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Motivated by recent experimental results, we present @&syatic theoretical analysis of dark-bright soliton
interactions and multiple-dark-bright soliton complexestomic two-component Bose-Einstein condensates.
We study analytically the interactions between two daiilghiirsolitons in a homogeneous condensate and, then,
extend our considerations to the presence of the trap. \W&rilite the existence of robust stationary dark-
bright soliton “molecules”, composed by two or more sol@gpwhich are formed due to the competition of the
interaction forces between the dark and bright soliton aomepts and the trap force. Our analysis is based
on an effective equation of motion, derived for the distabetveen two dark-bright solitons. This equation
provides equilibrium positions and characteristic oatitin frequencies of the solitons, which are found to be
in good agreement with the eigenfrequencies of the anormaimdes of the system.

PACS numbers: 03.75.Mn, 05.45.Yv, 03.75.Kk

I. INTRODUCTION fractive crystals [20], while their interactions were pealfy
monitored in Ref. [21]. In the physics of BECs, robust DB-

Over the past few years, the macroscopic nonlinear StruCs_olitons were first observed in the experiment of Ref. [10] by

tures that can be supported in atomic Bose-Einstein c:ondergz'ealnS of a phase-imprinting method, and more recently in

sates (BECs) have been a topic of intense investigation (se efs. [22_f4] _?_3;] metz);ms off’;het c?udntterflow of thz t.WtO BEtC.
e.g., Refs. [1-4] for reviews in this topic). The first experi components. € above etiorts led o a renewed nterest in

mental efforts to identify the predominant nonlinear stuue the_oretical aspects of this the”?e: thi_s way, DB'SOIitOBMt

in BECs with repulsive interatomic interactions, namelg th actions were_stud|ed from the viewpoint of the mtegra_btesy_
dark soliton, were initiated over a decade ago [5-9]. Howeve teTS dtheory In Iﬁef_. [|2:e5]f’ DZ%'SO“;?F %ygan}[;:s were d[n\gstl-
these efforts suffered from a number of instabilities agsi gated numerically In Ret. [26], w e UB-Soltons In distee
due to dimensionality and/or temperature effects. More reSetlings were recently analyzed in Ref. [27]. Furthermore,

cently, a new generation of relevant experiments has emergehlg_her-dlmensmnal generalizations —_namely, vortexsiu
that has enabled the overcoming (or quantification) of soméOIIton structures— were recently studied as well [28].
of the above limitations. The latter works have finally ewreabl Our aim in the present work is to study multiple-DB soli-
the realization of oscillating, and even interacting, rsffiark  tons in two-component BECs confined in harmonic traps, as
solitons in atomic BECs. This has been achieved by means efotivated by the experimental results shown in Fig. 1. This
various techniques, including phase-imprinting/densitgi-  figure illustrates DB-soliton clustering occurring duritige
neering [10-12], matter-wave interference [13, 14], omgdra counterflow of two rubidium condensate species, namely the
ging localized defects through the BECs [15]. hyperfine statesgl, —1) and |2,—2), confined in an elon-
Atomic dark solitons may also exist in multi-component gated optical dipole trap with measured trap frequencies of
condensates, where they are coupled with other nonlin27x{1.5, 140, 178 Hz; details on the soliton generation
ear macroscopic structures [1, 2, 4]. Of particular inter-scheme are provided in Refs. [22-24]. An intriguing obser-
est are dark-bright (DB) solitons that are supported in two-~ation is the frequent formation of large gaps in one compo-
component [16] and spinor [17] condensates. Such strudient (which constitutes the component supporting the dark-
tures are sometimes referred to as “symbiotic” solitons, asolitons) that are filled by bright-solitons in the other com
the bright-soliton component (which is generically supedr  ponent. Interestingly, these gaps are structured by spel,
in BECs with attractive interactions [3]) may only exist due riodic density bumps, indicating that these regions are-com
to the inter-species interaction with the dark-soliton pom  posed of merged solitons. Some of these features are marked
nent. Dark-bright solitons have also attracted much atent by the boxed regions in Fig. 1, with corresponding cross sec-
in other contexts, such as nonlinear optics [18] and mathemations shown as insets. We clearly observe clusters of two- an
ical physics [19]. In fact, DB-soliton states were first atveel ~ three-merged solitons [see Fig. 1(a-c)], and also have gome
in optics experiments, where they were created in photoredications of clusters composed of four- to five-solitons e-se
Fig. 1(d, e). While our destructive imaging technique doms n
allow us to analyze the dynamics and lifetime of the clusters
in detail, the occurrence of large DB-soliton clusters sy
*URL: http:/nids.sdsu.edu supports the theoretical part of our work that we will présen



(a) first present our theoretical analysis and subsequently e w
compare its predictions to numerical results. Finally, @tS
tion V we summarize our findings and discuss future chal-

lenges.
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II. MODEL AND THEORETICAL SETUP

A. Coupled GPEsand dark-bright solitons

Following the experimental observations of the previous
section, we consider a two-component elongated (along the
z-direction) BEC, composed of two different hyperfine states
_ of rubidium. As is the case of the experiment, we consider

) fum) a highly anisotropic trap, with the longitudinal and traese
trapping frequencies such that < w, . In the framework
of the mean-field theory, the dynamics of this two-component
BEC can be described by the following system of two coupled
GPEs[1, 2, 4]:

h? :
ihdy) = <—%3§¢j + V(@) —py+ Yy 9jk|1/)k|2> ¥;. (1)

k=1

Here,y,(x,t) (j = 1,2) denote the mean-field wave func-
tions of the two components (normalized to the numbers of

atomsN; = ff;o |4j12dx), m is the atomic massy; are

FIG. 1: (Color online) Experimental images indicating Déion  the chemical potentials, arid(x) represents the external har-
clustering in a two-component BEC. The upper cloud in eacigien  MONic trapping potential}/(z) = (1/2)mwzz®. In addi-
(and red curve in inset) shows atoms in the—2) state, while the  tion, g;» = 2hw a;, are the effective 1D coupling con-
lower cloud (black curve) shows atoms in te—1) state. Priorto  stants,a;; denote the thres-wave scattering lengths (note
imaging, the two components are overlapped in trap for Slesets  thata,, = ay;) accounting for collisions between atoms be-
show integrated cross sections of the boxed region. longing to the samex(;;) or different @;x, j # k) species. In
the case of the hyperfine statds—1) and |2, —2) of 8"Rb
considered in the previous section, the scattering lerigtes
below: in fact, we will study analytically the interactio®b  the valuesi;; = 100.4ag, a12 = 98.98a0 andass = 98.984aq
tween two-DB solitons, and we will demonstrate the existenc (whereaq, is the Bohr radius) [22, 23]. Thus, we will here-
of stable two- and multiple-DB stationary states, resentpli after use the approximation that all scattering lengthe tak
the ones observed in the experiment. the same value, say;; ~ a [29]. To this end, measuring
Our analytical approximation relies on a Hamiltonian per-the densitiegt;|2, length, time and energy in units af,

turbation theory, which leads to an equation of motion of , ~ _ \/m wf andw , , respectively, we may reduce

. . . . . . 0
the centers of DB-soliton interacting pairs. Employingsthi ¢ system of Egs. (1) into the following dimensionless form
equation of motion, we demonstrate the existence of robust

DB-soliton molecules, in the form of stationary two- and . 2

three-DB-soliton states. We also find semi-analytically th Wpy = — 5005+ V(2)y;

equilibrium distance of the constituent solitons, as well a + (I 2+ s> = )y, 7=1,2, (2)

the oscillation frequencies around these equilibria. Tee o

cillation frequencies correspond to the characteristmmaasr  where the external potential in Egs. (2) is givenWyz) =

lous modes’ eigenfrequencies that we numerically computél /2)Q2%z2, whereQ) = w,/w, < 1 is the normalized trap

via a Bogoliubov-de Gennes (BdG) analysis. This way, westrength. Below, we will consider a situation where the com-

are able to quantify the properties of stationary multip®-  ponent characterized by the wavefunction(«s) supports a

solitons in harmonically confined two-component BECs, andsingle- or a multiple-dark (bright) soliton state, and teggec-

provide analytical results for their in- and out-of-phasan  tive chemical potentials will be such that > uo. As con-

equilibrium motions. cerns the component;, the dark-soliton state exists on top
The paper is organized as follows. In Section Il we de-of a ground state cloufdigs|?, which for appropriately large

scribe our theoretical setup and present the DB-solitdesta values ofu; can be approximated by the Thomas-Fermi (TF)

Section Il is devoted to the study of the interactions of twodensity|yas|? ~ |¢1r|? = u1 — V(z); thus, to describe the

DB-solitons, while Section IV contains the results for mwult dark soliton wave function, we substitute the dengity|? in

ple DB-solitons in the trap. In all of these sections, we will Egs. (2) agi1|?> — |¢r|?|¥1|?. Furthermore, we introduce




the transformations— u1t, © — /i, [t2]? — py tal?,
and cast Eqs. (2) into the following form:

iOth1 + %35% — ([1]* + [2]* = )¢ = R1, (3)
0us + 5020 — (i + [a? — i = Ro, (4)
wherefi = po /1, while
(2u) 7 [2(1 = [a )V (@)1 + V' (2)8a11]

i [(1- |7/)1|2)V(17)7/)2] ;
with V'(z) = dV/dz.

R’
Ry (5)

Equations (3)-(4) can be viewed

3

traveling in opposite directions, we will use the following
ansatz:

P1(z,t) = (cos¢tanh X_ + isin @)
X (cos¢tanh X —isin¢), (12)
Yo(x,t) = msechX_ ellthato()+(A-1)1]

+ nsechX | ell~ka+0OF(E-1 fiA0 - (13)
whereX. = D (z £ x0(t)), 20 is the relative distance be-
tween the two solitons, anflé is the relative phase between
the two bright solitons, assumed to be constaxt & 0 and

A6 = 7 correspond to in-phase and out-of-phase bright soli-
tons, respectively). Notice that the ansatz (12) is a symmet

as a system of two coupled perturbed nonlinear Schrodingdorm of two dark solitons on the common background which,

(NLS) equations, with perturbations given by Egs. (5). In
the absence of the trap (i.e., for = 0), the perturbations
vanish and Egs. (3)-(4) actually constitute the completely

provided that the separation distarig is sufficiently large,
weakly interact with each other; such an ansatz for the dark
soliton pair has been used for the study of the inter-soliten

tegrable Manakov case [30]. This system conserves, amongractions [31]. Similarly, the ansatz (13) is a superposiof

other quantities, the Hamiltonian (total energy),

1 [t
— Edx,

/.

E = [0u01]? + |0utb2]® + (JUn|” + 02| — 1)?
- 2(/1 - 1)|w2|23 (6)

as well as the total number of atom&, = N; + Ny =
S22y J72 [y |Pda; additionally, the number of atoms of
each componenty; and N, is separately conserved.

Considering the boundary conditiong;|> — 1 and
|o|> — 0 as|z| — oo, the NLS Egs. (3)-(4) possess an
exact analytical single-DB soliton solution of the followi
form (see, e.g., Ref. [16]):

1[)1 (I, t)
1/12 (,T, t)

where ¢ is the dark soliton’s phase angleys ¢ andn rep-
resent the amplitudes of the dark and bright solitdnsand

= cos¢tanh [D(xz — x(t)] + i sin ¢, (7

nsech [D(x — zo(t)] exp [ikz + i0(¢)], (8)

two bright solitons of equal amplitudes, placed at the liocet
of their respective dark solitons siblings; such a form & th
bright soliton pair is commonly used for the study of interac
tions between bright solitons (see, e.g., Ch. 3.2.2 of R&l)[

At this point it is useful to note that in either case of single
or multiple-DB-solitons, the number of atoms of the bright
soliton, N>, may be used to connect the amplitugef the
bright soliton(s), the chemical potential of the dark soli-
ton(s) component, as well as the widih of the DB soli-
ton. In particular, in the case of a single-DB-soliton, one
finds thatN, = 2n?,/1/D [for the variables appearing in
Egs. (2)], while for the case of a two-DB-soliton state (with
well-separated solitons) the relevant result is approtea
twice as large, namely:

4 2
Ny ~ "T Vi (14)

B. Stationary statesand their excitation spectrum

zo(t) denote the width and the center of the DB soliton, while  Apart from our analytical approximations, we will also use

k = Dtan¢ = const. andf(t) are the wavenumber and
phase of the bright soliton, respectively. The soliton para
ters are connected through the following equations:

D? = cos? i, (9)
#o = Dtano, (10)
or) = 5(D*— k)i + (i~ 1), (11)

whereio = dz(/dt is the DB soliton velocity. Below, we will
mainly focus on stationary solutions, characterized byra da
soliton’s phase angleé = 0 [in this case, the bright soliton
component is stationary as well —see Eqg. (10)]; nevertseles
we will also consider the near-equilibrium motion of DB soli
tons, characterized hy ~ 0.

To approximatea two-DB-soliton state (fof2 = 0) com-

numerical methods to obtain stationary DB-soliton stades,
determine their stability by means of the well-known BdG
analysis (see, e.g., Refs. [1, 2, 4]). Particularly, in cumer-
ical computations below, we will initially obtain —by means
of a fixed-point algorithm— stationary solutions of Egs.,(2)
in the formy (z,t) = u(z) andys(z,t) = v(z), and then
consider their linear stability, upon introducing the éoling
ansatz into Egs. (2):

wl (,T, t)
wg(x, t)

u(z) +¢ [a(x)e” +b* (x)e)‘*t] , (15)
v(z)+e [c(:v)e’\t + d*(x)e’\*t} ,  (16)
where the asterisk denotes complex conjugation. The re-

sulting equations are linearized (keeping only terms otord
of the small parameted), and the ensuing eigenvalue prob-

posed of a pair of two equal-amplitude single DB solitonslem for eigenmode$a(z), b(z), c(z), d(z)} and eigenvalues
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dition to that, the translational invariance of the uncoadin
system is broken and, due to the presence of the DB soliton,
a single eigenvalua®™) emerges. The respective (negative
energy) eigenmode is the so-called anomalous mode (AM),
while the associated eigenvalu€*™ is directly connected
with the oscillation frequency of the DB soliton in the har-
monic trap, similarly to the case of a dark soliton in one-
component BECs [32]. In fact, the imaginary part of the

130 0o 0 10 20 eigenvalue\(AM) reads)\z(.AM) = Wose, Wherew,. is the os-
5 cillation frequency of the single DB soliton, given by [16]:
1
29 wgsc = Q2 <_ - l) ) (17)
) 2 Xo
S 15 _ M — X)2
p: = = o=81/14 (=) . 18
X = on X ( 1 (18)

The above results are illustrated in Fig. 2, where a typical
example of a stationary single DB-soliton state has been nu-
merical computed and is depicted (top panel); additiontdby
eigenvalues\; characterizing the numerically obtained exci-

° \ tation (BdG) spectra of such stationary states, are shown as
25 functions of the chemical potentigls andus in the middle
2 and bottom panels of the figure, respectively. As observed
g s in these two bottom panels, there exist two types of spectral
~ lines, namely “slowly-varying” ones (analogous to oned tha
1 are present in the spectrum of a dark soliton in one-comgonen
05 BECs [13]) and “fast-varying” ones due to the presence of the
0 bright-soliton component. The latter, as was pointed cad al
0.8 1 u, 12 14 in Ref. [24] may, in fact, collide with the internal anomatou

mode of the DB soliton and give rise to instability quartets
FIG. 2: (Color online) The top panel depicts the stationagtion ~ Which are barely discernible in Fig. 2 (see, e.g., the bottom
for a single DB-soliton fopu; = 3/2, u2 = 1, andQ = 0.1. The  panel forus > 1.4 where a merger of eigenvalues occurs).
bright (dark) components are shown by the dashed green (o) ~ Generally, however, it is found that the analytical predict
lines. The middle (bottom) panel shows the normalized imagyi  (red dashed line) isxcellenin capturing the anomalous mode
part\; /2 of the eigenvalues for the single DB-soliton as a function eigenvalue pertaining to the DB-soliton oscillation.

of pu1 (u2) for pz =1 (1 = 3/2). The (red) dashed line, depicts  The above discussion sets the stage for the presentation of
the analytical prediction of Ref. [16] for the DB-solitonadfation  qr results for multiple DB-soliton states.

frequency [cf. Eq. (17)], providing an excellent approxtioa to the
anomalous mode eigenfrequency.

I11. INTERACTION BETWEEN TWO DARK-BRIGHT
SOLITONS

A = \. +i); is numerically solved. In the case of a single
DB soliton, the excitation spectrum can be well-undersinood  We start with the case where the external trap is absent, i.e.
both cases, corresponding to the absence and the presencgpf= 0. To analytically study the interaction of two identi-
the harmonic trap, using the following arguments. cal DB solitons, cf. Egs. (12)-(13), we will employ the adi-

First, in the absence of the trap, the system of Egs. (2) feadbatic approximation of the perturbation theory for matter
tures not only d/(1) (phase) invariance in each of the com- wave solitons (see, e.g., Refs. [2, 4]). In particular, we as
ponents but also a translational invariance; thus, theesyst sume that the approximate two-DB-soliton state features an
has three pairs of eigenvalues (each associated with ohe of tadiabatic evolution due to a weak mutual interaction betwee
above symmetries) at the origin of the spectral plane \; ). the constituent solitons and, thus, the DB soliton pararsete
In this case, the phonon band (associated with the contsuodpecome slowly-varying unknown functions of time Thus,
spectrum of the problem) covers the entire imaginary axis of® — ¢(t), D — D(t) and, hence, Egs. (9)-(10) become:
the spectral plane. 1

Second, in the presence of the trap, the single DB soli- D2(t) = cos® ¢(t) — XD, (19)
ton “lives” on the backgrqund of the confineq ground state #o(t) = D(t)tan é(t), (20)
{1,192} = {¢¥as,0} (as discussed above). It is well-known
[1, 2] that the harmonic potential introduces a discretén)o where we have used Eqg. (14). The evolution of the parameters
BdG spectrum for this spatially confined ground state. In ad+(t), D(t) andzq(t) can then be found by means of the evo-
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lution of the DB soliton energy as follows. First, we suhgtt it is clear thatFgg = Fpg = 0 and Eq. (23) describes
the ansatz (12)-(13) into Eq. (6) and perform the integretio the interaction between two dark (almost black) solitons; i
under the assumption that the soliton velocity is suffitient this case, taking into regard th&l, = 1, it can readily
small, such thatos(kz) =~ 1 (andsin(kz) =~ 0). Then, we be found that the pertinent (repulsive) interaction pateig
further simplify the result assuming that the solitons aelw o« 2 exp(—4x), which coincides with the result of Ref. [31]
separated, i.e., their relative distanceis> 1. Thisway, we  (see also Refs. [4, 14]). On the other hand, when bright soli-
find by substitution of the trial ansatz of Egs. (12)-(13pint tons are present (i.e., fog # 0), the principal nature of the
the the total energy of the system given by Eq. (6) that thdright-bright-soliton interaction —and also of part of therk-

latter assumes the form: bright-soliton interaction— depends on the relative phage
between the two bright solitons through the factar Ag9; see
E =2F\ + Epp + Ess + 2Eps, (21)  also Egs. (A5)-(A6) in Appendix A. In particular, k6 = 0

(in-phase case) the interaction is repulsive, whil&#f = =
(out-of-phase case), the interaction is attractive [35].

B2 _9(f—1 According to the above, it is clear that the competition be-
#) + D>

whereF) is the energy of a single DB soliton, namely,

4
By, = -D3 +n? < D (22)  tween repulsive (for dark solitons) and attractive (for-ofst

phase bright solitons) forces leads to the emergence of fixed

while the remaining terms account for the interaction betwe Points in the equation of motion (23) [36]. In other words,
the two DB solitons. In particulafzpp, Egp, andEpg de- 1N this case, there existsstationaryDB-soliton “molecule”
note, respectively, the interaction energy between thefavk ~ composed of two DB-solitons. Note that stationary two-DB-
solitons, the two bright ones, and the interaction energy beSolitons were also found numerically and experimentally in
tween the dark soliton of one component and the bright soliRef. [21] in the context of nonlinear optics, but their exis-
ton in the other component. Approximate expressions for thé€nce details and stability properties were not consideke
above interaction energies are provided in Appendix A. ditionally, although exact two-DB-soliton solutions (agl

Having determined the two-DB-soliton energy, we can findas\'-DB-soliton solutions) do exist in the Manakov system
the evolution of the soliton parameters from the energy conl25, 37], their complicated form does not allow for a transpa
servationdE /dt = 0. We focus on the case of low-velocity, €Nt physical picture, as provided above.

3

almost black solitons (withD(t) ~ 0 andcos ¢(t) ~ 1), for The fixed (equilibrium) points.e, of Eq. (23), which rep-
which energy conservation leads to the following nonlinea®S€nt the equilibrium distance between the constituent DB
evolution equation for the DB soliton center: solitons _formlng the stationary molecule, can be de';errhlne
as solutions of the transcendental equation resulting from
Zo = Fint, (23)  Eq.(23) foriy = 0 in the out-of-phase casé\f = 7). Once
Zeq are found, their stability can be studied by introducing the
Fine = Fpp + I + 2FDbp. (24)  ansatzry(t) = zoq + 0(t) into Eq. (23), and linearizing with

respect to the small-amplitude perturbatign); this way, we

In the above equationg;,,; is the interaction force between derive the following equation:

the two DB solitons (depending on the soliton coordinafte
which contains the following three distinct contributiorise §+wis=0, (25)
interaction forcedhp andFgg between the two dark and two

bright solitons, respectively, as well as the interactiorcé  where the oscillation frequenay is given by:

Fpp of the dark soliton of the one soliton pair with the bright
soliton of the other pair. The functional form of the above
forces is provided in Appendix A.

The equation of motion for the two-DB-soliton state [cf.
Eq. (23)] provides a clear physical picture for the interac-Physically speaking, the oscillation frequenay represents
tion between the two DB solitons. In order to better under-the internal out-of-phase motion of the two DB-solitonsté&lo
stand this result, first we note that (to the leading order othat as here we deal with the homogeneous case (i.e., in the
approximation) the interaction force between the brighit so absence of the trap), the in-phase motion of the solitons-is a
ton components introduces a longer range effect than the irsociated with the neutral translation mode due to the taansl
teraction forces between the dark soliton components whickional invariance of the system (the respective in-phadd-Go
in turn introduce a shorter range repulsion. This can be seestone mode has a vanishing frequency).
since Fgg x exp(—2Dgxzo) While Fpp o exp(—4Doxo) The above analytical predictions have been compared with
(see Appendix A); note that the interaction between dark aneiumerical simulations. First, we have confirmed the existen
bright solitons is also to leading ordéfys o exp(—2Dyx). of the stationary two-DB-soliton state (in the out-of-phas
This resultis in accordance with earlier predictions, vefite  case); a prototypical example of such a state is shown in the
same dependence of the force over the soliton separation wésp panel of Fig. 3 (fop; = 3u2/2 = 3/2). We have also de-
found (see, e.g., Refs. [33] and [14, 31, 34] for bright andkda termined the dependence of the equilibrium soliton pasiio
solitons, respectively). (denoted byt in the middle panel of Fig. 3) and the effective

Let us now consider the role of the bright-soliton com-frequencyw, [cf. Eq. (26)] on the chemical potentiah of
ponent. In its absence, i.e., for = 0 [cf. Eq. (19)], the bright soliton component. The respective analytical an

(26)
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02t Lo2” tively, to an in-phase and an out-of-phase dark-bright@olpair in a
~ Lo’ harmonic trap witi2 = 0.1. The top row of panels depicts the pro-
= et files of the DB-soliton pairs (solid blue lines and dashecgrines
o1l Lef” corresponding, respectively, to the dark and bright corepts) and
' 0@ 2 the trapping potential (dashed-dotted red line). The neiddiv of
| o @ J panels depicts the spectral plaf., \;) rescaled by the trap fre-
R . .
quencyf2. The bottom row of panels depicts the numerical (small
e 085 0.6 095 1 s_tars in red) and the analytical_ (circlesin blue_) resulistie equil_ib-
Ha rium distance between the solitons as a functiopthe theoretical

prediction is based on Eq. (27).
FIG. 3: (Color online) Top panel: A stationary DB-solitonipahe
solid (blue) line denotes the two-dark-soliton state [Hetteat each
dark soliton is associated with a zero crossing], while tasheéd
(green) line denotes the respective two-bright-solitaatest The
chemical potentials arg1 = 3/2 andpue = 1. Middle panel: the
equilibrium center of mass, as a function of the chemical potential
u2 (for p1 = 3/2). Stars (in red) denote the analytical prediction
of Eq. (23), while circles (in blue) denote the numericallytained
soliton centerzo. Bottom panel: the oscillation frequency for the
out-of-phase motion of the DB-soliton pair as a functioruef(for
u1 = 3/2). Stars (in red) depict the analytical result fog [cf.
Eq. (26)], while circles (in blue) depict the correspondimgmeri-
cally obtained imaginary eigenvalue (for the out-of-phase soliton
motion) of the excitation spectrum.

motion of this eigenvalue through the continuous spectrum,
no instability is observed in the parametric window shown in
Fig. 3.

IV. MULTIPLE DARK-BRIGHT SOLITONSINTHE TRAP

Next, let us consider the case of multiple DB-solitons in the
presence of the harmonictrap. In the presence of the trap, ea
of the multiple-DB-soliton structures is subject to twodes:

(a) the restoring force of the trapgy, [in the case of a sin-
gle DB-soliton, this force induces an in-trap oscillatioithna
num_erical results are shown in t_he middle and bottom panelggr?ﬁgrrlcey;;:: [cf.SEZ.E((21.4§]1Zr)(l}nag?h(ebr)dtgfk-pl?rlirgmf gol;?ttgr:?
of Fig. 3. To obtain the numerical results, we have used &g, s taking into regard that, = —w?2. 2 [16], one may
(least squares) fitting algorithm to accurately identifg #m- e the effective equation of motion for the center of a
plituden, inverse widthD, and equilibrium center of masg two-DB-soliton state as follows:

of the bright component. The numerical findings #grand

wp (the latter is numerically obtained via a BdG analysis, as
the imaginary eigenvalug pertaining to the out of phase mo-
tion of the stationary two-DB-soliton state) are directone- ~ One can thus straightforwardly generalize the above eguati
pared with the semi-analytical results of Egs. (23) and,(26)for N -interacting DB-soliton states, similarly to the case of
respectively. We find that there is a very good quantitativenultiple dark solitons in one-component BECs [13, 14, 38].
agreement between the analytical and numerical resukés (se Importantly, the presence of the trap allows for the exis-
middle and bottom panels of Fig. 3). Notice that despite thdence of stationary DB-soliton molecules not only for of#-o

o = Ftr + Ent- (27)
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FIG. 5: (Color online) The left and right columns of panelsree
spond, respectively, to an in-phase and an out-of-phadehdayht
soliton pair in a harmonic trap withh = 0.1. Shown are the imagi-
nary (top row of panels) and the real (bottom row of panelsfspat
the eigenvalues as functions @f for 1 = 3/2. In the top panels,
the theoretical predictions for the eigenfrequencies efhomalous
modes of the system, pertaining to the in-phasg &nd out-of-phase
(w1) oscillations of the DB-solitons [see Egs. (28)-(29)] aepidted
by dashed (red) lines. Notice that collisions of modes (eigkie
crossings) observed in the top panels indicate the emesgehio-
stability windows observed in the bottom panels. The inbteads are
of the Hamiltonian-Hopf type and result in the emergenceigére
value quartets.

phase bright solitons (as in the homogeneous case), but al

for in-phase bright solitons. In the latter case, the rapals

between both the dark- and the bright-soliton component(s

is balanced by the trap-induced restoring foiGe. In the
case of two-DB solitons placed at= 4z, the equilibrium

points,z.q, can readily be found (as before) as solutions of th

transcendental equation resulting from Eq. (27)ifee= 0, in
both the in- and out-of-phase cases. To study the stabfiity

these equilibrium points in the framework of Eq. (27), we may

again use the ansaiz (t) = z.q + d(t), and obtain a linear
equation for the small-amplitude perturbati®), similar to
that of Eq. (25), namelys + w?§ = 0, where the frequency
wy is given by,

2
Wi

(28)

_ 2 2
= Wosc + “o»

e

(¢)

We now turn to a systematic numerical investigation of the
above features and of the multiple-DB-soliton states. At fir
we consider the two-DB-soliton state in the trap, results fo
which are summarized in Figs. 4 and 5, both for the in-phase
and the out-of-phase configurations. In particular, thdefp
and right panels of Fig. 4 show examples of an in-phase and
an out-of-phase stationary DB-soliton pair, respectiybbth
for uy = 3/2 andue = 1). The two middle panels illus-
trate the corresponding spectral planes, showcasingrtaarli
stability of these configurations. The bottom panels of the fi
ure show the equilibrium positions of the soliton centers. |
the in-phase case (bottom left panel), it is observed tihgeta
chemical potential (number of atoms) in the second compo-
nent leads to stronger repulsion and, hence, larger distanc
from the trap center. In the out-of-phase case (bottom right
panel), we observe a similar effect but in the reverse doect
(due to the attraction of the out-of-phase bright-solitome
ponents) for smaller values of the chemical potential. &éoti
that in both cases a good agreement is observed between the
numerically observed equilibrium separations and thertteo
ically predicted ones from Eq. (27).

To study the validity of Eq. (28) —pertinent to small-
amplitude oscillations around the fixed points— we show in
Fig. 5 the eigenvalues of the excitation spectrum [both for
the in-phase (left column) and for the out-of-phase (rigit ¢
umn) cases] as functions pf. The imaginary and real part,

A; and )., of the respective eigenvalues, normalized over the
trap strengtl, are respectively shown in the top and bottom
panels of Fig. 5. In the top panels, it is straightforward to
compare the analytical result of Eq. (28) with the BAG result
namely the second anomalous mode of the spectrum, corre-

SO

sponding to the out-of-phase oscillations of the DB-salito
air. Once again, good agreement is observed between the
wo; the differences may be partially attributed to the éimt
action” (i.e., collisions) of these modes with other modés o
the BAG spectrum. It is clear from the comparison of the cor-
responding columns that there exist narrow instability -win
dows, arising due to the crossing of the anomalous mode(s) of
the DB-soliton pair with eigenmodes of the background of the
two-componentsystem. These instabilities arise in the fufr
Hamiltonian-Hopf bifurcations [39] through the emergente
guartets of complex eigenvalues resulting from the coltigif
two pairs. The growth rates of the pertinent oscillatoryans
bilities are fairly small (i.e., the instabilities are wéaik both
the in- and out-of-phase cases; it should be noted, however,
that in the latter case, the formation of the quartets ajgear
be occurring in very narrow intervals.

wherewy is given by Eq. (26). Similarly to the case of dark
solitons in one-component BECs [14] (see also Ref. [4]), by Naturally, the above considerations can also be genedalize
construction, this mode captures the out-of-phase motion do three- or more DB-solitons, although the analytical galc

the DB-soliton pair. Furthermore, by symmetry, the in-ghas lations become increasingly more tedious; again, as we will

oscillation of the DB-soliton pair in the trap will be perfoed ~ show below, in-phase or out-of-phase configurations are pos
with the frequency sible in the presence of the trap. Pertinent examples, stgpwi

two different three-DB-soliton configurations, are illized

in Fig. 6. In particular, the first column in the figure corre-
sponds to the in-phase three-DB-soliton state, while tke se
These two characteristic frequencies (w2) coincide with  ond column corresponds to the out-of-phase variant thereof
the eigenfrequencies of the two anomalous modes of the Bd@ the case under consideration, there exist narrow paramet
spectrum of the trapped DB-soliton pair. intervals of dynamical instability, which are narrower foe

(29)

W2 = Wosc-
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FIG. 6: (Color online) The left and right columns of panelsree

spond, respectively, to an in-phase and an out-of-phase-hB-

soliton configurations. The top row of panels depicts thpeetve

stationary states, fqu; = 3/2, p2 = 1 andQ = 0.1; solid (blue)

lines depict the dark-soliton components, dashed (greee} lthe
bright ones, while the dashed-dotted (red) line shows thebiic

trap. The second row of panels depicts the spectral planethéo
above stationary states, while the third and fourth rowseagéva-

lent to those of Fig. 5, but for the three-DB-soliton confagfions.

out-of-phase case (as in the case of the two-DB-solitoastat

V. CONCLUSIONSAND DISCUSSION

In the present work, we have studied multiple quasi-
one-dimensional dark-bright (DB) solitons in atomic Bose-
Einstein condensates. Our theoretical results were metiva
and supported by the experimental evidence of the formation
of DB-soliton clusters in a two-component, elongated rubid
ium condensate, confined in a harmonic trap. The theoret-
ical analysis was based on the study of two coupled, one-
dimensional Gross-Pitaevskii equations.

Starting from the case of a homogeneous condensate (i.e.,
in the absence of a trapping potential), we have employed a
Hamiltonian perturbation theory to analyze the interache-
tween two DB-solitons. Assuming that the DB-solitons are
of low velocity and sufficiently far from each other, we have
found approximate expressions for the interaction forees b
tween the same or different soliton components. This way, we
derived a classical equation of motion for the center of mass
of the DB-soliton pair, and revealed the role of the phase-
difference between the bright-soliton components: we have
shown, in particular, that the repulsion between the dalik so
ton components may be counter-balanced by the attraction be
tween out-of-phase bright components, thus inducing thse ex
tence of stationary DB-soliton pairs even in the case when th
external trapping potential is absent. We have found thé equ
librium distance between the two DB solitons that compose
the stationary DB-soliton pair, with the semi-analyticat r
sult being in excellent agreement with the relevant nunaéric
one. Additionally, we have demonstrated the linear stiytuli
these stationary DB-soliton pairs by means of analyticdl an
numerical techniques [the latter were based on a Bogoliubov
de Gennes analysis]. It was shown that the analytical result
for the oscillation frequency of small-amplitude perturbas
around the equilibrium distance is in excellent agreeméitht w
the pertinent eigenvalue characterizing the frequencyhef t
out of phase motion of the DB-soliton pair.

We have then studied multiple-DB-solitons in the trap. In
this case, we have employed a simple physical picture, where
the total force acting on the DB-solitons was decomposed to
an interaction force (derived in the homogeneous case) and a
restoring force induced by the trapping potential; thevaié
characteristic frequency associated with the latter waoth
cillation frequency of a single-DB-soliton in the trap (whi
was found to coincide with the pertinent anomalous-mode
eigenvalue of the single DB soliton system). Following this
approach, we were able to find stationary in-trap DB-soliton
pairs even in the case where the bright-soliton components
were repelling each other: in this case, the trap-inducgdre
ing force was able to counter-balance the repulsive forees b
tween the dark- and the bright-soliton components. The-semi
analytical results for the equilibrium distance and theilesc
lation frequencies (for the in- and out-of-phase bright eom
ponent cases) were again found to be in very good agree-

We should mention, in passing, that the dynamics of two-ment with respective numerical results, including the aaom
and three-DB soliton configurations was recently studied inous modes’ eigenfrequencies pertaining to the in- andut-

Ref. [26]; our study complements the latter by yielding gtal
ical approximations and a numerical continuation/biftinra
approach towards such states.

phase motion of solitons. The stability analysis of the DB-
solitons in the trap indicated the possibility of the existe
of unstable modes through Hamiltonian-Hopf instabilitagu
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tets, although the latter would typically only arise ovemow  where terms of orde©(e~5”%0) and higher have been ne-
parametric intervals —and with rather weak instabilityngtio  glected (nevertheless, it has been checked that theirilbontr
rates. Results pertaining to three-DB-solitons in thetvape  tion does not alter the main results that were presentedfere
presented as well; the main features of these states ward fouOn the other hand, the interaction ford@sp, Fgg andFpg

to be qualitatively similar to the ones of the DB-solitonrgai  have the following form:

The identified robustness of such “DB-soliton molecules” in

our analytical and numerical results is in tune with the fre- 1 {1(544 — 352D2) + 128D, (DZ — 1) xo}

guent and persistent occurrence of such clusters also in the bp Xo

experiment (although in the latter it is not as straightfemly % e—4Dozo (Ad)
to prepare such “distilled” molecular states). ’
It would be particularly interesting to further explore the
dynamics of multiple-DB-soliton complexes, and potetgial ~ Fpp = - { —6Dg +4D2xo — 2;4 D3 cos Afe™2Poro
the formation of “DB-soliton gases” comprising such inter- Xg
acting atomic constituents. Deriving Toda-lattice-typei&- X 2
tions describing such gases, and identifying their stafipn + ; [ (1 +2cos AG) (=8Dozo + 6)}
states, excitations and (mesoscopic) solitons (as in the ca % D2e—4Dowo (A5)
of single-component dark solitons [38]), would be challeng 0 ’
for future work. Another possibility is to extend the presen
considerations to the vortex-bright solitons found in FR28]. Fpp = X {8D0 cos AO} e~ 2Dowo
There, it would be relevant to identify whether molecular Xo
states consisting of two- or of three-vqrtex-brightscn1'ﬂa::an + X { 208 + 64D0x0} Dye—4Poo (A6)
be constructed, and whether the relative phasésaofdr be- X, 3
tween the bright components can still yield different stati )
ary states. Relevant studies are presently in progress. whereD(t) ~ D, since we are assuming thait) ~ 0.
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Appendix A: Theinteraction energies and forces

The interaction energieBpp, Egg and Epp are given by
the following (approximate) expressions:

1
Epp = 16cos? ¢ [gD cos? ¢ + D + 2(cos® ¢ — D?)xg
4 <2
_3+dcos’9 3;05 ¢ cos? gb] e 4Pwo, (A1)

Egp = x[2D (D (1 — Do) — ko) +DX]
X cos Afe 2P0 (A2)
+ X[XD (2Dxo — 1) (1 + 2 cos? AG) }6—41:)950’

FEpp = —4x cos? ¢cos Afe 2P0 (A3)

16
+ ycos? ¢ l? cos? ¢ — 16Dxg + 8 | e~ 4P0,
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