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Pairing, Ferromagnetism, and Condensation of a normal spin-1 Bose gas

Stefan S. Natu∗ and Erich J. Mueller
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.

We find the conditions under which the normal state of a spin-1 Bose gas is unstable towards
condensation, ferromagnetism, liquid crystalline-like nematicity and Bardeen-Cooper-Schrieffer-like
pairing. When the spin-dependent interactions are much weaker than the density-density interaction
there is direct transition from a featureless normal state to a fully ordered Bose-Einstein condensate
with either ferromagnetic or nematic order. When the spin independent and dependent interactions
are of comparable magnitude, we find several different symmetry breaking transitions at intermediate
temperatures above the Bose-condensation transition temperature. We make predictions for the Tc

for these transitions, and assess the role of magnetic field and finite system size.

I. INTRODUCTION

The interplay of superconductivity/superfluidity and
magnetism is fundamental [1]. Theoretical and experi-
mental studies of Bose gases with internal degrees of free-
dom have begun to explore this physics, elucidating the
subtle connections between Bose condensation of single
particles (BEC) and competing/complementary orders
such as pair condensation, ferromagnetism, and liquid-
crystal like nematicity [2–7]. Most of the exciting work on
this rich system has focussed on the regime where the in-
teractions are nearly spin independent. There superfluid-
ity complements rather than competes with other orders,
and the finite temperature phase diagram is very simple:
as the temperature is lowered, a featureless normal state
transitions into a fully ordered Bose condensate, where
symmetries associated with the spin and charge degrees
of freedom are simultaneously broken. The focus of this
paper is the regime where spin dependent and spin in-
dependent interactions are of comparable magnitude al-
lowing the existence of “less-ordered” phases: ferromag-
netism without condensation, and a bosonic analog of
Cooper pairs.

In spinless bosons, paired states are almost always un-
stable towards mechanical collapse: the same attraction
which creates pairs leads to a negative compressibility
[8, 9]. In the spin-1 Bose gas the BCS instability occurs
when “repulsive” spin dependent and spin-independent
interactions lead to an effective “attractive” interaction
in the spin singlet channel. Repulsive interactions in the
spin-2 channel prevent collapse. Somewhat counterintu-
itively, in this context the paired state is less ordered
than a single-particle condensate.

In this paper we use a Random Phase Approximation
(RPA-X), which includes exchange to study the insta-
bilities of the normal state towards ferromagnetism, ne-
maticity and pairing. This paper is organized as follows:
In Section II we present a discussion of the Hamiltonian
of the spin-1 gas, and the possible ordered states that
may be present. In Section III we outline the formalism
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of the RPA-X, and calculate the ferromagnetic and pair
susceptibilities for the interacting Bose gas in terms of
the susceptibilities of the non-interacting gas. In Section
IV we present the results of our calculation, and plot the
instability lines with and without magnetic field for dif-
ferent values of the spin-dependent interaction strength.
Finally we discuss finite size effects, and the possibility
of experimentally observing this phase diagram.

II. HAMILTONIAN AND POSSIBLE ORDERS

The Hamiltonian of a spin-1 Bose gas is the sum of a
kinetic and interaction term, H = Hkin + Hint. In the
presence of a magnetic field in the ẑ direction, the kinetic

term has the form Hkin =
∑

kσ ǫkσa
†
kσakσ , where akσ is

the annihilation operator for a boson with momentum
k and spin projection σ = −1, 0, 1. The dispersion is
ǫk0 = k2/2m−µ, ǫk±1 = k2/2m−µ+q±p, where p/q are
linear/quadratic in the magnetic field. There is no spin-
orbit coupling, allowing us to eliminate the linear Zeeman
effect (p) by working in a rotating frame. Henceforth,
we set p = 0. The quadratic Zeeman field produces a
magnetic anisotropy which can be experimentally tuned
[10]. Assuming short range interactions, symmetry forces
the interaction Hamiltonian to be [3, 4]:

Hint =
1

2

∫

dr ψ†
αψ

†
βψγψδ(c0δαδδβγ + c2Sαδ·Sβγ), (1)

where the greek indices denote the spin projection and
ψσ(r) =

1
V

∑

k e
ikrakσ is the the boson field operator.

The two coupling constants, c0 and c2 represent spin
independent and spin dependent interactions and S is
the vector {Sx, Sy, Sz} where Si are 3× 3, spin-1 matri-
ces. The interactions are expressed in terms of the micro-
scopic scattering lengths in the spin-0 (a0) and spin-2 (a2)
channels and atomic mass m as: c0 = 4π(a0 + 2a2)/3m
and c2 = 4π(a2 − a0)/3m.
The spin-1 gas can present several types of order, sum-

marized in Table I where we use the shorthand Ŝi =
Si
αβψ

†
αψβ and ŜiŜj = (Si·Sj)αβψ

†
αψβ . Single parti-

cle condensate order (C) is always accompanied by ei-
ther ferromagnetic (FC) or nematic order (NC). Mean
field examples of these condensed states are |FC〉 =



2

TABLE I: Orders in spin-1 gas.

Order Symbol Order Parameter

ferromagnetic F 〈Ŝi〉 6= 0

nematic N 〈ŜiŜj〉 6= δµν

single particle (BEC) C 〈ψµ〉 6= 0

pair P
∑

k〈a
†
µka

†
ν-k〉 6= 0

(ψ†
1)

N |0〉, and |NC〉 = (ψ†
0)

N |0〉, with the former seen
in 87Rb, and the latter in 23Na. The singlet state from

[11] with all particles in k = 0, |S〉 = ((a†0,k=0)
2 −

2a†1,k=0a
†
−1,k=0)

N/2|0〉, has off-diagonal single-particle

order [ie. lim|r−r′|→∞〈ψ†
0(r)ψ0(r

′)〉 6= 0] and in the
thermodynamic limit should be considered as an NC

state [12]. An example of a paired, P, state would
be a condensate of singlet pairs |P 〉 = κN/2|0〉, where

κ =
∑

k

(

a†0ka
†
0-k − 2a†1ka

†
−1−k

)

. Unlike |S〉, the state

|P 〉 has no off-diagonal single particle order.
Although the 2D phase diagram is well established

[13–15], contradictory results have appeared regarding
the nature of ferromagnetism in the 3D phase diagram.
Both Kun Yang [15], and Gu and Klemm [16] erroneously
found that arbitrarily weak attractive spin-dependent in-
teractions (c2 < 0) drive a ferromagnetic instability with
TF
c > TBEC . Kis-Szabó, Széfalusy and Szirmai [17] more

accurately modeled the role of “quantum statistics” in
the normal state of the spin-1 gas, and found a finite
threshold for this instability.
The central physics is that due to quantum statistics,

two bosons in the same spin state have an enhanced
probability of being close to one another. As a conse-
quence of these “exchange correlations”, repulsive spin-
independent interactions (c0 > 0) suppress spin order-
ing. It is only when |c2| & c0 that the intrinsic spin-
independent interactions can overcome these exchange
forces, and lead to ferromagnetism. It was precisely this
exchange physics that was excluded in [15, 16].

III. FORMALISM

A. Overview

We calculate the instabilities of the normal state us-
ing a Hartree-Fock Random Phase Approximation (RPA-
X) in which all direct (bubble) and exchange (ladder)
graphs are summed. This is a self-consistent approxi-
mation which accurately describes the dilute limit of a
gas of particles with short-range interactions (na3 ≪ 1,
where a is the scattering length in a given channel). Most
cold-atom experiments are in the dilute regime. In 3D,
we expect more sophisticated theories to yield only small
quantitative corrections to our results, while leaving un-
affected our qualitative conclusions [18, 19]. The RPA-X

can be derived from linear response of the Hartree Fock
approximation [8].
We calculate the density-density, longitudinal (χz) and

transverse spin (χ±) and pairing (Π) susceptibilities of
the homogeneous interacting spinor Bose gas. A diver-
gence of the zero frequency, long wavelength susceptibil-
ity, χ−1(k = 0, ω = 0) = 0 signals an instability in that
channel.

B. Definitions

The relevant response functions are

χγδ
αβp(t) =

1

i
〈
∑

k,q

a†δk(t)aγk+p(t)a
†
βq(0)aαq−p(0)〉 (2)

Πγδ
αβp =

1

i
〈
∑

k,q

a†δk(t)a
†
γp−k(t)aβq(0)aαp−q(0)〉 (3)

where t > 0, and the greek subscripts denote spin indices
and p is the momentum [20, 21]. The longitudinal and
transverse spin correlation functions are

χzp(t) = −i〈Ŝz
p(t)Ŝ

z
−p(0)〉 = −

∑

α,δ

(−1)αδχδδ
ααp(t) (4)

and

χ± = −i〈Ŝ+
p (t)Ŝ

−
−p(0)〉 = χ10

01+χ
0 1
0−1+χ

−1 0
0−1+χ

−10
10 (5)

where α, δ ∈ {1,−1}, Ŝi
p(t) =

∑

q a
†
p+q/2(t)S

iap−q/2(t),

and µ = {z,±}.

C. Expressions for responses

In the RPA-X, the susceptibility of the interacting gas
is

(χRPA)γηαβ = (χ0)γηαβδαηδβγ +
∑

µν

(χ0)γηηγV
γη
µν(χ

RPA)νµαβ(6)

(ΠRPA)γηαβ = (Π0)γηαβδαηδβγ +
∑

µν

(Π0)γηηγV
γη
µν(Π

RPA)µνγη(7)

The effective interaction potential V γη
µν of Eq. (1), which

includes both direct and exchange graphs, is explicitly
given in Appendix A.

D. Free response functions

The non-interacting Green’s functions are diagonal in
spin space: (χ0)γηαβp(t) = 0, and (Π0)γηαβp(t) = 0 unless
η = α and γ = β,

(χ0)βααβ(p, ω) =

∫

d3k

(2π)3
n(ǫk,α)− n(ǫk+p,β)

ω − (ǫk+pβ − ǫkα)
(8)

(Π0)αββα(p, ω) =

∫

d3k

(2π)3
n(ǫk,α) + n(ǫk+p,β)

ω − (ǫk+pβ + ǫkα)
(9)
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Here n(ǫkσ) = (eβǫkσ − 1)−1 is the Bose-Einstein distri-
bution at temperature T = 1/β. For a non-interacting
gas, the spin susceptibility χ0, pairing susceptibility Π0

and compressibility all diverge as µ → 0 from below,
marking single particle condensation. In the absence
of the quadratic Zeeman shift (q = 0), the Tc for this
transition is given by the familiar formula kBTBEC =
2π
m ( n

3ζ(3/2) )
2/3.

At k = 0 and ω = 0, these non-interacting response
functions may be written in terms of the polylogarithm
functions gν(z) =

∑

j z
j/jν :

χ 1−1
−1 1(0, 0) = −

m

2πΛT
g1/2(e

β(µ−q)) (10)

(χ0)1001(0, 0) =
m

4πΛT
(T/q)[g3/2(e

β(µ−q))− g3/2(eβµ)]

Πβα
αβ(0, 0) = −

m

πΛT
g1/2(e

βµeff)

where µeff = µ − q for α = ±1 and β = ∓1, and µeff =
µ for α = β = 0. The thermal wavelength is ΛT =
√

2π/mkBT .

IV. RPA RESPONSE FUNCTIONS

In Appendix B we show that the ferromagnetic re-
sponse functions are:

χRPA
z (k, 0) =

2(χ0) 1−1
−1 1(k, ω)

1− (c0 + 3c2)(χ0) 1−1
−1 1(k, 0)

(11)

χRPA
± (k, 0) =

2(χ0)1010(k, 0)

1− (c0 + 3c2)(χ0)1001(k, 0)
(12)

In Appendix C we calculate the response to pairing. To
detect pairing, it suffices to consider the singlet pairing
susceptibility, Θ = (Π00

00 − 2Π 1−1
−1 1)

RPA,

Θ =
Π+ − 2Π0 +Π0Π+(c0 − 2c2)

1− (c0 − c2)Π+ − c0Π0 + (c0 − c2)(c0 + c2)Π+Π0
.

with Π0 ≡ (Π0)0000 and Π+ ≡ (Π0) 1−1
−1 1. When q = 0

(Π0)0000 = (Π0) 1−1
−1 1 = (Π)0, and we get Θ−1 ∝ 1 − (c0 −

2c2)(Π)
0.

V. RESULTS

A. Mechanical stability

We address the mechanical stability of the gas by look-
ing for a divergence in the RPA density-density response
function. The density-density response function is ob-
tained by taking the Trace of χRPA in (Eq. 8), which is
found to be proportional to (1− 2(2c0 + c2)χ

0)−1, where
χ0 is the non-interacting response function. Writing c0
and c2 in terms of the scattering lengths in the spin-0
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FIG. 1: Instabilities of the Normal state within the
RPA-X: Thick solid/dashed lines are the ferromagnetic and
pairing transition temperatures measured from the ideal Bose
gas transition and scaled by n1/3a0 as a function of spin-
dependent interaction c2. Thin solid line is the Tc for Bose
condensation in an ideal gas (ferromagnetic or polar depend-
ing on the sign of c2). For c2 > 0.5c0, the normal state is
unstable to a rotationally symmetric paired singlet phase (P)
with a Tc > TBEC . For c2 < −c0/3, the normal state becomes
unstable to a ferromagnet (F). At some lower temperature,
we expect a transition from the F state to a FC and from
the paired state (P) to a nematic condensate (NC). However
these cannot be calculated by looking at the instabilities of
the normal state. Tick marks on the top axis show typical
scattering lengths for 87Rb and 23Na.

and spin-2 channels we find, 2c0 + c2 ∝ a0 + 5a2. There-
fore is a positive scattering length in the spin-2 channel
is crucial for the stability of the cloud.
This result has a simple interpretation: due to rota-

tional symmetry, the collisional properties of the spin-1
gas only depend on the total spin of the colliding atoms
and the z- component. As the spin-2 channel has 5 avail-
able hyperfine levels compared to 1 in the spin-0 channel,
the spin-2 scattering length plays a much more dominant
role in the stability of the cloud.

B. Stability against ferromagnetism and pairing

Next we consider the instabilities towards ferromag-
netism and pairing. Within Hartree-Fock, c0 stabilizes
the normal state against ferromagnetism. The interac-
tion term 〈Hint〉 = c0(n

2 +
∑

µν〈ψ†
µψν〉〈ψ†

νψµ〉) is small-

est in the absence of any spin order: 〈ψ†
µψν〉 = δµνn/3.

The opposite occurs in fermions where this exchange
term is negative, producing an attraction between like
spins, giving rise to the Stoner instability [22].
From Eq. 11, and the fact that χ0(0, 0) < 0 we see that

the spin susceptibility only diverges when c2 < 0 with
|c2| > c0/3. Similarly, at q = 0, the pairing susceptibility
only diverges when c2 > 0 with c2 > c0/2. Writing c0 and
c2 in terms of the spin-0 and spin-2 scattering lengths,
we see that the pairing instability occurs whenever a0
is negative. This is reminiscent of the Cooper instabil-
ity in fermions, where arbitrarily weak attraction leads
to a superconducting transition. Furthermore as shown
above, as long as a2 is positive, the gas is expected to
be mechanically stable. This makes the spin-1 gas one of
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the simplest examples of a system where a stable bosonic
analog of BCS pairing is supported.
For weak interactions (|c2n| ≪ kBT ), these instabili-

ties occur near µ = 0. Expanding the susceptibilities for
small µ at q = 0 gives to leading order:

tmag =
Tmag
c − TBEC

TBEC
= 4.84

(

1

3
− c2
c0

)

n1/3a0 (13)

tpair =
T pair
c − TBEC

TBEC
= 6.44

(

c2
c0
− 1

2

)

n1/3a0.

The instability lines at q = 0 are plotted in Fig. 1.

C. Role of finite magnetic field

We now explore the role of the quadratic Zeeman ef-
fect: q < 0 favors magnetism in the ±ẑ direction (F‖
– Ising order – signalled by diverging χz), and pairs in

the mF = ±1 states (NP⊥ : |〈ψ†
1ψ

†
−1〉| > |〈ψ†

0ψ
†
0〉|);

while q > 0 favors magnetism in the x − y plane
(F⊥ – x-y order – diverging χ±), and mF = 0 pairs

(NP‖ : |〈ψ†
0ψ

†
0〉| > |〈ψ†

1ψ
†
−1〉|). Finite q also shifts the

BEC transition temperature: the density is given by
nΛ3

T = g3/2(e
βµ) + 2g3/2(e

β(µ−q)), with condensation at
µ = q for q < 0 and at µ = 0 for q > 0. For small q one

finds T q 6=0
BEC = T q=0

BEC + ξ
√

T q=0
BECq with ξ = 0.3 for q < 0

and ξ = 0.6 for q > 0.
Figure 2(a) illustrates the instabilities of the normal

state for c2 < 0, where the only relevant instabilities
are ferromagnetism and single particle condensation. For
q < 0 and |c2| > c0/3 an Ising ferromagnetic instabil-
ity always precedes condensation. For q > 0 there is a
threshold q below which x − y ferromagnetism precedes
condensation. The dependance of this threshold on c2
is shown in Figure 2(b). For c2 near −c0/3, one finds:

qc = T q=0
BEC(10.6(a0n)

1/3α)2, where α = 1/3− |a2|/a0.
Figure 3(a) illustrates the instability lines for c2 > 0,

where the only relevant instabilities are pairing and single
particle condensation. Finite q enhances single particle
condensation, and for a given q, there is a threshold value
of c2 required to find a pairing instability as shown in
Fig.3(c).

D. Instability to nematicity

In the spin-1 gas, there is no normal “nematic” phase.
The reason for this is that the interaction Hamiltonian
does not contain a term ∝ 〈ŜµŜν〉2 following the conven-
tions of Table. I. Thus the appearance of nematic order
must be associated with simultaneous single-particle or
pair order.
The quadratic Zeeman effect couples to spin fluctua-

tions (∝ 〈Ŝ2
z 〉), and explicitly breaks the symmetry in

spin space. For q > 0, the mF = 0 state is lower in en-
ergy and has a higher density than the mF = ±1 states

HbL
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FIG. 2: Instability with c2 < 0: (a): Instabilities of the
unordered normal state with c2 = −c0 as a function of q.
Solid curves give the Tc for a non-condensed ferromagnetic
gas, normalized to TBEC |q=0 (defined in Fig.1 caption). At
some lower temperature, one expects a transition to a ferro-
magnetic condensate (FC). For q < 0, this Tc always exceeds
the ideal Bose gas transition temperature. For q > 0, the ideal
gas temperature meets the Tc for ferromagnetism at some fi-
nite q (marked by ×). Beyond this point, the normal state is
unstable to forming a nematic condensate. (b): Location of
× as a function of interaction strength.
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FIG. 3: Instabilities with c2 > 0: (a): Instabilities of the
unordered state with c2 = 0.75c0. At large negative q, the
normal state is unstable towards a single-particle condensate
(NC⊥) with a spinor order parameter ζ = {eiφ, 0, 1}), with
arbitrary φ. For −|qc1|(×) < q < |qc2|(o) the instability is
towards pairing. At q = 0 the paired phase is a spin singlet
with no spin fluctuations. For q 6= 0, the paired phase has spin
fluctuations in the x− y plane. For large q > 0, the normal
state is unstable towards a polar condensate with spinor ζ =
{0, 1, 0}. Dotted lines are the ideal gas condensation Tc as a
function of q. (b): Details of dashed rectangle in (a), showing
instabilities towards pairing. (c): Critical values of q at which
pair instability gives way to single particle instability (i.e.
locations of × and o) for different interaction strengths.

and vice-versa for q < 0. Similarly for q > 0 the magni-

tude of the pair order parameter: |〈ψ†
1ψ

†
−1〉| < |〈ψ†

0ψ
†
0〉|,

while the reverse is true for q < 0.

VI. FINITE SIZE EFFECTS

We can estimate the role of finite size effects by look-
ing at the instabilities at finite k = 2π/L (rather than
at k = 0), where L is the size of the cloud. These finite
size effects are crucial in the scalar gas with attractive
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interactions, where there is no Bose-Einstein condensa-
tion in the thermodynamic limit [8]. Here we find only
small corrections to location of the threshold value of
|c2|/c0. To leading order in kΛT ≪ 1, the threshold for
ferromagnetism is a2/a0 = − 1

3 − kΛ2
T /(12π

2a0), while

the threshold for pairing is a2/a0 = 1
2 + kΛ2

T /(8π
2a0).

These shifts are no greater than 10% for a system of size
L ∼ 100µm, typical in cold-atom experiments.

VII. OBSERVABILITY

A few comments are in order about the experimental
observability of this phase diagram. Thus far all exper-
iments on spin-1 gases have used 87Rb and 23Na which
have extremely weak spin dependent interactions. The
scattering lengths could be enhanced by using microwave
induced Feshbach resonances [23]. Alternatively, super-
exchange a lattice can generate strong nearest neighbor
anti-ferromagnetic interactions (effectively large c2) [24].
Moreover 7Li and 39K are currently believed to have large
negative c2, and thus are promising candidates for ob-
serving a ferromagnetic normal state [25, 26].
A number of probes can be used to distinguish the

nematic phases, detect pairing and identify ferromag-
netism. These include optical birefringence [27], momen-
tum distributions via time-of-flight, noise correlations
[28], and the nature of vortices [5].

VIII. CONCLUSIONS

Competing orders lie at the heart of modern con-
densed matter physics. For a Bose gas with inter-
nal degrees of freedom, the competition between spin
and charge physics produces a rich finite temperature
phase diagram with superfluid, ferromagnetic, nematic
and paired phases. For weak spin dependent interac-
tions, bosonic exchange stabilizes a fully disordered nor-
mal state against any spin ordering. For strong attrac-
tive spin dependent interactions, spin ordered phases are
present in the absence of superfluidity. Furthermore for
strong repulsive spin-dependent interactions, we find a
spin-singlet paired phase, analogous to a BCS supercon-
ductor. We expect to see similar physics in higher spin
bosonic gases where a normal nematic, or quintet (spin-
2) pairing may occur in addition to the phases described
here.
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Appendix A: Analytic structure of non-interacting
response functions

In this Appendix, we develop the analytic structure of

χ0βα
αβ defined as:

(χ0)βααβ(p, ω) =

∫

d3k

(2π)3
n(ǫk,α)− n(ǫk+p,β)

ω − (ǫk+pβ − ǫkα)
(A-1)

where the greek indices are used to represent the hy-
perfine spin levels mF = 0,±1. Diagramatically this
can be represented by a bubble graph where a parti-
cle (with spin-α) and hole (with spin-β) pair is created.
This tensor has the property that: (χ0)1αα1 = (χ0)−1α

α−1 and

(χ0)α11α = (χ0)α−1
−1α for any α, because the quadratic Zee-

man shift does not distinguish between the mF = ±1
states. Furthermore (χ0)0αα0 = (χ0)α00α for any α.
For q = 0, all the spin states are identical, and we can

set (χ0)βααβ(p, ω) = χ(p, ω) =
∫

d3
k

(2π)3
n(ǫk)−n(ǫk+p)
ω−(ǫk+p−ǫk)

, whose

structure has been thoroughly explored in [8]. At long
wave-lengths pΛT ≪ 1:

χ(p, 0) = − m

2πλT

(

g1/2(e
βµ)−

√

|π/(βµ)|+ (A-2)

iπ

pΛT
log

(√
βµ− pΛT

4
√
π√

βµ+ pΛT

4
√
π

))

where gν(z) is the polylogarithm function. For q 6=
0, first note that χβα

αβ(0, 0) = χ(0, 0)|µ→µ−q for

{α, β} = {1,−1}. The transverse spin response given
by (χ0)1001(p, ω) cannot be simply expressed in terms of
χ. Nonetheless, one can develop an expression analogous
to Eq.A-2. First we integrate out the angular variables
to find:

(χ0)1001p(ω) =
−m
πλ2T p

∫ ∞

0

dk̃n(ǫk̃1) log

(

z− − k̃
z− + k̃

)

(A-3)

+ n(ǫk̃0) log

(

z+ − k̃
z+ + k̃

)

where z± = ω+q

2
√

ǫpkBT
± pΛT

4
√
π
and k̃ = kΛT /4

√
π. We use

k̃ as an expansion parameter.
Rewriting the logarithm as an integral we get:

(χ0)1001(p, ω) = −
m

2πλ2T p

(∫ z−

∞
dxI1(k)−

∫ z+

∞
dxI0(k)

)

(A-4)
where I1/0(k) =

∫∞
−∞ dk 1

k−x
2k

e
k2+βλ1/0−1

, where λ1 =

−β(µ− q) and λ0 = −βµ. The analytic structure of the
integral I has been extensively developed by Szépfalusy
and Kondor [29], who show that the integral can be writ-
ten as an asymptotic series for long wave-lengths. Retain-
ing only the lowest order terms we find that the static
response is:

(χ0)1001(0, 0) =
m

4πλT

kBT

q
(g3/2(e

β(µ−q))− g3/2(eβµ))
(A-5)
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which is our desired result.
The non-interacting pair response is defined as:

(Π0)αββα(p, ω) =

∫

d3k

(2π)3
n(ǫk,α) + n(ǫk+p,β)

ω − (ǫk+pβ + ǫkα)
(A-6)

The pair susceptibility for the scalar gas has been con-
sidered in [8]. The result to linear order in kΛT is :

Π0(p, 0) = − m

πλT

(

g1/2(e
βµ)−

√

|π/(βµ)| (A-7)

+
2iπ

pΛT
log

(

(1 + i) pΛT

4
√
π
−
√
βµ

(1− i) pΛT

4
√
π
−
√
βµ

)

+
pΛT

8

)

It is easy to show that (Π0) 1−1
−1 1(0, 0) =

Π0(0, 0)|µ→µ−q and (Π0)0000 = Π0.

Appendix B: Spin response in the RPA

The spin response in the RPA is given by solving for
the polarization tensor defined in the main text. The
interaction matrix V γη

µν encompasses all direct and ex-
change diagrams and represents an process wherein in
two particles with spin γ and η are destroyed to cre-
ate two particles with spin µ and ν. Conservation of
spin forces the constraint: γ + η = µ + ν. As there
are 9 difference choices for the spins of the pairs of par-
ticles |ψγψη〉, V is a 9 × 9 matrix in this basis. Ex-
pressed below, from left to right and top to bottom |γη〉 =
|11〉, |10〉, |1−1〉, |01〉, |00〉, |0−1〉, |−11〉, |−10〉, |−1−1〉.

V =

































2(c0 + c2) 0 0 0 c0 + c2 0 0 0 c0 − c2
0 0 0 c0 + c2 0 0 0 2c2 0

0 0 0 0 0 0 c0 − c2 0 0

0 c0 + c2 0 0 0 2c2 0 0 0

c0 + c2 0 0 0 2c0 0 0 0 c0 + c2
0 0 0 2c2 0 0 0 c0 + c2 0

0 0 c0 − c2 0 0 0 0 0 0

0 2c2 0 0 0 c0 + c2 0 0 0

c0 − c2 0 0 0 c0 + c2 0 0 0 2(c0 + c2)

































(B-1)

From the full polarization tensor, one extracts the lon-
gituginal and transverse spin susceptibility on which our
calculations are based.
We now turn to the details of the pair response calcu-

lation.

Appendix C: Pairing response in the RPA

The RPA pair response is calculated in a similar man-
ner to the magnetic response. However since pairing only
occurs in the Sz = 0 channel, it suffices to consider the
following subsystem

←→
Π =







Π 1−1
−1 1 Π1−1

0 0 Π1−1
1−1

Π0 0
1−1 Π00

00 Π 00
−11

Π−11
−11 Π−11

00 Π−1 1
1−1







RPA

(C-1)

which is related to the non-interacting response

(
←→
Π )0 =







(Π0) 1−1
−1 1 0 0

0 (Π0)0000 0

0 0 (Π0)−1 1
1−1







and the 3× 3 interaction matrix

V =







c0 − c2 c2 0

c2 c0 c2
0 c2 c0 − c2







by the equation

(ΠRPA)γηαβ = (Π0)γηαβδαηδβγ +
∑

µν

(Π0)γηηγV
γη
µν(Π

RPA)µνγη

(C-2)

Two limiting cases are worth considering. The first
is at µ = q for q < 0 when the non-interacting BEC
transition occurs for the ±1 atoms. At these values the
non-interacting response function Π 1−1

−1 1 diverges, and:

Θ−1 ∝ −c0 + c2 + (c0 − 2c2)(c0 + c2)Π
00
00 (C-3)

The second is at µ = 0 which corresponds to the BEC
transition for the 0 atoms. At this point non-interacting
response function Π00

00 diverges and:

Θ−1 ∝ −c0 + (c0 − 2c2)(c0 + c2)Π
1−1

−1 1 (C-4)

Setting Θ−1 = 0 in Eqs. (C-3, C-4) to zero yields the
threshold value of c2 at which paired states result for any
q.
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