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Adopting a mean-field description for a two-component atoBose-Einstein condensate, we study the stat-
ics and dynamics of dark-bright solitons in the presenceddlized impurities. We use adiabatic perturbation
theory to derive an equation of motion for the dark-brighiten center. We show that, counter-intuitively,
an attractive (repulsive) delta-like impurity, actingelglon the bright soliton component, induces an effective
localized barrier (well) in the effective potential felt kiye soliton; this way, dark-bright solitons are reflected
from (transmitted through) attractive (repulsive) impies. Our analytical results for the small-amplitude oscil
lations of solitons are found to be in good agreement withlte®btained via a Bogoliubov-de Gennes analysis
and direct numerical simulations.

I. INTRODUCTION Nevertheless, to the best of our knowledge, the problemeof th
interaction of matter-wave dark-bright solitons with lbzed

] ) ] ) impurities has not been addressed so far.
The physics of atomic Bose-Einstein condensates (BECS) |, this work, we aim to study this problem in the frame-

[1, 2] has offered the possibility of the study of purely non-,qr of mean-field theory. More specifically, we consider a

linear phenomena in the mesoscopic scale. In particulabuasi one-dimensional (1D) two-component repulsive BEC,
there has been a vast amount of research efforts devoted {9y n4sed by two hyperfine states of the same alcali species
the study of macroscopic nonlinear excitations of BECs,(see(aS e.g., in the experiments of Refs. [17-19]) — a system
e.g., Refs. [3-7] for reviews on this topic). In that regard, it can be approximated by two coupled 1D Gross-Pitaevskii

of p_articular int.erest are the so-called matter-wave st equations (GPEs) (see, e.g., Refs. [3, 4, 7]). We assume that
of either the bright [6] or the dark [7] type, that can be sup-p41y components are confined by the usual harmonic trap,

ported in BECs with attractive or repulsive interactions, r \,nile an additional small-amplitude localizedH{ke) impu-

spectively. Nevertheless, these types of solitons may-Coexiw, notential is also incorporated in both components. We
|§t in multi-component condensates with repulsive ,'nteracemploythe hamiltonian approach of the perturbation theéry
tions (see, e.g., Rgfs. [8] and [9] for reIevanF work in two- atter-wave solitons (see, e.g., Ref. [7]) to study anzayly
component and spinor condensates, respectively): Sueh, sge agiabatic dynamics of DB solitons supported in the sys-
called dark-bright (DB) solitons exist due to the fact ta@ t o This way, we derive an effective equation of motion for
dark-soliton component creates, through the inter-spenie e pB-soliton center. We find that if the impurity potential
teraction, a trapping mechanism that allows the bright soli 5 solely on the bright-soliton component then the solito
ton component to be formed (even though this is not possibley, ity interaction is effectively repulsive (attractivfor a

in repulsive BECs). Dark-bright solitons have been studieqyen jinely attractive (repulsive) impurity. This behaii®in a
extensively in other contexts, such as nonlinear optic$ [10gparp contrast with the one corresponding to dark solitons |

and the theory of nonlinear waves [11]. Furthermore, they;,qie_component condensates: there, the nature of the dar
have recently been analyzed in discrete settings [12],ewhil s5|iton__impurity interaction is the same as the type of the

higher-dimensional generalizations —namely, vortexpir 5 ity (i.e., repulsive/attractive for repulsive/aittive im-
soliton structures— were studied as well [13]. Importantly ) ,sities respectively) [27].
dark-bright solitons have been observed in experiments COFP We study the statics and dynamics of solitons near the fixed

ducted both in optics [14, 15] and, more recently, in BECSpoints of the effective potential associated to the above-me
[16-19]. tioned equation of motion using both our analytical apphoac
On the other hand, the interaction of solitons with local-and numerical simulations. We also perform a Bogoliubov -
ized impurities is a quite general and fundamental problentle Gennes (BdG) analysis to investigate the excitation-spec
that has attracted much attention in the theory of nonlineaira of the DB-solitons proper and study their stability. \iéhe
waves [20] and solid state physics [21, 22]. In this contileet, appropriate, we find a very good agreement between the ana-
interaction of either bright or dark solitons withlike impu-  lytical predictions and the numerical findings, e.g., thareh
rities has been investigated in the framework of the noaline acteristic frequencies obtained by the equation of motiwh a
Schrodinger (NLS) equation (see, e.g., Refs. [23-26]Javhi the eigenfrequencies of the internal modes (also known as
relevant studies have also appeared in the physics of atomfanomalous modes” [2, 5]) associated with DB-solitons.
BECs (see, e.g., [27-31]). In the latter context, localimed The paper is structured as follows. In Section 2 we present
purities may easily be created as sharply-focused faméétu the model, use perturbation theory, and derive the equafion
laser beams and can be used to manipulate matter-wave dyotion for the soliton center. In section 3, we analyze the ef
namics (see, e.g., Ch. 17 of Ref. [3]), while they have alyead fective potential and forces acting on the dark-brighttsak
been used in experiments for the creation of solitons [3R, 33 and identify the most interesting case, i.e., when the impu-



rity acts solely in the bright-soliton component. Sectiois4 lowing dimensionless form,

devoted to a systematic comparison of our analytical fingling

with sllmulau.ons, including re§ults of the BdG analysis- Fi iOug = — =0uqg+ Va(z)ug
nally, in section 5 we summarize our conclusions. 2

+ (Jual® + [us* — p)ua, 2
10up = — %(“)21% + Vi(z)up
+ (lusl® + ual® = p — A)up. (3)

I1. MODEL AND ANALYTICAL CONSIDERATIONS

In the above equations, we have used the notation= uy4
A. Setup andys = wuy, indicating that the componernt (2) will be
supporting a dark (bright) soliton. Notice that the resjvect
normalized chemical potentials read = g = p andus =
We consider a two-component elongated (along the p, = p + A, and below we will assume that; > u; (i.e.,
direction) repulsive BEC, composed of two different hyper-A = —|A| < 0). Finally, the external potentials in Egs. (2)-
fine states of the same alkali isotope. Assuming that theégrap (3) take the form
highly anisotropic, with the longitudinal and transvenspt .
ping frequencies being such that < w, , we may describe _ _1h2,.2
this system by the following two coupled GPEs [3, 4]: Vi(z) = V(z) +bid(@) = ZQ v+ bid(z) “)

Vo(z) = V(x) + bed(x) = %(22:172 + b2d(x), (5)

. K2 &
ihyp; = <—%3i + Vi(@) — pj + Z 9jk|7/)k|2> ¥ (1) whereQ = w, /w, andby, by are the normalized trap strength
k=1 and barrier prefactor strength, respectively. Below, bafth
these parameters will be considered to be small e, b <«

Here,y,(x,t) (j = 1,2) denote the mean-field wave func- L. . . :
tions of the two components (normalized to the numbers of Before proceeding further, it is necessary to consider at
atomsN; — fj:oo ;%) m is the atomic massy; are the first the effect of the impurity on the Thomas-Fermi (TF)

; ) : cloud carrying the dark soliton. According to the analysis
chemical potentialgy;;, = 2hw a ;i are the effective 1D cou- .
pling constantsy ;;, denote the three-wave scattering lengths of Ref. [27], the TF density near the trap center (where the

(note thata;o = as1) that account for collisions between impurity is located) can be approximated as:

atoms belonging to the same;{) or different @;,j # k) 2

species, andl; (x) represent the external trapping potentials. fure ™ ~ MQQ 2\//7f(b£v), ©6)
1

+ 5 exp(=2v/plz)), ()

We assume that both components are confined by the usual flx) = )

2
—X
harmonic trap, namely (z) = (1/2)mw?2z?2, while an addi- oz
tional localized “impurity” potential, which may be credtey
afar-detuned laser beam, is also present. If such an inypsirit
strongly localized, one may theoretically approximatepa-

wheref (x) is considered to be small with respect to the chem-
ical potentialu. The first term in the right-hand side of Eq. (7)
. d )} - 4 . accounts for the unperturbed TF density (in the absenceeof th
tial profile by ad-function; thus, the trapping potentials for the impurity); on the other hand, the second term actually o

two components can be described¥gix) = V(z)+b;0(z), . T ; . ; .
whereb; are the barrier amplitudes in each component. Notémates the delta-like impurity, which creates in the TF digns

that for a blue- or red-detuned laser beam, the impuritynpote a Iocallze_d dip (_hump) fdﬁl. <0 (b i 0); the latter has ob_w
. . ously a discontinuous derivative at= 0 due to the matching
tial can either repelbg > 0) or attract §; < 0) the atoms of " o

. conditions atr = 0 (see details in Ref. [27]).
the respective component of the condensate.

We examine the case where the two-component BEC un-
der consideration consists of two different hyperfine stafe B. Perturbation theory
87Rb, such as the statés —1) and|2, 1) used in the experi-

ment pf Ref. [Sfl]‘\; ofr thi;‘titgis, |—1>ha”f(_1|27 ~2) ushed in the . We assume that the dark soliton is on top of a modified TF
lexpeleenkts Oh € IS [ o 1. n4t e first Sase the SC"j‘t('je”ncloud, as described by Egs. (6)-(7). Accordingly, the dgnsi
engths take the values, = 100.4ap, a1 = 97.66a0 and |, 12 Fqs. (2)-(3) is substituted bya|? — |urr|?|ual®.

az2 = 95.00aq, while in the second case the respective value urthermore, introducing the transformationss uit, & —

area;; = 100.4&0, alg = 98980,0 anda22 = 9898&0 (Where 2 —1 2 e cast Egs. (2)-(3) into the form:
ag is the Bohr radius). In either case, the scattering Iengthé/ﬁx’ [uel™ = ™ P, w as. (2)-(3)1 '

take approximately the same values, sgy ~ a, which is 1

what we will assume hereafter. Thus, measuring the dessitie i0uq + 5593%1 = (Jual® + [up|* = ua = Ra, (8)
4512, length, time and energy in units 8, a; = \/h/w., 1., ) )

wT! andhw, , respectively, we may cast Egs. (1) into the fol- rup + 5 0up — (Jual” + Jup|” — p)up = Ry, (9)



3

whereii = 1+ A/u, and Since we have considered an adiabatic evolution of the DB
_ o1 9 , soliton, we may assume that, in the presence of the per-
Ry = (20°)7" 201 = |ua)V(@)ua + V' (2)0rud] turbations of Egs. (10)-(11), the DB soliton parameters be-
come slowly-varying unknown functions of timegsee, e.g.,
[7]). Thus, the DB soliton parameters become— ¢(t),

x
+ b2 [(1 — ugl*) ua — —(%uli} e 271, (10)
D — D(t), and, as a result, Egs. (14)-(15) read:

||

R, = pn 2 [(1 — JugP)V (2)up + bopd () up
- blﬂi’>/2|ud|2ube—2|m|}7 (11) DQ(t) = cos? o(t) — %XD(t), (20)
io(t) = D(t)tano(t), (21)

with V/(z) = dV/dz. Equations (8)-(9) can be viewed as
a system of two coupled perturbed NLS equations, with perwhere we have used Eq. (17). The evolution of the parameters
turbations given by Egs. (10)-(11). In the absence of the pery(;) D(¢) and(t) can be found by means of the evolution

turbations 2 = 0, b1» = 0), and considering the boundary of the DB soliton energy. In particular, employing Eq. (1),
conditions|ug|* — 1 and|uy|> — 0 as|z| — oo, the NLS s readily found that

Egs. (8)-(9) possess an exact analytical DB soliton saiuifo

the following form (see, e.g., Ref. [8]): dE _ 4DD? + yD sec? ¢(D + Do tan 5. (22)
uq(z,t) = cos¢tanh [D(z — xo(t))] + isin ¢, (12)

dt
wp(z,t) = nsech [D(z — z0(t))] exp [ikz +i0(t)], (13)  On the other hand, using Egs. (8)-(9) and their complex con-
jugates, it can be found that the evolution of the DB soliton

where¢ is the dark soliton’s phase angleys ¢ andn rep-  energy, due to the presence of the perturbations, is given by
resent the amplitudes of the dark and bright solitansand

xo(t) denote the width and the center of the DB soliton, while  dE foo .

k = Dtan ¢ = const andd(t) are the wavenumber and phase ;= —2Re {/ (RiOrua + RyOrup) dfC} . (23)

of the bright soliton, respectively. The above parametgttsn -

DB-soliton are connected through the following equations: where asterisk denotes complex conjugate. Substituting
and R, [cf. Egs. (10)-(11)] into Eq. (23) and evaluating the

2 2 2
l? = cosTo (14) integrals, we obtain from Egs. (20), (21), (22) and Eq. (23)
o = Dtang, (15)  a system of three equations for the evolution of the soliton
I parameters)(t), D(t) andzo(t). This system is linearized
ot) = 2(D RO+ (A/t, (16) around its fixed point (see details in the Appendix) and, in

the physically relevant case of sufficiently smgll leads to
the following equation of motion for the small-amplitudedi
placementX, of the soliton position from the trap center:

wherez is the DB soliton velocity. Notice that the amplitude
n of the bright soliton, the dark-soliton component’s chemi-
cal potentialu, as well as the widthD of the DB-soliton are

connected with the number of atoms of the bright soliton by B Wogt
means of the following equation [for the variables appegrin Xo = _876’ (24)
in Egs. (2)-(3)]: 0
+00 2. /fin® where we have used the variables used in Egs. (2)-(3)). The
Ny = / |up|?da = -5 (17) effective potential in Eq. (24) is given by
Let us now assume that the DB-soliton evolves adiabatically Vet (Xo) = %wgscxg + bsech? (Do Xp), (25)

in the presence of the small perturbation, and employ the
Hamiltonian approach of the perturbation theory for matter yhere the oscillation frequency,s. and the parametérare
wave solitons (see, e.g., Refs. [4, 7]) to study the DB-split espectively given by:

dynamics. We start by considering the Hamiltonian (total en

ergy) of the system of Egs. (8)-(9), when the perturbatioas a 1
absent R; = R, = 0), namely, W=l X (26)
0sC 2 ¥ 2 I
1 [t 81+ (%)
E = - / 5d$, 1
2/ b =
E = |(r“)ggud|2 + |8mub|2 + (|ud|2 + |ub|2 — 1)2 6 [SDODO +x(2Do — DO)}
= 2(A/ ) |us|*. (18) x [2(1+2D2) by + xDoby — 3xD2bs] , (27)
The energy of the system, when calculated for the DB-soliton - .
solution of Egs. (12)-(13), takes the following form: and Dy and D, are constants of ordeb(1) (see Appendix).

Equation (24) has the form of an equation of motion for a
_ 4. I o o A _ Ny classical particle, with the coordinal&, moving in the effec-
E=gb+x (§D secto =)y x= Vi 19 ve potentialV.s. Note that in the absence of the impurities



[b1 = by = 0,i.e.,b = 0in Eq. (25)], Eq. (24) recovers the
results of Ref. [8]: according to this work, a DB-soliton tsc
lates in a harmonic trap of strendthwith the frequencw,s.,
given in Eqg. (26); this frequency depends on the paramegter
i.e., the number of atom¥), of the bright soliton [see the def-
inition of x in Eq. (19)]. Below, we analyze the more general
case, studying the effect of the impurities on the statiak an
dynamics of DB-solitons.

I11. THE EFFECTIVE POTENTIAL AND FORCES

The part of the effective potential (25) induced by the im-
purities consists of three different terms, as seen by the ex
pression of the constahtin Eq. (27). Taking into regard that
Dy andD, are of ordeO(1) and the parameteris small (as
mentioned above — see also the Appendix), it is readily ob-
served that the sign of the paramétes mainly determined by _ ) ) _
the leading-order termy 2b; (1 + 2D8), in Eq. (27). Thus, FIG. 1: (Color online) The effective potential (25) in thesea

it is clear that the termx sechg(DoXo) in the effective poten- X = 0.7 [solid (blue) line] andy = 0 [dashed (red) line], i.e., in

. . . : . the absence of the bright-soliton component. The top antbiioot
tial (25) is either a localized barrier (fog > 0) or alocalized  anels correspond ta = by — —0.15 andby = b = 0.15, respec-

well (for b, < 0). Here we should note that although Eq. (25) tively: the harmonic trap strength §& = 0.1. Insets show details of
is formally valid for smally, a numerical investigation of the ' the effective potentials in these cases near the trap cemtere the
more general case corresponding to valueg of orderO(1) impurities are located).

reveals that the nature of the potential is correctly cagutiny

the above analysis. This can be understood by the fact that,

generally speaking, increase pfresults in a decrease @i, b >0 F A -E (X>Xc)

from its maximum value (which i®y = 1) [see Eq. (A4) in 2 i e

the Appendix] and, thus, the signfs always determined by P00 e

the sign ofb;. ' I?r()( > Xc)

This result suggests that the form of the effective poténtia
is not significantly modified due to the presence of the bright
soliton component, as shown in Fig. 1. Furthermore, numer-
ical simulations in the framework of the GP Egs. (2)-(3) (not
shown here) for the DB soliton dynamics confirm the above
picture. We have found that stationary DB-soliton statdéstex 0.1
at the fixed points of the effective potential, and if these st _ o
tionary states are displaced, they perform oscillationthe >~ 0.05
effective potential shown in the top panel Fig. 1 or, depegdi 5 0
on their initial energy, they are either reflected or trarigedi 01
from the effective barrier in the bottom panel of Fig. 1. This ’
behavior was already described in detail in Ref. [27], where ~ -0.1
the interaction of matter-wave dark solitons with locadize-
purities was studied, hence we will not discuss it further.

Below, we focus on a quite interesting situation occurrfng i
the impurity actssolelyon the bright soliton component, i.e., dependence of the two forces acting on the solits, and Fluyp

by = 0 andby # 0: in this case, according to Eq. (25), the [sqjid (red) line], on the soliton centexo; the impurity is assumed
forces acting on the DB-soliton, i.e., the force exertedi®/ t 1 be attractive, i.eh, < 0. The dotted (blue) and dashed-dotted

Xo

-5 5 -5 5

0
Xo

0
Xo

FIG. 2: (Color online) Top panel: A representative illusima of the

harmonic trap}i,, and the localized impuritysi,,,, read: (black) lines show—F;. for x < x.; in this case, the only fixed
point is Xg = 0. The dashed (blue) line showsFi, for x > x¢;
F, = _wgscXOa (28) in this case, there exist three fixed points. Note that sinegtofile

Fimp remains qualitatively the same gschanges, for simplicity of
illustration, it is plotted only for a single value gf Bottom panels:
L . . the effective potential of Eq. (25) [solid (blue) line], i®ofied as a
and the constant, which is equal té for b; = 0, is given by: ¢ ,ction of Xo, for y = 0.13 < y. = 0.145 (left) andy = 1.3 >
5 xe = 0.145 (right), and it is compared to the actual potential
o« — — xDgbs (30) acting on the bright component [cf. Eq. (5)], indicated by ttashed
9 [SDODO 4 X(2D0 _ Do)} (red) line. Parameter values are= 1 and$2 = 0.1.

Fip = 2aDgsech?(DoXp)tanh(DgXo),  (29)




FIG. 3: (Color online) Similar to Fig. 2, but in the case of puksive
barrier,bo > 0. In this case, the only fixed point &5 = 0, as
shown by the profiles of the forces (top panel). On the othadha
the effective potential (bottom panel) is always attraztiv

5

first, we Taylor expand/s(Xo) in Eq. (25) aroundX, =
0 (the location of the impurity) and derive from Eq. (24) a
simplified equation of motion foX|, of the following form:

Xo = —wiXo — KX¢, (32)

wig = Wi — aDg, (33)
4

K = gozDé. (34)

Equation (32) represents the normal form of the bifurcation
arising in this system; in particular, it indicates that tixed
point X; = 0 always exists; nevertheless, dependingyon
and the sign ob, a symmetry-breaking (pitchfork) bifurca-
tion may take place; this way, two additional fixed points can
emerge. Below we will study the linear stability of the fixed
points and obtain characteristic oscillation frequencig®f
small-amplitude motions around them.

A. Attractiveimpurity

First, we consider the case of an attractive impubityx 0;
in this case, one or three fixed points may exist, as shown

In this case, it can readily be observed that the parameter by the graphical representation of the forégs and Fin,;, as

is negative (positive) wheh > 0 (b < 0), as the denomi-
nator is positive for any value of. This result is somehow
counter-intuitive compared to the case where both impgriti
are present: now, if the impurity is repulsive then the respe
tive force is attractivefin,p, < 0), while when it is attractive,

functions of the DB-soliton centeX, for different values of
the parametex — see top panel of Fig. 2: it is observed that
there exists a critical value of, namelyy., for which Fi,

is tangent tafi,, at Xo = 0 (see dashed-dotted line in the
figure). Then, it can easily be seen that, as long as x.

the force is repulsivel(,,, > 0). Physically speaking, this there exists only one fixed poinkg = 0 (see dotted line in
behaviour can be understood by the nature of atom-impurit{he top panel of Fig. 2). On the other hand, for valyes x.,

and atom-atom interactions: for examplejdf< 0 (attractive
impurity) then the impurity attracts atoms in the brightisol
ton component; nevertheless, since inter-atomic intenast
are repulsive, attracted atoms:ip repel atoms in the dark
soliton component,;. If the number of atoms in the bright
component is sufficiently large, then the effect of the attra

there exist three fixed points (dashed line of the top panel of
Fig. 2). In other words, a typical pitchfork bifurcation ars

at the critical valuey.: the fixed point at the originXj = 0,
loses its stability and, foy > x., two new stable (off-center)
fixed points emerge. The effective potentials correspandin
to the caseg < x. andy > x. are respectively shown in

tive impurity on the system is to create a repulsive poténtiathe left and right bottom panels of Fig. 2 and illustrate the

which overcomes the attractive effect of the trap yieldimg-a
pulsive effective potential, as shown in the bottom rightgla
of Fig. 2.

The form of the effective forceds;, andFin,p > 0, isillus-

symmetry-breaking after the bifurcation.

The above qualitative discussion is also supported by con-
sidering the simplified equation of motion (32), which can
also provide some quantitative results for the locationstad

trated in Figs. 2 and 3: there, the dependence of the forces dlity of the fixed points, as well as the oscillatory motioh o

the dimensionless parametefcf. Eq. (19)] (for a fixed trap-
ping potential frequency) is sketched for the casés < 0
andb, > 0, respectively. In either case, gschanges, the
profile of Fi.p(x) remains qualitatively unchanged; for this
reason, and for simplicity of the illustration, in Figs. 2daB
we show only one curve fafi,,,. On the other hand, changes
of x result in a much more pronounced changefon since
X controls its slope. As a result, changesyirmay lead to
the existence obneor threefixed points associated with the
equation of motion (24); the fixed point&, can be found as
solutions of the following transcendental equation:
—w2, X + aDgsech?(DoX() tanh(Do X() = 0.

osc

(31)

the DB solitons near the fixed points. Negg = 0, Eq. (32)
can be approximated by:

Xo ~ —wX Xo. (35)
Equation (35) describes the motion of a DB-soliton placed
near the trap center (where the impurity is located). As g
wZs > 0 the soliton will perform small-amplitude oscillations
around the center with a frequenoy.

Now, if x is increasedy?; (which is positive for smalk) is
decreased and, at the critical point ., the effective oscil-
lation frequency becomes’; = 0. The critical valuey, for
which the fixed pointX; = 0 becomes unstable (see dashed-
dotted line in the top panel of Fig. 2) can be determined by uti

The possibility of existence of one or three fixed points canlizing Eq. (33) — recall that,s., a and Dy in Eq. (33) depend

also be understood by simplifying the equation of motion (24

on the parametey; if x is sufficiently small (an assumption



consistent with our previous considerations) then the gqua 0.1 (1)’ ?) ‘ (3)
2 H . =
wiz(xe) = 0 leads to the approximate result: 35 \
N 202 36 ~ 0 | lA
e~ g @ 0§
which is in very good agreement with our numerical findings -0.1 ‘ :
(see Sec. V). Past this critical point, a soliton placedhia t 0.1 T
center of the trap will eventually move away from the center 5 !
and perform large-amplitude oscillations; in this casg, < =0 ,
0 and Eq. (33) will provide the growth rate of the relevant & !
instability. — :
As explained above, the symmetry-breaking bifurcation re- -0. 10 0‘ 1 0‘ 5 ‘ 0.4
sults in the emergence of two new fixed points (see bottom ) X 0.3 )

right panel of Fig. 2), which are approximately located at
X5 = iwcﬁ-/\/f . The stability of these nontrivial fixed
points can be studied by considering small-amplitude pertu
bations of Eq. (24), of the fornXy(t) = X + 4(¢), and de-
riving an equation for the small-amplitude perturbatiofg:

FIG. 4: (Color online) The top and bottom panels show, rethpy,
the real part (oscillation frequency) and the imaginaryt |fizista-
bility growth rate) of the anomalous mode eigenfrequeagy as
functions ofy;, in the case of the (sole) fixed poiaty = 0. Solid

§ = —w2s (37) (blue) lines indicatesy, as obtained from Eq. (35), while dashed
2 2 0 9 9 N (red) lines show the numerical result obtained from the Bd@l-a
Wy = Wose — aDgsech” (Do X() ysis. The regimes indicated by (1) and (3) correspond to dses
X [3 sech? (DOXg) — 2] . (38) x < Xc andx > x., while the vertical dashed line (2) indicates the

. . . . ) critical valuey = xe..
Naturally, this formula applies to an fixed, including

X§ =0, in which case it retrieves the result of Eq. (33).

into Egs. (2)-(3), and keeping terms of the order of the small
parametek, we will solve the eigenvalue problem for eigen-
modes{a(z),b(z), c(z),d(x)} and eigenfrequencies =

) _ . wy+iw; (note that the stationary state is stable whens= 0).

Let us now consider the case of a repulsive barrier, i.e.This way, we will obtain the excitation spectrum of the rel-
by > 0. In this case, the impurity-induced force acting on eyant stationary states, including characteristic eigepfen-
the DB-soliton is attractive, i.eq, < 0. Thus, as illustrated in  ¢jes associated with the DB-solitons. Such an eigenfregyuen
Fig. 3 and also observed from Eq. (32) far < 0, the only s the one pertaining to the “anomalous mode” of the system
In this case, we may follow the analysis exposed above angroduct [2, 5]), which coincides with the oscillation frezncy
study the stability ofXy = 0, as well as the small-amplitude of the DB soliton moving near the center of the trap (simylarl
oscillations around it, by means of Egs. (35) and (33), butfotg the case of dark solitons in one-component BECs [36]).
a < 0. Itis expected that, at least for sufficiently small val- Fo|iowing this procedure, we will be able to compare charac-
ues ofy, the fixed point should be stable and solitons locatederistic eigenfrequencies of the excitation spectrum i
near the trap center will perform small-amplitude osatlas.  oscillation frequencies, derived in the framework of our an-
Nevertheless, as will be shown in the next section, the fixedjytical approximations. Remarkably, we will show thathge
point undergoes an oscillatory instability past a critiealie  gra|ly, there is a very good agreement between the two.
of x, through a different mechanism. _ _Inour numerical results below, we will fix the chemical po-

Below we will compare the above analytical results with (aniial tou = 1, the normalized trap frequency f = 0.1,
numerical simulations. and the impurity strength, = +0.15 (for the repulsive and
attractive cases, respectively). We should also note that,
the numerics, we have approximated thprofile of the im-
purity potential by the functiorf (z) = 10 sech?(20z). Other

. ] . ) ] ) . parameter values produced results qualitatively simdahée
In this section, we will numerically investigate the existe  gnes that will be presented below.

of stationary DB-soliton solutions of Egs. (2)-(3), namely
ug = Uq(z) andu, = Uy(z), located at the fixed point&
obtained before. We will show that such solutions do exist
and will subsequently study the linear stability of thestest

by means of the BAG analysis (see, e.g., Refs. [3, 4, 7]). The
latter is performed as follows: we introduce the ansatz

_ wt * —iwt
ud(z,t) = Ua(z) +e [a(x)e. +b*(x)e ‘ ] (39) The analytical result of Eq. (35), namely the dependence
up(z,t) = Up(x) + € [c(x)e™" + d*(x)e”™"], (40)  of the oscillation frequency, on x, is shown in Fig. 4 [see

B. Repulsiveimpurity

IV. NUMERICAL RESULTS

A. Attractiveimpurity: b2 < 0 (a > 0)

1. Fixed pointatXj =0
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FIG. 5: A sketch showing the path of the anomalous mode eigenf
guencyw,, in the excitation spectrum, as the paramegtés varied, in
the case of the fixed poidtj = 0. As x is increasedy, moves to-
wards the zero eigenfrequency of the Goldstone mode, esllidth
the latter, and an imaginary eigenfrequency pair emerdas |abels
(1), (2) and (3) correspond 19 < ., X = Xc andx > x.; see also
Fig. 4.

FIG. 6: (Color online) Contour plot showing the evolution &f
DB-soliton, initially placed atr = 0, for an attractive impurity
(b = —0.15), and fory = 1.35 (in this case, the fixed pointy = 0
is unstable). Top and bottom panels show the dark- and bsigitbn
components, respectively. The dashed (white) line ind&#te lo-
cation of the impurity.

solid (blue) lines]. On the other hand, in our simulations, w

first confirmed the existence of a stationary DB-solitonestat ficiently large so that the soliton is always transmittedtiyh
located atz = 0, and then determined its excitation spec-the effective barrier located at the origin. Itis clearlysebved
trum. The anomalous mode associated with the DB-solitoRhat the interaction of the soliton with the impurity restitt a
was found to have an eigenfrequency, which is almost  position shift: in fact, as the soliton moves from the onelwel
identical tow, [see dashed (red) lines in Fig. 4]. Figure 4 qf the effective double-well potential (see bottom righhela
clearly illustrates the emergence of the pitchfork bifti@a  of Fig. 2) to the other, it slows down at the impurity for a shor

occurring aty. = 0.145 [see vertical dotted line labeled by time and, afterwards, it is transmitted to the other well.
(2)]; the regimes (1) and (3) correspond to the cages x.

(one stable fixed poinfXj = 0, in the effective potential) and
X > Xc (X§ = 0is unstable and two additional fixed points 2. Fixed points at the minima of the effective double-wetéptal
emerge).

In order to better understand the origin of the bifurcation, Asinthe case ok = 0, we numerically confirmed the ex-

in Fig. 5 we show the path of the anomalous mode eigenfrerstence of stationary DB-soliton states located at themadat
quencyw, in the excitation spectrum. Atfirst, i.e., far=0,  fixed points, and then determined their excitation spedtra.
w, is located at)/+/2, which is the approximate oscillation Fig. 7, we compare the result of Eq. (38) with the one ob-
frequency of dark solitons (in the absence of the brighit@o|  tained in the framework of BdG analysis. An excellent agree-
component) [7, 36]. In region (1) is increased and,  ment between the two is observed, up to a critical value of
moves towards the origin. Whep = x., w, collides with  y namelyy.; = 0.32: in this regimew, of Eq. (38) [solid
the zero eigenfrequency of the Goldstone mode — see regiqBlue) line in the top panel of Fig. 7] coincides with the real
(2) in the figure. This collision gives rise to the emergencepart of the anomalous mode eigenfrequmgidaghed (red)
of an imaginary eigenfrequency pair, which characteribes t |ine]. Nevertheless, at = y.1, the BdG analysis reveals that
system as long ag > x. — see region (3). The picture shown ,, collides with the eigenfrequency ~ , [the so-called
in Fig. 5 complements the bifurcation diagrams of Fig. 4hwit Kohn (or dipolar) mode fob = 0], which characterizes the TF
the regions (1)-(3) being in correspondence to each otker; s hackground [2]. This collision results in the emergencerof a
also for a discussion of the relevant bifurcation phenomena unstable excitation mode, characterized by a complex eigen
Hamiltonian systems, the recent exposition of [37]. frequency quartet, the imaginary part of which are shown in
We have also studied numerically the manifestation of thehe bottom panel of Fig. 7. In this case, a Hamiltonian-Hopf
above mentioned instability of a stationary DB-solitoni{in bifurcation takes place. This procedure can be better under
tially located atr = 0), by using this state as initial condition, stood in the sketch shown in Fig. 8: as the paramgtés
and numerically integrating Egs. (2)-(3). Note that todeg increased, the anomalous mode eigenfrequendg also in-
the onset of the instability, a small random perturbatioin [0 creased, i.e., it moves to the opposite direction as cordpare
0(1073))] was added to the initial condition. The result is to the situation shown in Fig. 5. This way, eventually col-
illustrated in Fig. 6, where the time evolution of a statipna lides with the eigenfrequenay ~ 2 , and gives rise to the

DB-soliton is shown, fory = 1.35 > x.. As seen in the fig-
ure, the initially stationary DB-soliton is exponentiallpsta-
ble and eventually departs from its initial location, anaktst
performing oscillations. Notice that the soliton energgug-

emergence of a quartet of complex eigenfrequencies.

The above analysis suggests that for valyesc y.1, a
DB-soliton initially located at any of the two nontrivial fxl
points, when displaced, will perform small-amplitude bsci
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= (i) (2)‘ (3) | enough kinetic energy to be transmitted through the effecti
3 0-1/,%7 barrier. This way, it moves over to the other well of the effec
E’ 0f : ] tive double-well potential and, afterwards, the above essc
X 1\-..% is repeated.
1
T
. 1
’éc\ 0.02 : jemmmmmmmmmTmmmmTEEmmEEEEET B. Repulsiveimpurity: b2 > 0 (a < 0)
~— Or=== ( |
g :’\. .. In the case of a repulsive barrier impurity, we will compare
002, ' 0" T mTmmmmmmemnane the relevant analytical [see Eq. (35) fox: 0] and numerical
02 04 06 08 1 12 14 results (obtained by the BAG analysis). First we mentiot) tha
X as seen in the top panel of Fig. 10, the oscillation frequegcy

of the DB-soliton almost coincides with the anomalous mode
eigenfrequencw,, only for sufficiently small values of pa-
fixed pointsX. Solid (blue) lines indicates, as obtained from rametery. In fact, the_re eX|_sts a c_rltl_cal value gf namely .
Eq. (38), dashed (red) lines show the numerical result pbtsirom X2 = 0.05, where a bifurcation — similar to the one shown in
the BAG analysis, while dotted (green) line in the top pafighe  Fig. 8 —takes place. This bifurcation results in the emecgen
figure indicates the eigenfrequency of the approximate Kobde.  Of an unstable eigenmode, characterized by a quartet of com-
The regimes indicated by (1), (2) and (3) correspond to teesa plex eigenfrequencies, the imaginary part of which is shown
X < Xel, X = Xe1 @Ndy > Xei. in the bottom panel of Fig. 10.

FIG. 7: (Color online) Same as Fig. 4, but in the case of theriaal

Re(w) 5 0
Q .
N (CHNC 0 04
Wa @ (1) 5 0.2
5 0.12
-Wao @ Im(w) 8(1)8
®o—— ol——@ 882
-Q 0.02

0 100 200 300 400
FIG. 8: Similar to Fig. 5, but in the case of the nontrivial fixe t
points. As the parameteris increased, the anomalous mode eigen-
frequencyw, moves towards the Kohn mode eigenfrequency (lo-
cated atv = Q) and, after the collision, a complex eigenfrequency
quartet emerges. The regimes indicated by (1), (2) and (8g<co
spond to the caseg < xc1, x = Xc1 andy > x.1; see also Fig. 7.

lations at one well of the effective double-well potentid.
direct numerical integration of Egs. (2)-(3), with init@dndi-

tion such a stationary DB-soliton state (perturbed by ramdo
noise), shows that this is the case indeed: a prototypieahex
ple is shown in two top panels of Fig. 9, where the dynamics
of such a state is illustrated, for = 0.25 < x. = 0.32.

It is clearly observed that the DB-soliton oscillates ambun t
the center of one of the wells, with an oscillation frequency

we ~ 0.05; this value deviates approximateys from the FIG. 9: (Color online) The two top panels present contoutsplo

analytically predicted value [cf. Eq. (38)]. On the othentia  ghowing the evolution of a DB-soliton, initially placed &t fixed
itis interesting to numerically investigate the manifést@of  pointz = X3 = 0.6, for a value ofy = 0.23 < xe1 = 0.32; in

the predicted instability of a stationary DB-soliton sté®@  this case, the fixed point is stable. The two bottom panelsiarigar
X > Xc1- Such a case, is illustrated in the two bottom panelgo the two top ones, but for the fixed poiat= X§ = 1.3, for a
of Fig. 9, where the evolution of such a DB-soliton is shown,value ofx = 0.62 > x.1; in this case, the fixed point is oscillatorily
for x = 0.62. It is observed that the initially quiescent DB- unstable. First- and third- (second- and fourth-) row psisabw the
soliton starts performing small-amplitude oscillatiomsund ~ dark- (bright-) soliton components. The dashed (white; ifdicates

the center of one of the wells but, after a short time, it gaindne location of the impurity.
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Py 0.1 MR @) ‘ if both impurity potentials are repulsive (attractive) thilne
S o = effective potential felt by the soliton is either a doublehw
é 0 or a harmonic potential with a localized well located in the
O] : trap center. Investigating the forces acting on the sqlites
o e have identified an interesting situation, which was then an-
-0.1 - : : ‘ alyzed in detail: if the impurity potential acts solely oreth
0.1 ‘ ‘ bright-soliton component, then the impurity-induced pert
3‘5 | ammmmmmmmsmmmomomoms the effective potential is either a localized barrier (fttrasc-
= () kocee- 4',:" ] tive impurity) or a localized well (for repulsive impurityThis
& RIS behavior is in sharp contrast with the one corresponding to
- b T the case of single-component condensates, where the nature
-0.1 0.05 0.1 0.15 02 (repulsive or attractive) of the soliton-impurity intetian is
X identical to the type of the impurity (repulsive or attrael
[27].
FIG. 10: (Color online) Similar to Fig. 7, but for the case akaul- Our numerical simulations have confirmed that stationary
sive impurity > = 0.15) and for a DB-soliton located at = 0. dark-bright solitons do exist at the fixed points of the effec
The critical value of parameteyis x.2 = 0.05. tive potential. The stability of these fixed points was staii

and the frequency of small-amplitude oscillations in a letab
configuration was found analytically. We have performed a
As before, it is relevant to numerically study the manifes-Bogoliubov-de Gennes analysis to study the stability of sta
tation of the instability in the case of a DB-soliton initigl ~ tionary states and find their excitation spectrum. The eigen
placed atz = 0, for y > x.2. A pertinent example is illus- frequencies of the anomalous modes were found to be almost
trated in Fig. 11, where the evolution of such a state is showiflentical to the analytically obtained soliton oscillatiére-

for x = 0.15. The soliton falls into an instability, and eventu- quencies, at least for sufficiently small number of atoms of
ally starts to oscillate around the center of the trap. the bright component. In the case of unstable fixed poings, th

bifurcations (pitchfork or Hamiltonian Hopf) that give eiso

the destabilization are identified and the growth rate of the
perturbations are theoretically identified and corrobentdty
numerical linear stability analysis.

An interesting direction for future studies would be a sys-
matic study of the scattering of dark-bright solitonsniro

V. CONCLUSIONS

We have used mean-field theory to study the statics and d){—e
namics of atomic dark-bright solitons in the presence ddiloc localized impurities of arbitrary amplitude (in the linestbe

ized (delta-like) impurities. Our model considered a syste ) X .
of two coupled Gross-Pitaevskii equations, describing@ tw work In Refs. [23_.26'. 30, 31]). Furtherm(_)re, It .WOUld be in-
teresting to study similar problems but for impurities thave

component Bose-Einstein condensate, confined in an ektern ) ; .
P patial scales larger than the ones of the soliton, andtinves

otential composed of a harmonic trap and a pair of localized ; ) - . .
ﬁnpurities acti%g on each Componentp P gate possible changes in the stability and dynamics. Aaftiti

We have employed the adiabatic perturbation theory fora"y’ it. would_be quite releyanf[ to extend the present arialys
solitons to derive an equation of motion for the dark—bright(alnd its pertinent generalizations as per the previoustgoin

. . L to multi-dimensional settings, and study the statics and dy
soliton center. Our analytical approximation revealed tha . . . . ; i
namics of vortices in the presence of localized impurities(

e.g., arelevant study but for a single-component condemsat
Ref. [38]). Such studies are in progress and pertinenttsesul

-20 0.8 will be presented elsewhere.
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Appendix A: Equation of motion for the soliton center

SubstitutingRy and R, [cf. Egs. (10)-(11)] into Eq. (23)
and evaluating the integrals, we obtain from Eq. (23) the fol
lowing result:

dE
dt

12 sin(2¢) (cos® ¢ — n*) V'(z)
%le sin(2¢)(cos? ¢ + 2D?)I;
+ byxu2D?tan ¢ sech®(Dxg) tanh (Do)

+ %bmﬂD? tan (11 cos® ¢ — 1), (A1)
where we have Taylor expanded the poteritiat) around the
soliton center:y and assumed that the DB-soliton is moving
in the vicinity of the trap center (where the impurity is lo-
cated)xy ~ 0; this way, we actually deal with nearly station-
ary DB-solitons, characterized by slow velocities, sucht th
the phase angle is ~ 0. Furthermore/; and/; in Eq. (A1)
are the following integrals:

I = /::O [% sech*[D(z — :co)]e%”l} dz, (A2)
I, = /J:O [% sech?[D(z — :co)]e%”l} dz, (A3)

10

of atoms [16-19], we may approximate the above integrals as
I = I = (2/3) sech?( Do) tanh(Dxo). This way, we ac-
cordingly simplify Eqg. (A1), which together with Egs. (20),
(21) [and Eq. (22)] constitute a system of three ordinary dif
ferential equations for the unknown soliton parametgrg,
xo(t) and D(t). This system can be solved approximately
upon linearizing around the fixed point:

)2

using the ansatzy = Xy, ¢ = ¢; andD = Dy + D;. We
thus obtain the following results:

~
~

d=0, o) =0, D=1+ (3) =% (a4

Dy = —Dog, Do=(2Do+ g)fl, (A5)
Dé1 = —2+ xDo — Dy
X {2%1(1 +2D2) — xDy <b2D0 - %)}
x sech?(DyXg) tanh(DoXp), (A6)
Xo = Do¢r, (A7)
where
D = —Dy |8%Do + x(2Do — Dy)| . (A8)

which can be evaluated by means of the hypergeometric funcro this end, differentiating Eq. (A7) with respect to timecen

tions [35]. Nevertheless, in the physically relevant cdsait
ficiently smally [cf. Eq. (19)], i.e., when the number of atoms
of the bright soliton is only a small fraction of the total nben

and using Eq. (A6), after some straightforward algebraie ma
nipulations, we obtain the equation of motion (24) for the DB
soliton center.
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