged,
that has enabled the overcoming (or quantification) of some
of the above limitations. The latter works have finally enabled
the realization of oscillating, and even interacting, robust dark
solitons in atomic BECs. This has been achieved by means of
various techniques, including phase-imprinting/densityengi-
neering [10–12], matter-wave interference [13, 14], or drag-
ging localized defects through the BECs [15].

Atomic dark solitons may also exist in multi-component
condensates, where they are coupled with other nonlin-
ear macroscopic structures [1, 2, 4]. Of particular inter-
est are dark-bright (DB) solitons that are supported in two-
component [16] and spinor [17] condensates. Such struc-
tures are sometimes referred to as “symbiotic” solitons, as
the bright-soliton component (which is generically supported
in BECs with attractive interactions [3]) may only exist due
to the inter-species interaction with the dark-soliton compo-
nent. Dark-bright solitons have also attracted much attention
in other contexts, such as nonlinear optics [18] and mathemat-
ical physics [19]. In fact, DB-soliton states were first observed
in optics experiments, where they were created in photore-
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fractive crystals [20], while their interactions were partially
monitored in Ref. [21]. In the physics of BECs, robust DB-
solitons were first observed in the experiment of Ref. [10] by
means of a phase-imprinting method, and more recently in
Refs. [22–24] by means of the counterflow of the two BEC
components. The above efforts led to a renewed interest in
theoretical aspects of this theme: this way, DB-soliton inter-
actions were studied from the viewpoint of the integrable sys-
tems theory in Ref. [25], DB-soliton dynamics were investi-
gated numerically in Ref. [26], while DB-solitons in discrete
settings were recently analyzed in Ref. [27]. Furthermore,
higher-dimensional generalizations —namely, vortex-bright-
soliton structures— were recently studied as well [28].

Our aim in the present work is to study multiple-DB soli-
tons in two-component BECs confined in harmonic traps, as
motivated by the experimental results shown in Fig. 1. This
figure illustrates DB-soliton clustering occurring duringthe
counterflow of two rubidium condensate species, namely the
hyperfine states|1,−1〉 and |2,−2〉, confined in an elon-
gated optical dipole trap with measured trap frequencies of
2π×{1.5, 140, 178} Hz; details on the soliton generation
scheme are provided in Refs. [22–24]. An intriguing obser-
vation is the frequent formation of large gaps in one compo-
nent (which constitutes the component supporting the dark-
solitons) that are filled by bright-solitons in the other com-
ponent. Interestingly, these gaps are structured by small,pe-
riodic density bumps, indicating that these regions are com-
posed of merged solitons. Some of these features are marked
by the boxed regions in Fig. 1, with corresponding cross sec-
tions shown as insets. We clearly observe clusters of two- and
three-merged solitons [see Fig. 1(a-c)], and also have somein-
dications of clusters composed of four- to five-solitons —see
Fig. 1(d, e). While our destructive imaging technique does not
allow us to analyze the dynamics and lifetime of the clusters
in detail, the occurrence of large DB-soliton clusters strongly
supports the theoretical part of our work that we will present
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FIG. 1: (Color online) Experimental images indicating DB-soliton
clustering in a two-component BEC. The upper cloud in each image
(and red curve in inset) shows atoms in the|2,−2〉 state, while the
lower cloud (black curve) shows atoms in the|1,−1〉 state. Prior to
imaging, the two components are overlapped in trap for 5 sec.Insets
show integrated cross sections of the boxed region.

below: in fact, we will study analytically the interaction be-
tween two-DB solitons, and we will demonstrate the existence
of stable two- and multiple-DB stationary states, resembling
the ones observed in the experiment.

Our analytical approximation relies on a Hamiltonian per-
turbation theory, which leads to an equation of motion of
the centers of DB-soliton interacting pairs. Employing this
equation of motion, we demonstrate the existence of robust
DB-soliton molecules, in the form of stationary two- and
three-DB-soliton states. We also find semi-analytically the
equilibrium distance of the constituent solitons, as well as
the oscillation frequencies around these equilibria. The os-
cillation frequencies correspond to the characteristic anoma-
lous modes’ eigenfrequencies that we numerically compute
via a Bogoliubov-de Gennes (BdG) analysis. This way, we
are able to quantify the properties of stationary multiple-DB-
solitons in harmonically confined two-component BECs, and
provide analytical results for their in- and out-of-phase near-
equilibrium motions.

The paper is organized as follows. In Section II we de-
scribe our theoretical setup and present the DB-soliton states.
Section III is devoted to the study of the interactions of two
DB-solitons, while Section IV contains the results for multi-
ple DB-solitons in the trap. In all of these sections, we will

first present our theoretical analysis and subsequently we will
compare its predictions to numerical results. Finally, in Sec-
tion V we summarize our findings and discuss future chal-
lenges.

II. MODEL AND THEORETICAL SETUP

A. Coupled GPEs and dark-bright solitons

Following the experimental observations of the previous
section, we consider a two-component elongated (along the
x-direction) BEC, composed of two different hyperfine states
of rubidium. As is the case of the experiment, we consider
a highly anisotropic trap, with the longitudinal and transverse
trapping frequencies such thatωx ≪ ω⊥. In the framework
of the mean-field theory, the dynamics of this two-component
BEC can be described by the following system of two coupled
GPEs [1, 2, 4]:

i~∂tψj=

(

− ~
2

2m
∂2xψj + V (x)− µj +

2
∑

k=1

gjk|ψk|2
)

ψj . (1)

Here,ψj(x, t) (j = 1, 2) denote the mean-field wave func-
tions of the two components (normalized to the numbers of
atomsNj =

∫ +∞

−∞
|ψj |2dx), m is the atomic mass,µj are

the chemical potentials, andV (x) represents the external har-
monic trapping potential,V (x) = (1/2)mω2

xx
2. In addi-

tion, gjk = 2~ω⊥ajk are the effective 1D coupling con-
stants,ajk denote the threes-wave scattering lengths (note
thata12 = a21) accounting for collisions between atoms be-
longing to the same (ajj) or different (ajk, j 6= k) species. In
the case of the hyperfine states|1,−1〉 and |2,−2〉 of 87Rb
considered in the previous section, the scattering lengthstake
the valuesa11 = 100.4a0, a12 = 98.98a0 anda22 = 98.98a0
(wherea0 is the Bohr radius) [22, 23]. Thus, we will here-
after use the approximation that all scattering lengths take
the same value, sayaij ≈ a [29]. To this end, measuring
the densities|ψj |2, length, time and energy in units of2a,
a⊥ =

√

~/ω⊥, ω−1
⊥

and~ω⊥, respectively, we may reduce
the system of Eqs. (1) into the following dimensionless form,

i∂tψj = − 1

2
∂2xψj + V (x)ψj

+ (|ψj |2 + |ψ3−j |2 − µj)ψj , j = 1, 2, (2)

where the external potential in Eqs. (2) is given byV (x) =
(1/2)Ω2x2, whereΩ = ωx/ω⊥ ≪ 1 is the normalized trap
strength. Below, we will consider a situation where the com-
ponent characterized by the wavefunctionψ1 (ψ2) supports a
single- or a multiple-dark (bright) soliton state, and the respec-
tive chemical potentials will be such thatµ1 > µ2. As con-
cerns the componentψ1, the dark-soliton state exists on top
of a ground state cloud|ψGS|2, which for appropriately large
values ofµ1 can be approximated by the Thomas-Fermi (TF)
density|ψGS|2 ≈ |ψTF|2 = µ1 − V (x); thus, to describe the
dark soliton wave function, we substitute the density|ψ1|2 in
Eqs. (2) as|ψ1|2 → |ψTF|2|ψ1|2. Furthermore, we introduce
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the transformationst→ µ1t, x→ √
µ1x, |ψ2|2 → µ−1

1 |ψ2|2,
and cast Eqs. (2) into the following form:

i∂tψ1 +
1

2
∂2xψ1 − (|ψ1|2 + |ψ2|2 − 1)ψ1 = R1, (3)

i∂tψ2 +
1

2
∂2xψ2 − (|ψ1|2 + |ψ2|2 − µ̃)ψ2 = R2, (4)

whereµ̃ = µ2/µ1, while

R1 ≡ (2µ2
1)

−1
[

2(1− |ψ1|2)V (x)ψ1 + V ′(x)∂xψ1

]

,

R2 ≡ µ−2
1

[

(1 − |ψ1|2)V (x)ψ2

]

, (5)

with V ′(x) ≡ dV/dx. Equations (3)-(4) can be viewed
as a system of two coupled perturbed nonlinear Schrödinger
(NLS) equations, with perturbations given by Eqs. (5). In
the absence of the trap (i.e., forΩ = 0), the perturbations
vanish and Eqs. (3)-(4) actually constitute the completelyin-
tegrable Manakov case [30]. This system conserves, among
other quantities, the Hamiltonian (total energy),

E =
1

2

∫ +∞

−∞

Edx,

E = |∂xψ1|2 + |∂xψ2|2 + (|ψ1|2 + |ψ2|2 − 1)2

− 2(µ̃− 1)|ψ2|2, (6)

as well as the total number of atoms,N = N1 + N2 =
∑2

j=1

∫ +∞

−∞
|ψj |2dx; additionally, the number of atoms of

each component,N1 andN2, is separately conserved.
Considering the boundary conditions|ψ1|2 → 1 and

|ψ2|2 → 0 as |x| → ∞, the NLS Eqs. (3)-(4) possess an
exact analytical single-DB soliton solution of the following
form (see, e.g., Ref. [16]):

ψ1(x, t) = cosφ tanh [D(x− x0(t)] + i sinφ, (7)

ψ2(x, t) = η sech [D(x− x0(t)] exp [ikx+ iθ(t)] , (8)

whereφ is the dark soliton’s phase angle,cosφ andη rep-
resent the amplitudes of the dark and bright solitons,D and
x0(t) denote the width and the center of the DB soliton, while
k = D tanφ = const. and θ(t) are the wavenumber and
phase of the bright soliton, respectively. The soliton parame-
ters are connected through the following equations:

D2 = cos2 φ− η2, (9)

ẋ0 = D tanφ, (10)

θ(t) =
1

2
(D2 − k2)t+ (µ̃− 1)t, (11)

whereẋ0 = dx0/dt is the DB soliton velocity. Below, we will
mainly focus on stationary solutions, characterized by a dark
soliton’s phase angleφ = 0 [in this case, the bright soliton
component is stationary as well —see Eq. (10)]; nevertheless,
we will also consider the near-equilibrium motion of DB soli-
tons, characterized byφ ≈ 0.

To approximatea two-DB-soliton state (forΩ = 0) com-
posed of a pair of two equal-amplitude single DB solitons

traveling in opposite directions, we will use the following
ansatz:

ψ1(x, t) = (cosφ tanhX− + i sinφ)

× (cosφ tanhX+ − i sinφ) , (12)

ψ2(x, t) = η sechX− e
i[+kx+θ(t)+(µ̃−1)t]

+ η sechX+ e
i[−kx+θ(t)+(µ̃−1)t] ei∆θ, (13)

whereX± = D (x± x0(t)), 2x0 is the relative distance be-
tween the two solitons, and∆θ is the relative phase between
the two bright solitons, assumed to be constant (∆θ = 0 and
∆θ = π correspond to in-phase and out-of-phase bright soli-
tons, respectively). Notice that the ansatz (12) is a symmetric
form of two dark solitons on the common background which,
provided that the separation distance2x0 is sufficiently large,
weakly interact with each other; such an ansatz for the dark
soliton pair has been used for the study of the inter-solitonin-
teractions [31]. Similarly, the ansatz (13) is a superposition of
two bright solitons of equal amplitudes, placed at the locations
of their respective dark solitons siblings; such a form of the
bright soliton pair is commonly used for the study of interac-
tions between bright solitons (see, e.g., Ch. 3.2.2 of Ref. [18]).

At this point it is useful to note that in either case of single-
or multiple-DB-solitons, the number of atoms of the bright
soliton,N2, may be used to connect the amplitudeη of the
bright soliton(s), the chemical potentialµ1 of the dark soli-
ton(s) component, as well as the widthD of the DB soli-
ton. In particular, in the case of a single-DB-soliton, one
finds thatN2 = 2η2

√
µ1/D [for the variables appearing in

Eqs. (2)], while for the case of a two-DB-soliton state (with
well-separated solitons) the relevant result is approximately
twice as large, namely:

N2 ≈ 4η2
√
µ1

D
. (14)

B. Stationary states and their excitation spectrum

Apart from our analytical approximations, we will also use
numerical methods to obtain stationary DB-soliton states,and
determine their stability by means of the well-known BdG
analysis (see, e.g., Refs. [1, 2, 4]). Particularly, in our numer-
ical computations below, we will initially obtain —by means
of a fixed-point algorithm— stationary solutions of Eqs. (2),
in the formψ1(x, t) = u(x) andψ2(x, t) = v(x), and then
consider their linear stability, upon introducing the following
ansatz into Eqs. (2):

ψ1(x, t) = u(x) + ε
[

a(x)eλt + b∗(x)eλ
∗t
]

, (15)

ψ2(x, t) = v(x) + ε
[

c(x)eλt + d∗(x)eλ
∗t
]

, (16)

where the asterisk denotes complex conjugation. The re-
sulting equations are linearized (keeping only terms of order
of the small parameterε), and the ensuing eigenvalue prob-
lem for eigenmodes{a(x), b(x), c(x), d(x)} and eigenvalues
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FIG. 2: (Color online) The top panel depicts the stationary solution
for a single DB-soliton forµ1 = 3/2, µ2 = 1, andΩ = 0.1. The
bright (dark) components are shown by the dashed green (solid blue)
lines. The middle (bottom) panel shows the normalized imaginary
partλi/Ω of the eigenvalues for the single DB-soliton as a function
of µ1 (µ2) for µ2 = 1 (µ1 = 3/2). The (red) dashed line, depicts
the analytical prediction of Ref. [16] for the DB-soliton oscillation
frequency [cf. Eq. (17)], providing an excellent approximation to the
anomalous mode eigenfrequency.

λ = λr + iλi is numerically solved. In the case of a single
DB soliton, the excitation spectrum can be well-understoodin
both cases, corresponding to the absence and the presence of
the harmonic trap, using the following arguments.

First, in the absence of the trap, the system of Eqs. (2) fea-
tures not only aU(1) (phase) invariance in each of the com-
ponents but also a translational invariance; thus, the system
has three pairs of eigenvalues (each associated with one of the
above symmetries) at the origin of the spectral plane(λr, λi).
In this case, the phonon band (associated with the continuous
spectrum of the problem) covers the entire imaginary axis of
the spectral plane.

Second, in the presence of the trap, the single DB soli-
ton “lives” on the background of the confined ground state
{ψ1, ψ2} = {ψGS, 0} (as discussed above). It is well-known
[1, 2] that the harmonic potential introduces a discrete (point)
BdG spectrum for this spatially confined ground state. In ad-

dition to that, the translational invariance of the unconfined
system is broken and, due to the presence of the DB soliton,
a single eigenvalueλ(AM) emerges. The respective (negative
energy) eigenmode is the so-called anomalous mode (AM),
while the associated eigenvalueλ(AM) is directly connected
with the oscillation frequency of the DB soliton in the har-
monic trap, similarly to the case of a dark soliton in one-
component BECs [32]. In fact, the imaginary part of the
eigenvalueλ(AM) readsλ(AM)

i = ωosc, whereωosc is the os-
cillation frequency of the single DB soliton, given by [16]:

ω2
osc = Ω2

(

1

2
− χ

χo

)

, (17)

χ ≡ N2√
µ1
, χo ≡ 8

√

1 +
(χ

4

)2

. (18)

The above results are illustrated in Fig. 2, where a typical
example of a stationary single DB-soliton state has been nu-
merical computed and is depicted (top panel); additionally, the
eigenvaluesλi characterizing the numerically obtained exci-
tation (BdG) spectra of such stationary states, are shown as
functions of the chemical potentialsµ1 andµ2 in the middle
and bottom panels of the figure, respectively. As observed
in these two bottom panels, there exist two types of spectral
lines, namely “slowly-varying” ones (analogous to ones that
are present in the spectrum of a dark soliton in one-component
BECs [13]) and “fast-varying” ones due to the presence of the
bright-soliton component. The latter, as was pointed out also
in Ref. [24] may, in fact, collide with the internal anomalous
mode of the DB soliton and give rise to instability quartets
which are barely discernible in Fig. 2 (see, e.g., the bottom
panel forµ2 > 1.4 where a merger of eigenvalues occurs).
Generally, however, it is found that the analytical prediction
(red dashed line) isexcellentin capturing the anomalous mode
eigenvalue pertaining to the DB-soliton oscillation.

The above discussion sets the stage for the presentation of
our results for multiple DB-soliton states.

III. INTERACTION BETWEEN TWO DARK-BRIGHT
SOLITONS

We start with the case where the external trap is absent, i.e.,
Ω = 0. To analytically study the interaction of two identi-
cal DB solitons, cf. Eqs. (12)-(13), we will employ the adi-
abatic approximation of the perturbation theory for matter-
wave solitons (see, e.g., Refs. [2, 4]). In particular, we as-
sume that the approximate two-DB-soliton state features an
adiabatic evolution due to a weak mutual interaction between
the constituent solitons and, thus, the DB soliton parameters
become slowly-varying unknown functions of timet. Thus,
φ→ φ(t), D → D(t) and, hence, Eqs. (9)-(10) become:

D2(t) = cos2 φ(t)− 1

4
χD(t), (19)

ẋ0(t) = D(t) tanφ(t), (20)

where we have used Eq. (14). The evolution of the parameters
φ(t), D(t) andx0(t) can then be found by means of the evo-
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lution of the DB soliton energy as follows. First, we substitute
the ansatz (12)-(13) into Eq. (6) and perform the integrations
under the assumption that the soliton velocity is sufficiently
small, such thatcos(kx) ≈ 1 (andsin(kx) ≈ 0). Then, we
further simplify the result assuming that the solitons are well-
separated, i.e., their relative distance isx0 ≫ 1. This way, we
find by substitution of the trial ansatz of Eqs. (12)-(13) into
the the total energy of the system given by Eq. (6) that the
latter assumes the form:

E = 2E1 + EDD + EBB + 2EDB, (21)

whereE1 is the energy of a single DB soliton, namely,

E1 =
4

3
D3 + η2

(

k2 − 2 (µ̃− 1)

D
+D

)

, (22)

while the remaining terms account for the interaction between
the two DB solitons. In particular,EDD, EBB, andEDB de-
note, respectively, the interaction energy between the twodark
solitons, the two bright ones, and the interaction energy be-
tween the dark soliton of one component and the bright soli-
ton in the other component. Approximate expressions for the
above interaction energies are provided in Appendix A.

Having determined the two-DB-soliton energy, we can find
the evolution of the soliton parameters from the energy con-
servation,dE/dt = 0. We focus on the case of low-velocity,
almost black solitons (witḣD(t) ≈ 0 andcosφ(t) ≈ 1), for
which energy conservation leads to the following nonlinear
evolution equation for the DB soliton center:

ẍ0 = Fint, (23)

Fint ≡ FDD + FBB + 2FDB. (24)

In the above equations,Fint is the interaction force between
the two DB solitons (depending on the soliton coordinatex0),
which contains the following three distinct contributions: the
interaction forcesFDD andFBB between the two dark and two
bright solitons, respectively, as well as the interaction force
FDB of the dark soliton of the one soliton pair with the bright
soliton of the other pair. The functional form of the above
forces is provided in Appendix A.

The equation of motion for the two-DB-soliton state [cf.
Eq. (23)] provides a clear physical picture for the interac-
tion between the two DB solitons. In order to better under-
stand this result, first we note that (to the leading order of
approximation) the interaction force between the bright soli-
ton components introduces a longer range effect than the in-
teraction forces between the dark soliton components which
in turn introduce a shorter range repulsion. This can be seen
sinceFBB ∝ exp(−2D0x0) while FDD ∝ exp(−4D0x0)
(see Appendix A); note that the interaction between dark and
bright solitons is also to leading order,FDB ∝ exp(−2D0x0).
This result is in accordance with earlier predictions, where the
same dependence of the force over the soliton separation was
found (see, e.g., Refs. [33] and [14, 31, 34] for bright and dark
solitons, respectively).

Let us now consider the role of the bright-soliton com-
ponent. In its absence, i.e., forχ = 0 [cf. Eq. (19)],

it is clear thatFBB = FDB = 0 and Eq. (23) describes
the interaction between two dark (almost black) solitons; in
this case, taking into regard thatD0 = 1, it can readily
be found that the pertinent (repulsive) interaction potential is
∝ 2 exp(−4x0), which coincides with the result of Ref. [31]
(see also Refs. [4, 14]). On the other hand, when bright soli-
tons are present (i.e., forχ 6= 0), the principal nature of the
bright-bright-soliton interaction —and also of part of thedark-
bright-soliton interaction— depends on the relative phase∆θ
between the two bright solitons through the factorcos∆θ; see
also Eqs. (A5)-(A6) in Appendix A. In particular, if∆θ = 0
(in-phase case) the interaction is repulsive, while if∆θ = π
(out-of-phase case), the interaction is attractive [35].

According to the above, it is clear that the competition be-
tween repulsive (for dark solitons) and attractive (for out-of-
phase bright solitons) forces leads to the emergence of fixed
points in the equation of motion (23) [36]. In other words,
in this case, there exists astationaryDB-soliton “molecule”
composed of two DB-solitons. Note that stationary two-DB-
solitons were also found numerically and experimentally in
Ref. [21] in the context of nonlinear optics, but their exis-
tence details and stability properties were not considered. Ad-
ditionally, although exact two-DB-soliton solutions (as well
asN -DB-soliton solutions) do exist in the Manakov system
[25, 37], their complicated form does not allow for a transpar-
ent physical picture, as provided above.

The fixed (equilibrium) pointsxeq of Eq. (23), which rep-
resent the equilibrium distance between the constituent DB-
solitons forming the stationary molecule, can be determined
as solutions of the transcendental equation resulting from
Eq. (23) forẍ0 = 0 in the out-of-phase case (∆θ = π). Once
xeq are found, their stability can be studied by introducing the
ansatzx0(t) = xeq + δ(t) into Eq. (23), and linearizing with
respect to the small-amplitude perturbationδ(t); this way, we
derive the following equation:

δ̈ + ω2
0δ = 0, (25)

where the oscillation frequencyω0 is given by:

ω2
0 = −∂Fint

∂x0

∣

∣

∣

∣

x0=xeq

. (26)

Physically speaking, the oscillation frequencyω0 represents
the internal out-of-phase motion of the two DB-solitons. Note
that as here we deal with the homogeneous case (i.e., in the
absence of the trap), the in-phase motion of the solitons is as-
sociated with the neutral translation mode due to the transla-
tional invariance of the system (the respective in-phase Gold-
stone mode has a vanishing frequency).

The above analytical predictions have been compared with
numerical simulations. First, we have confirmed the existence
of the stationary two-DB-soliton state (in the out-of-phase
case); a prototypical example of such a state is shown in the
top panel of Fig. 3 (forµ1 = 3µ2/2 = 3/2). We have also de-
termined the dependence of the equilibrium soliton positions
(denoted byx0 in the middle panel of Fig. 3) and the effective
frequencyω0 [cf. Eq. (26)] on the chemical potentialµ2 of
the bright soliton component. The respective analytical and
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FIG. 3: (Color online) Top panel: A stationary DB-soliton pair: the
solid (blue) line denotes the two-dark-soliton state [recall that each
dark soliton is associated with a zero crossing], while the dashed
(green) line denotes the respective two-bright-soliton state. The
chemical potentials areµ1 = 3/2 andµ2 = 1. Middle panel: the
equilibrium center of massx0 as a function of the chemical potential
µ2 (for µ1 = 3/2). Stars (in red) denote the analytical prediction
of Eq. (23), while circles (in blue) denote the numerically obtained
soliton centerx0. Bottom panel: the oscillation frequency for the
out-of-phase motion of the DB-soliton pair as a function ofµ2 (for
µ1 = 3/2). Stars (in red) depict the analytical result forω0 [cf.
Eq. (26)], while circles (in blue) depict the correspondingnumeri-
cally obtained imaginary eigenvalueλi (for the out-of-phase soliton
motion) of the excitation spectrum.

numerical results are shown in the middle and bottom panels
of Fig. 3. To obtain the numerical results, we have used a
(least squares) fitting algorithm to accurately identify the am-
plitudeη, inverse widthD, and equilibrium center of massx0
of the bright component. The numerical findings forx0 and
ω0 (the latter is numerically obtained via a BdG analysis, as
the imaginary eigenvalueλi pertaining to the out of phase mo-
tion of the stationary two-DB-soliton state) are directly com-
pared with the semi-analytical results of Eqs. (23) and (26),
respectively. We find that there is a very good quantitative
agreement between the analytical and numerical results (see
middle and bottom panels of Fig. 3). Notice that despite the
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FIG. 4: (Color online) The left and right columns correspond, respec-
tively, to an in-phase and an out-of-phase dark-bright soliton pair in a
harmonic trap withΩ = 0.1. The top row of panels depicts the pro-
files of the DB-soliton pairs (solid blue lines and dashed green lines
corresponding, respectively, to the dark and bright components) and
the trapping potential (dashed-dotted red line). The middle row of
panels depicts the spectral plane(λr, λi) rescaled by the trap fre-
quencyΩ. The bottom row of panels depicts the numerical (small
stars in red) and the analytical (circles in blue) results for the equilib-
rium distance between the solitons as a function ofµ2; the theoretical
prediction is based on Eq. (27).

motion of this eigenvalue through the continuous spectrum,
no instability is observed in the parametric window shown in
Fig. 3.

IV. MULTIPLE DARK-BRIGHT SOLITONS IN THE TRAP

Next, let us consider the case of multiple DB-solitons in the
presence of the harmonic trap. In the presence of the trap, each
of the multiple-DB-soliton structures is subject to two forces:
(a) the restoring force of the trap,Ftr [in the case of a sin-
gle DB-soliton, this force induces an in-trap oscillation with a
frequencyωosc —see Eq. (17)], and (b) the pairwise interac-
tion forceFint [cf. Eq. (24)] from other dark-bright solitons.
Thus, taking into regard thatFtr = −ω2

oscx0 [16], one may
write the effective equation of motion for the centerx0 of a
two-DB-soliton state as follows:

ẍ0 = Ftr + Fint. (27)

One can thus straightforwardly generalize the above equation
for N -interacting DB-soliton states, similarly to the case of
multiple dark solitons in one-component BECs [13, 14, 38].

Importantly, the presence of the trap allows for the exis-
tence of stationary DB-soliton molecules not only for out-of-
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FIG. 5: (Color online) The left and right columns of panels corre-
spond, respectively, to an in-phase and an out-of-phase dark-bright
soliton pair in a harmonic trap withΩ = 0.1. Shown are the imagi-
nary (top row of panels) and the real (bottom row of panels) parts of
the eigenvalues as functions ofµ2 for µ1 = 3/2. In the top panels,
the theoretical predictions for the eigenfrequencies of the anomalous
modes of the system, pertaining to the in-phase (ω2) and out-of-phase
(ω1) oscillations of the DB-solitons [see Eqs. (28)-(29)] are depicted
by dashed (red) lines. Notice that collisions of modes (eigenvalue
crossings) observed in the top panels indicate the emergence of in-
stability windows observed in the bottom panels. The instabilities are
of the Hamiltonian-Hopf type and result in the emergence of eigen-
value quartets.

phase bright solitons (as in the homogeneous case), but also
for in-phase bright solitons. In the latter case, the repulsion
between both the dark- and the bright-soliton component(s),
is balanced by the trap-induced restoring forceFtr. In the
case of two-DB solitons placed atx = ±x0, the equilibrium
points,xeq, can readily be found (as before) as solutions of the
transcendental equation resulting from Eq. (27) forẍ0 = 0, in
both the in- and out-of-phase cases. To study the stability of
these equilibrium points in the framework of Eq. (27), we may
again use the ansatzx0(t) = xeq + δ(t), and obtain a linear
equation for the small-amplitude perturbationδ(t), similar to
that of Eq. (25), namely:̈δ + ω2

1δ = 0, where the frequency
ω1 is given by,

ω2
1 = ω2

osc + ω2
0 , (28)

whereω0 is given by Eq. (26). Similarly to the case of dark
solitons in one-component BECs [14] (see also Ref. [4]), by
construction, this mode captures the out-of-phase motion of
the DB-soliton pair. Furthermore, by symmetry, the in-phase
oscillation of the DB-soliton pair in the trap will be performed
with the frequency

ω2 = ωosc. (29)

These two characteristic frequencies (ω1, ω2) coincide with
the eigenfrequencies of the two anomalous modes of the BdG
spectrum of the trapped DB-soliton pair.

We now turn to a systematic numerical investigation of the
above features and of the multiple-DB-soliton states. At first,
we consider the two-DB-soliton state in the trap, results for
which are summarized in Figs. 4 and 5, both for the in-phase
and the out-of-phase configurations. In particular, the topleft
and right panels of Fig. 4 show examples of an in-phase and
an out-of-phase stationary DB-soliton pair, respectively(both
for µ1 = 3/2 andµ2 = 1). The two middle panels illus-
trate the corresponding spectral planes, showcasing the linear
stability of these configurations. The bottom panels of the fig-
ure show the equilibrium positions of the soliton centers. In
the in-phase case (bottom left panel), it is observed that larger
chemical potential (number of atoms) in the second compo-
nent leads to stronger repulsion and, hence, larger distance
from the trap center. In the out-of-phase case (bottom right
panel), we observe a similar effect but in the reverse direction
(due to the attraction of the out-of-phase bright-soliton com-
ponents) for smaller values of the chemical potential. Notice
that in both cases a good agreement is observed between the
numerically observed equilibrium separations and the theoret-
ically predicted ones from Eq. (27).

To study the validity of Eq. (28) —pertinent to small-
amplitude oscillations around the fixed points— we show in
Fig. 5 the eigenvaluesλ of the excitation spectrum [both for
the in-phase (left column) and for the out-of-phase (right col-
umn) cases] as functions ofµ2. The imaginary and real part,
λi andλr, of the respective eigenvalues, normalized over the
trap strengthΩ, are respectively shown in the top and bottom
panels of Fig. 5. In the top panels, it is straightforward to
compare the analytical result of Eq. (28) with the BdG result,
namely the second anomalous mode of the spectrum, corre-
sponding to the out-of-phase oscillations of the DB-soliton
pair. Once again, good agreement is observed between the
two; the differences may be partially attributed to the “inter-
action” (i.e., collisions) of these modes with other modes of
the BdG spectrum. It is clear from the comparison of the cor-
responding columns that there exist narrow instability win-
dows, arising due to the crossing of the anomalous mode(s) of
the DB-soliton pair with eigenmodes of the background of the
two-component system. These instabilities arise in the form of
Hamiltonian-Hopf bifurcations [39] through the emergenceof
quartets of complex eigenvalues resulting from the collision of
two pairs. The growth rates of the pertinent oscillatory insta-
bilities are fairly small (i.e., the instabilities are weak) in both
the in- and out-of-phase cases; it should be noted, however,
that in the latter case, the formation of the quartets appears to
be occurring in very narrow intervals.

Naturally, the above considerations can also be generalized
to three- or more DB-solitons, although the analytical calcu-
lations become increasingly more tedious; again, as we will
show below, in-phase or out-of-phase configurations are pos-
sible in the presence of the trap. Pertinent examples, showing
two different three-DB-soliton configurations, are illustrated
in Fig. 6. In particular, the first column in the figure corre-
sponds to the in-phase three-DB-soliton state, while the sec-
ond column corresponds to the out-of-phase variant thereof.
In the case under consideration, there exist narrow parametric
intervals of dynamical instability, which are narrower forthe



8

−20 0 20

−1

0

1
u 

, v

x −20 0 20

−1

0

1

u 
, v

x

−1 0 1
−2

0

2

λ i/Ω

λ
r
/Ω −1 0 1

−2

0

2

λ i/Ω

λ
r
/Ω

0.8 1 1.2 1.4
0

1

2

3

4

5

λ i/Ω

µ
2

1 1.2 1.4
0

1

2

3

4

5
λ i/Ω

µ
2

1 1.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

λ r/Ω

µ
2

1 1.5
0

0.005

0.01

0.015

λ r/Ω

µ
2

FIG. 6: (Color online) The left and right columns of panels corre-
spond, respectively, to an in-phase and an out-of-phase three-DB-
soliton configurations. The top row of panels depicts the respective
stationary states, forµ1 = 3/2, µ2 = 1 andΩ = 0.1; solid (blue)
lines depict the dark-soliton components, dashed (green) lines the
bright ones, while the dashed-dotted (red) line shows the harmonic
trap. The second row of panels depicts the spectral planes for the
above stationary states, while the third and fourth rows areequiva-
lent to those of Fig. 5, but for the three-DB-soliton configurations.

out-of-phase case (as in the case of the two-DB-soliton states).
We should mention, in passing, that the dynamics of two-
and three-DB soliton configurations was recently studied in
Ref. [26]; our study complements the latter by yielding analyt-
ical approximations and a numerical continuation/bifurcation
approach towards such states.

V. CONCLUSIONS AND DISCUSSION

In the present work, we have studied multiple quasi-
one-dimensional dark-bright (DB) solitons in atomic Bose-
Einstein condensates. Our theoretical results were motivated
and supported by the experimental evidence of the formation
of DB-soliton clusters in a two-component, elongated rubid-
ium condensate, confined in a harmonic trap. The theoret-
ical analysis was based on the study of two coupled, one-
dimensional Gross-Pitaevskii equations.

Starting from the case of a homogeneous condensate (i.e.,
in the absence of a trapping potential), we have employed a
Hamiltonian perturbation theory to analyze the interaction be-
tween two DB-solitons. Assuming that the DB-solitons are
of low velocity and sufficiently far from each other, we have
found approximate expressions for the interaction forces be-
tween the same or different soliton components. This way, we
derived a classical equation of motion for the center of mass
of the DB-soliton pair, and revealed the role of the phase-
difference between the bright-soliton components: we have
shown, in particular, that the repulsion between the dark soli-
ton components may be counter-balanced by the attraction be-
tween out-of-phase bright components, thus inducing the exis-
tence of stationary DB-soliton pairs even in the case when the
external trapping potential is absent. We have found the equi-
librium distance between the two DB solitons that compose
the stationary DB-soliton pair, with the semi-analytical re-
sult being in excellent agreement with the relevant numerical
one. Additionally, we have demonstrated the linear stability of
these stationary DB-soliton pairs by means of analytical and
numerical techniques [the latter were based on a Bogoliubov-
de Gennes analysis]. It was shown that the analytical result
for the oscillation frequency of small-amplitude perturbations
around the equilibrium distance is in excellent agreement with
the pertinent eigenvalue characterizing the frequency of the
out of phase motion of the DB-soliton pair.

We have then studied multiple-DB-solitons in the trap. In
this case, we have employed a simple physical picture, where
the total force acting on the DB-solitons was decomposed to
an interaction force (derived in the homogeneous case) and a
restoring force induced by the trapping potential; the relevant
characteristic frequency associated with the latter was the os-
cillation frequency of a single-DB-soliton in the trap (which
was found to coincide with the pertinent anomalous-mode
eigenvalue of the single DB soliton system). Following this
approach, we were able to find stationary in-trap DB-soliton
pairs even in the case where the bright-soliton components
were repelling each other: in this case, the trap-induced restor-
ing force was able to counter-balance the repulsive forces be-
tween the dark- and the bright-soliton components. The semi-
analytical results for the equilibrium distance and the oscil-
lation frequencies (for the in- and out-of-phase bright com-
ponent cases) were again found to be in very good agree-
ment with respective numerical results, including the anoma-
lous modes’ eigenfrequencies pertaining to the in- and out-of-
phase motion of solitons. The stability analysis of the DB-
solitons in the trap indicated the possibility of the existence
of unstable modes through Hamiltonian-Hopf instability quar-



9

tets, although the latter would typically only arise over narrow
parametric intervals —and with rather weak instability growth
rates. Results pertaining to three-DB-solitons in the trapwere
presented as well; the main features of these states were found
to be qualitatively similar to the ones of the DB-soliton pairs.
The identified robustness of such “DB-soliton molecules” in
our analytical and numerical results is in tune with the fre-
quent and persistent occurrence of such clusters also in the
experiment (although in the latter it is not as straightforward
to prepare such “distilled” molecular states).

It would be particularly interesting to further explore the
dynamics of multiple-DB-soliton complexes, and potentially
the formation of “DB-soliton gases” comprising such inter-
acting atomic constituents. Deriving Toda-lattice-type equa-
tions describing such gases, and identifying their stationary
states, excitations and (mesoscopic) solitons (as in the case
of single-component dark solitons [38]), would be challenges
for future work. Another possibility is to extend the present
considerations to the vortex-bright solitons found in Ref.[28].
There, it would be relevant to identify whether molecular
states consisting of two- or of three-vortex-bright solitons can
be constructed, and whether the relative phases of0 andπ be-
tween the bright components can still yield different station-
ary states. Relevant studies are presently in progress.
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Appendix A: The interaction energies and forces

The interaction energiesEDD, EBB andEDB are given by
the following (approximate) expressions:

EDD = 16 cos2 φ

[

1

3
D cos2 φ+D + 2(cos2 φ−D2)x0

− 3 + 4 cos2 φ

3D
cos2 φ

]

e−4Dx0 , (A1)

EBB = χ
[

2D
(

D (1−Dx0)− k2x0
)

+Dχ
]

× cos∆θe−2Dx0 (A2)

+ χ
[

χD (2Dx0 − 1)
(

1 + 2 cos2 ∆θ
)

]

e−4Dx0 ,

EDB = −4χ cos2 φ cos∆θe−2Dx0 (A3)

+ χ cos2 φ

[

16

3
cos2 φ− 16Dx0 + 8

]

e−4Dx0 ,

where terms of orderO(e−6Dx0) and higher have been ne-
glected (nevertheless, it has been checked that their contribu-
tion does not alter the main results that were presented herein).
On the other hand, the interaction forcesFDD, FBB andFDB

have the following form:

FDD =
1

χo

[

1

3
(544− 352D2

0) + 128D0

(

D2
0 − 1

)

x0

]

× e−4D0x0 , (A4)

FBB =
χ

χo

[

− 6D0 + 4D2
0x0 − 2χ

]

D2
0 cos∆θe

−2D0x0

+
χ2

χo

[

(

1 + 2 cos2 ∆θ
)

(−8D0x0 + 6)
]

× D2
0e

−4D0x0 , (A5)

FDB =
χ

χo

[

8D0 cos∆θ
]

e−2D0x0

+
χ

χ
o

[

− 208

3
+ 64D0x0

]

D0e
−4D0x0 , (A6)

whereD(t) ≈ D0 since we are assuming thatḊ(t) ≈ 0.
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