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We study finite temperature properties of strongly correlated fermions in two-dimensional optical
lattices by means of numerical linked cluster expansions, a computational technique that allows one
to obtain exact results in the thermodynamic limit. We focus our analysis on the strongly interacting
regime, where the on-site repulsion is of the order or greater than the bandwidth. We compute
the equation of state, double occupancy, entropy, uniform susceptibility, and spin correlations for
temperatures that are similar or below the ones achieved in current optical lattice experiments. We
provide a quantitative analysis of adiabatic cooling of trapped fermions in two dimensions, both by
means of flattening the trapping potential and by increasing the interaction strength.

I. INTRODUCTION

Recent optical lattice experiments have opened a new
venue for exploring the effects of strong correlations in
quantum lattice models. For example, the superfluid–
Mott-insulator transition for bosons has been observed
in three- [1], two- [2], and one- [3] dimensional geome-
tries. Currently, there is a race to access temperatures
low enough where the transition to the antiferromagnet-
ically ordered Neél state in three dimensions (3D), or
possibly more exotic states in two dimensions (2D), can
be observed for fermions [4, 5]. So far, the interaction
strength and the temperature in lattice fermion experi-
ments remains relatively high in comparison to the hop-
ping amplitude, t. This is in part because t, which is set
by optical lattice parameters, is in general small in the
regimes where one-band models are applicable.

On the theoretical side, there is an ever increasing de-
mand for precise numerical results for the relevant pa-
rameters of the Hubbard model and for large enough
system sizes, which could be used to interpret current
experiments and also provide suggestions for future ex-
periments [6–11]. For this model, especially for strong
interactions, present computations become particularly
challenging as the temperature is lowered below the hop-
ping amplitude.

Here, we study various thermodynamic quantities such
as the equation of state, entropy, double occupancy,
and spin correlations in the thermodynamic limit for
interactions up to three times the bandwidth, utilizing
numerical linked cluster expansions [13, 14]. We pro-
vide a detailed understanding of the evolution of various
quantities with adiabatically increasing the interaction
strength, of great interest to current optical lattice exper-
iments. Using the local density approximation (LDA), we
analyze the thermodynamics of fermions in a harmonic
trap and calculate their temperature as a function of the
interaction strength and total entropy, as well as present
a quantitative analysis of various cooling schemes for the
experiments [15–17].

II. MODEL

We consider the 2D Hubbard Hamiltonian:

Ĥ = −t
∑

〈i,j〉

(ĉ†i ĉj +H.c.) + U
∑

i

n̂i↑n̂i↓ +
∑

i

Vin̂i, (1)

where ĉ†iσ (ĉiσ) creates (annihilates) a fermion with spin

σ on site i, and n̂iσ = ĉ†iσ ĉiσ is the number operator. 〈..〉
denotes nearest neighbors (NN), U is the strength of the
onsite repulsive interaction, and Vi is a space dependent
local chemical potential. t = 1 (~ = 1 and kB = 1) sets
the energy scale throughout this paper.

III. COMPUTATIONAL APPROACH

In linked-cluster expansions [12], we express an exten-
sive property of the model per lattice site in the thermo-
dynamic limit (P ) in terms of contributions from all the
clusters, up to a certain size, that can be embedded in
the infinite lattice:

P =
∑

c

L(c)wp(c), (2)

where c represents the clusters. This contribution is pro-
portional to the weight of each cluster for that property
[wp(c)], and to its multiplicity [L(c)]. The latter is de-
fined as the number of ways that particular cluster can
be embedded in the infinite lattice, per site. The weight
on the other hand, is calculated recursively as the prop-
erty for each cluster [P(c)], minus the weights of all its
subclusters,

wp(c) = P(c)−
∑

s⊂c

wp(s). (3)

Here, we use the numerical linked-cluster expansion
(NLCE), where P(c) is computed by means of full ex-
act diagonalization [13]. Because of the exact treatment
of individual clusters in NLCE, the series converges at
significantly lower temperatures in comparison to high-
temperature expansions in which perturbation theory is
used.
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NLCEs are complementary to quantum Monte Carlo
(QMC) approaches, such as the determinantal QMC
(DQMC) [18], or dynamical mean-field theory [19] and
its cluster extensions such as the dynamical cluster ap-
proximation (DCA) [20, 21]. They can also help bench-
marking future experiments as well as new computational
techniques. This is because NLCEs do not suffer from
statistical or systematic errors, such as finite size effects,
and, as opposed to DQMC and DCA, they are not re-
stricted to small or intermediate interaction strengths.
In Ref. [22], we have made our raw NLCE data for a
wide range of interactions available for comparison.
The validity of NLCEs, however, is limited to a region

in temperature in which the series converge (the conver-
gence region). The lowest temperatures at which NLCEs
converge extend beyond those achievable with high tem-
perature expansions [13]. We have found that, for the
Hubbard model, NLCEs converge down to lower tem-
peratures as the strength of the interaction is increased.
At half filling, and for interactions larger than the band-
width, NLCEs can access the region with strong AF cor-
relations, identified by the suppression of the uniform
susceptibility. Although, the method does not have any
systematic restriction away from half filling, in the latter
region, the series fail to converge at temperatures as low
as those accessible to the half-filled case. This prevents us
to access low-temperature phases, such as d-wave super-
conductivity, that arguably exist in this model at finite
doping.
We begin our analysis with the homogeneous system

(Vi = 0) in the grand canonical ensemble. For each U ,
we compute all properties for a very dense grid of chem-
ical potential (µ) and temperature, so that we can also
follow properties at constant density (n) [14]. The NLCE
calculations are carried out on the square lattice up to
the ninth order in the site expansion (nine sites). We use
Wynn and Euler algorithms for summing the terms in the
series to extend the region of convergence [13]. Since only
NN hopping is considered, all properties of the particle-
doped system can be expressed in terms of those from
the hole-doped system. Hence, away from half-filling, we
only show results for the hole-doped system.

IV. RESULTS

A. Equation of State

The equation of state for the Hubbard model provides
important information about correlation effects as the
strength of the on-site interaction is increased, and can
be studied in optical lattice experiments. In Figs. 1(a)-
(c), we depict the equation of state at three different
temperatures, T = 0.82, 0.55, and 0.25 for the weak,
intermediate, and strong coupling regimes (U = 4, 8 and
12, respectively). For the last two values of U [Figs. 1(b)
and 1(c)], one can see the emergence of an incompressible
region around µ = U/2, a clear signature of the Mott gap
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FIG. 1. (Color online) Top panels: Equation of state for (a)
U = 4, (b) U = 8, and (c) U = 12 and at three different
temperatures. Except for U = 4 at T = 0.25, NLCE results
converge for all the values of chemical potential presented
here. Only the last order of the series is shown after using
Wynn sums with three cycles of improvement. Bottom pan-
els: Normalized double occupancy vs T at four different hole
doping for (d) U = 8 and (e) U = 16. We use Euler sums
for the last 6 terms at half filling and Wynn sums for n 6= 1.
Thin (black) lines in (d) and (e) are the results for the one
to last order. The inset in (e) magnifies the low-temperature
region for U = 16. The unit of energy is set to the hopping
amplitude, t.

opening in the density of states at low temperatures.

B. Double Occupancy

In Figs. 1(d) and 1(e), we show the double occu-
pancy, D = 〈n̂↑n̂↓〉, normalized by its uncorrelated high-
temperature value (n2/4) for U = 8 and 16, respectively.
The double occupancy exhibits a clear low-T rise by de-
creasing temperature. This feature has attracted a lot of
attention recently, especially after the real-space DMFT
study of the 3D version of the model in a harmonic
trap [9]. Gorelik et al. argued that the onset of the AF
ordering in the strong-coupling regime is signaled by an
enhanced double occupancy, which can be directly mea-
sured in optical lattice experiments. However, according
to Fig. 1(d) and 1(e), the low-temperature rise occurs not
only at half filling, but also away from it. Moreover, the
rise starts at even higher temperatures for larger dopings.
This implies that the enhancement of D in the trap by
lowering the temperature is significant in the Mott in-
sulating core as well as in other areas of the trap where
density is less than one. Therefore, in real experiments,
such an enhancement can be observed in systems that
have a very small or even no Mott insulating region at
the center of the trap. Hence, the increase in D alone
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FIG. 2. (Color online) Entropy (a) vs T at half-filling, and
(b) vs n at T = 0.82 for different U . Thick (thin) lines are
results for the last (one to last) order of the sums as explained
in Fig. 1. In (a), we have also included the entropy for the
AFHM with the exchange interaction J = 0.25.

does not guarantee AF order. One has to also make sure
that density is one in most of the trap.
For large values of U [see, e.g., U = 16 in Fig. 1(e)],

the normalized D is almost independent of doping below
T ∼ 1 and down to the lowest accessible temperatures for
n & 0.85 (see inset), implying that D ∝ n2 in this region.
One can understand the latter from the fact that local
moments are likely ordered, and the double occupancy
arises from virtual hoppings to NN sites, so, a relatively
small number of extra holes only modifies the probability
of those hoppings (accounted for by n2), not the actual
process.

C. Entropy

Generally, when using QMC-based methods, entropy
calculations involve numerical derivatives and/or integra-
tion by parts [23, 24], which can introduce systematic er-
rors. Within NLCEs, the entropy is computed directly
from its definition in the grand canonical ensemble:

S = ln(Z) +
〈Ĥ〉 − µ〈n̂〉

T
, (4)

where Z is the partition function.
We first study the entropy at half filling. Results are

shown in Fig. 2(a) as a function of the temperature for
U = 4, 8 and 16. There are two distinct regions of fast de-
crease in the entropy in the strong-coupling regime, e.g.,
U = 16. Those regions are separated by a crossing point
of curves for different U around T = 0.6, correspond-
ing roughly to S = ln(2). The emergence of these two
regions results from the fact that as U increases, charge
degrees of freedom are suppressed at higher temperatures
due to the higher price of double occupancy, and, at the
same time, the characteristic energy scale of the spin de-
grees of freedom, J = 4t2/U , becomes smaller, pushing
the low-T drop to lower temperatures. We find that in
the latter region, the entropy curves for large U (& 14)
follow very closely the entropy of the antiferromagnetic
Heisenberg model (AFHM). This is shown for U = 16 in
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FIG. 3. (Color online) Interaction dependence of different
quantities at half filling. Left panels: (a) Entropy and (c) NN
spin correlations at fixed temperatures. Right panels: (b)
Temperature and the (d) NN spin correlations at constant
entropies. In (b), T ∗ represents a crossover temperature to
the region where AF correlations grow exponentially by de-
creasing temperature (shaded area).

Fig. 2(a) where we also plot the entropy of the AFHM
with J = 0.25.
In Fig. 2(b), we show the entropy away from half filling

for a range of interactions at a fixed T = 0.82. In the
weak-coupling regime (e.g., U = 4), the entropy increases
monotonically with density and is maximal at half filling.
Since correlations play a small role, the system behaves
similarly to a non-interacting system, i.e., the closer to
the point where there is an equal number of electrons and
holes, the larger the entropy. This trend changes upon
increasing U for which the moment ordering suppresses
the entropy significantly close to half filling. As a result,
there is a maximum in the entropy in the vicinity of the
optimal doping for all interactions in the strong-coupling
regime [25]. Below, we discuss how these features are
reflected in the properties of trapped systems.
We further take advantage of the fact that, within NL-
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FIG. 4. (Color online) (a) Uniform spin susceptibility and (b)
NN spin correlations at half filling vs temperature for different
interactions. χ peaks at T ∗ below which AF correlations grow
exponentially with decreasing temperature. Szz also shows a
sharp increase around T ∗.
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FIG. 5. (Color online) (a) Density, (b) entropy, (c) NN spin
correlations, and (d) double occupancy profiles of fermions
in a harmonic trap with ρ̃ = 22.9, governed by the Hubbard
model with U = 16 at T = 0.76. The average entropy per
particle is s = 0.56.

CEs, arbitrary values of U can be studied at no additional
computational cost, and determine the dependence of the
quantities of interest on U . In Fig. 3(a), we show S at
half filling as a function of U at fixed temperatures. The
temperature regions identified for the entropy in Fig. 2(a)
are more clearly seen in Fig. 3(a), i.e., the entropy stays
more or less the same for T ∼ 0.6 (the crossing point)
as U increases whereas it generally decreases (increases)
with U for T > 0.6 (T < 0.6).

The possibility of adiabatic cooling with increasing U
in optical lattices has been studied by a number of groups
recently [7, 23, 26]. Considering interactions that are of-
ten no larger than 3/2 of the bandwidth, they argue that
this process is rather weak in 2D. Here, we revisit the
problem by including results for values of U up to three
times the bandwidth [see Fig. 3(b)]. We find that start-
ing from relatively large values of entropy below ln(2)
(e.g., S = 0.68), accessible to current 2D experiments,
and continuing to increase U , the half-filled system can
be cooled down to very low temperatures. For smaller en-
tropy, e.g., S = 0.4, one can even access the region with
exponentially large AF correlations below the crossover
temperature, T ∗, as shown in Fig. 3(b). We take T ∗

as the temperature where the uniform spin susceptibil-
ity (χ) as a function of temperature peaks [7]. We find
that T ∗ also coincides with the temperature at which
the NN spin correlations, Szz = |〈

∑
〈ij〉 S

z
i S

z
j 〉|, show a

rapid growth by decreasing temperature. The uniform
spin susceptibility and the NN spin correlations are de-
picted in Fig. 4. For U ≫ 1, T ∗ is expected to scale with
the AF exchange constant (J) in the effective Heisenberg
model i.e., ∝ 1/U . This behavior is observed in Fig. 3
(b), not only for T ∗, but also for the large-U tails of the
isentropic curves when S < ln(2), as J is the only energy

FIG. 6. (Color online) Same as Fig. 5 but for ρ̃ = 10.8. The
average entropy per particle is s = 0.85 in this case.

scale in that region. For U < 12 in the weak-coupling
regime, T ∗ is not accessible to our NLCE. Therefore, we
have taken T ∗ from the DQMC results of Ref. 7 for that
region. It is interesting to see that this crossover temper-
ature peaks when the value of the interaction is around
the bandwidth.

D. Nearest-neighbor Spin Correlations

What is perhaps more important from the experimen-
tal point of view is how AF correlations change during
the process of adiabatically increasing U . As mentioned
in the introduction, one of the current main goals in
cold fermion experiments is achieving AF in the Mott
insulating state. However, the challenge in this case not
only resides in realizing such a state but also in detecting
it. Very recently, experimental breakthroughs have been
reported which allow the detection of NN spin correla-
tions [27, 28].
NN spin correlations, Szz, can also be computed ex-

actly using NLCEs. As expected, we find that Szz is
largest at half filling for all interactions. Therefore, we
focus on the half-filled system and plot this quantity per
site vs U at constant temperatures in Fig. 3(c), and at
constant entropies in Fig. 3(d). The dependence of Szz

on U at constant T is non trivial. As the temperature is
lowered to T ∼ 0.3, a peak develops in the spin correla-
tions around U = 8, which is indicative of the largest ef-
fective exchange interaction between NN spins. The peak
is a result of the interplay between weak moment forma-
tion in the weak-coupling regime (U < 8) and the 1/U
decrease of the effective J in the strong-coupling regime.
We find that at lower temperatures (T = 0.21), the max-
imum of Szz occurs at U ∼ 9, which is not expected to
change significantly by further decreasing temperature.
At constant entropy, on the other hand, this picture is
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FIG. 7. (Color online) Temperature vs characteristic density
at constant entropies per particle for (a) U = 8 and (b) U =
16.

strongly modified. Figure 3(d) shows that Szz saturates
to a finite entropy-dependent value by increasing U along
the isentropic paths of Fig. 3(b), provided that S < ln(2).
Notice that, even though adiabatic cooling may not be
efficient to arrive at regions with large AF correlations
in 2D [23], the value of the NN spin correlations will be
maximal in the large-U(≫ 12) region if S < 0.6. This is
convenient for experiments in optical lattices for which
U is typically large compared to the bandwidth.

E. Trapped Systems

To make direct contact with experiments in optical lat-
tices, we study the manifestation of our previous results
in systems confined by a spatially varying harmonic po-
tential, Vi = V r2i . Here, ri denotes the radial distance of
each site to the center of the trap, and for any given value
of U , all properties of the system are determined by the
characteristic density ρ̃ = N(V/2dt)d/2 [29], where d is
the dimensionality and N is the number of particles. The
resulting inhomogeneous Hubbard model is then studied
using the local density approximation (LDA) along with
our results for the infinite system. A recent QMC study
of the inhomogeneous Hubbard model [11] has shown
that the LDA is a good approximation for local observ-
ables at the temperatures accessible here. We should
stress that NLCEs are ideal for this kind of studies be-
cause, for each value of U , one can compute all properties
for a very dense grid of temperatures and chemical po-
tentials at almost no additional computational cost. The
same is of course not true for QMC-based calculations
where each temperature and chemical potential requires
a separate computation.

In Fig. 5(a), we plot the resulting density profile for
U = 16 at T = 0.76. We have chosen ρ̃ = 22.9 such that
there are band- (n = 2) and Mott-insulating (n = 1)
domains in the trap. Very useful information for the ex-
periments is provided by the spacial distribution of the
density, entropy, NN spin correlations, and double occu-
pancy as shown in Figs. 5(b-d). The entropy is minimal
(zero) in the band insulator, peaks at n ∼ 1.18 and 0.82,
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FIG. 8. (Color online) Temperature vs U at constant en-
tropies per particle for (a) ρ̃ = 10.8 and (b) ρ̃ = 22.9. The
shaded area, the same as in Fig. 3(b), is the region of exponen-
tially large AF correlations below T ∗ in the Mott insulating
core of the trap.

consistent with Fig. 2(b), and has a local minimum in
the Mott ring. In the latter region, spin correlations are
maximal, and as expected for this large value of U , the
double occupancy is large only in the region where n > 1.
In Fig. 6, we show the same quantities as in Fig. 5, for

a reduced ρ̃ of 10.8 at the same temperature and interac-
tion strength. As a result of this isothermic change, the
entropy per particle increases from 0.56 to 0.85. Nev-
ertheless, the Mott-insulating region with relatively uni-
form entropy profile is clearly seen over most of the trap.
It has become apparent in experiments with fermions

in optical lattices that cooling approaches beyond the
standard evaporative cooling techniques are required if
one is to reach low enough temperatures at which exotic
physics emerges. Three recent proposals have shown how
to generate low entropy states where a large fraction of
the system is in a band insulating domain (i.e., with large
values of ρ̃) [16, 17, 30]. The idea is then that one can
adiabatically reduce the trap strength (the characteris-
tic density ρ̃) so that the effective temperature of the
fermions decreases. This way, antiferromagnetism and
other low-temperature phenomena can be explored.
In Fig. 7, we show quantitatively how this idea works

for trapped 2D systems. We plot the temperature as a
function of ρ̃ for various values of the total entropy per
particle. Recent studies have shown that the entropy per
particle (s) for a particular U can be estimated by fit-
ting the double-occupancy measurements at different ρ̃
to data from numerical simulations [8]. In Figs. 7(a) and
7(b) one can see that, for the two values of U shown, the
temperature decreases rapidly with decreasing ρ̃, mak-
ing evident that this approach works very efficiently for
2D trapped systems. The inflection point, seen e.g., for
s = 0.9 in Fig. 7(b), is the signature of a large Mott re-
gion forming in the trap (as seen in Fig. 6). This occurs
provided the entropy is low enough and for a range of
characteristic densities that depends on U . AF ordering
in the Mott core emerges at T ∗, which for small entropies,
can be reached before the Mott insulator is destroyed by
further flattening of the trap.
It is also interesting to study what happens to the tem-



6

perature of a trapped system as one increases the interac-
tion strength at constant entropy. [Results for homoge-
neous systems at half filling were presented in Fig. 3(b).]
In Fig. 8, we show isentropic curves in the T − U plane
for trapped systems at various entropies and for the two
characteristic densities, ρ̃ = 10.8 and 22.9, used in Figs 5
and 6. As expected from the results in Fig. 7, the shape
and location of the isentropic curves depend strongly on
the value of ρ̃. In Fig. 8, we also show the same shaded
area as in Fig. 3(b) below T ∗, which here, represents
the region where the Mott insulating core of the trap
develops large AF correlations. Our calculations show
that cooling can take place in trapped systems as the
interaction increases. The entropies for which cooling is
observed, and the values of U for which cooling occurs,
depends on the characteristic density in the trap. Hence,
as reported in Ref. [31] for three dimensional systems,
adiabatically increasing the interaction strength can al-
low experimentalists to reach the temperatures needed to
observe the onset of (quasi-)long-range antiferromagnetic
correlations in a trapped system. Unfortunately, unlike
for the homogeneous system at half filling, our NLCEs do
not provide access to the temperatures relevant to that
region for the 2D trapped system.

V. SUMMARY

In summary, utilizing NLCEs, which within the con-
vergence temperature region are free of statistical and/or

systematic errors and provide exact results in the thermo-
dynamic limit, we have calculated thermodynamic prop-
erties, such as the equation of state, double occupancy,
entropy, uniform susceptibility, and NN spin correlations,
of the 2D Hubbard model for a wide range of interaction
strengths and temperatures. Precise data for the entropy
on a dense temperature grid allowed us to study temper-
ature and NN spin correlations, relevant to optical lattice
experiments, as a function of the entropy. We find that
for any S < ln(2), by adiabatically increasing U to very
large values, the temperature decreases as 1/U and the
spin correlations saturate to an entropy-dependent value
beyond U ∼ 12. Using the LDA, we have discussed the
implications of our results for lattice fermions in the pres-
ence of a confining harmonic potential. In particular, we
have shown how cooling can be achieved by reducing the
confinement strength in a system that starts with a wide
band insulating domain in the center of the trap, or by
adiabatically increasing the interaction strength.
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