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We present theoretical analysis and numerical studies of the quantized vortices in a rotating
Bose-Einstein condensate with spatiotemporally modulated interaction in harmonic and anharmonic
potentials, respectively. The exact quantized vortex and giant vortex solutions are constructed ex-
plicitly by similarity transformation. Their stability behavior has been examined by numerical
simulation, which shows that a new series of stable vortex states (defined by radial and angular
quantum numbers) can be supported by the spatiotemporally modulated interaction in this system.
We find that there exist stable quantized vortices with large topological charges in repulsive con-
densates with spatiotemporally modulated interaction. We also give an experimental protocol to
observe these vortex states in future experiments.

PACS numbers: 03.75.Lm, 47.32.-y, 05.30.Jp

I. INTRODUCTION

The investigation of rotating gases or liquids is a cen-
tral issue in the theory of superfluidity [1–4] since rota-
tion can lead to the formation of quantized vortices which
order into a vortex array, in close analogy with the be-
haviour of superfluid helium. Under conditions of rapid
rotation, when the vortex density becomes large, atomic
Bose gases offer the possibility to explore the physics of
quantized vortices in novel parameter regimes. During
recent years, there have been advances in experimental
discoveries [5–7] of rotating ultra-cold atomic Bose gases,
and these developments have been reviewed in [8].

Theoretical studies mainly make use of the mean-field
Gross-Pitaevskii (GP) equation to describe the main fea-
tures of the vortex states [9, 10], and several predic-
tions [10] have been shown to agree with experiments
[11]. Some of the important studies were concerned with
the equilibrium properties of a single vortex, including
its structures and dynamics [10], the critical frequency
and the nonlinear dynamics of vortex lattice formation
[12]. A multi-quantum vortex is typically dynamically
unstable in harmonically trapped BEC predicted by sev-
eral theoretical studies [13–15]. The splitting instability
in case of multi-quantum vortices shows that the vor-
tex will split into single quantum vortices even in the
absence of dissipation due to the peculiar feature of non-
linear dynamics [16, 17]. However, in the presence of a
plug potential [18] or an anharmonic trapping potential
[19, 20], various studies have addressed different means to
stabilize multi-quantum vortices in rotating BEC. For ex-
ample, when the confining potential is steeper than har-
monic potential in the plane perpendicular to the axis of
rotation, multi-quantum vortices are energetically favor-
able if the interaction is weak enough. For stronger in-
teractions, the multiply quantized vortices break up into
arrays of several vortices. In addition, interestingly, sta-
ble multi-quantum vortices have also been found to exist
in two-component BEC [21], which can be adjusted near

Feshbach resonance through spatial inhomogeneous ex-
ternal magnetic field B, i.e. B = B(x).
Mathematically, the GP equation, to be written explic-

itly, is an equation of nonlinear Schrödinger type [22–
28]. This equation has been studied extensively both
in the physical and mathematical literature, since they
provide a universal model for a study of the dynamics
of the envelope waves. One of the distinctive features
of the equation as it appears in BEC problems is the
presence of an external trapping potential, which essen-
tially affects the elementary excitation spectrum. Most
properties of the BEC are significantly affected by the
interatomic interaction, which can be characterized by
the s-wave scattering length [29]. Recent experiments
have demonstrated that both amplitude and sign of the
scattering length can be modified by utilizing the Fesh-
bach resonance [30–32]. This technique provides a very
promising method for the manipulation of atomic matter
waves and the nonlinear excitations in BEC by tuning
the interatomic interaction. By using this technique, one
can study atomic matter waves and the nonlinear excita-
tions in BEC for the case of the GP equations with the
time- and space-dependent nonlinearity coefficients [23–
26]. More recently, Yamazaki et al. [32] demonstrated
experimentally submicron spatial control of interatomic
interactions in a BEC of ytterbium successfully by utiliz-
ing optical Feshbach resonance technique.
Motivated by stabilizing multiple vortex states and

understanding the behavior of nonlinear excitation in
physical systems, we perform theoretical analysis and
numerical studies of the quantized vortices in a rotat-
ing BEC with spatiotemporally modulated interaction in
harmonic and anharmonic potentials, respectively. Com-
pared with the former work on quantized vortices, we
find that a new series of exact single and multiple vortex
states (defined by radial and angular quantum numbers)
can be supported by the spatiotemporally modulated in-
teraction in a rotating BEC. In particular, our results
have provided a very promising method for stabilizing
the vortex having very large topological charge S ≥ 2,
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which has been conjectured unstable [33] by tuning the
external potential and nonlinear interaction simultane-
ously in time.

II. THE THEORETICAL MODEL AND EXACT

VORTEX SOLUTIONS

At zero temperature, the quantum and thermal fluctu-
ations are negligible so that a BEC trapped in an external
potential can be described by a “macroscopic wave func-
tion” Ψ(r, t) obeying the GP equation. In the rotating
frame with rotating frequency Ω0 around the z-axis, the
GP equation in cylindrical coordinate reads

i~
∂Ψ

∂t
=(− ~

2

2m
∇2− ~

2

2m

∂2

∂z2
+Vext+G|Ψ|2)Ψ + i~Ω0

∂Ψ

∂θ
,

where ∇2 = ∂2/∂x2 + ∂2/∂y2 = ∂2/∂r2 + 1/r × ∂/∂r +
1/r2∂2/∂θ2 with r2 = x2 + y2, m is the atom mass, θ
is the azimuthal angel, the wave function is normalized
by the total particle number N =

∫

dr|Ψ|2, Vext is an
external trapping potential, and G = 4π~2a(r, t)/m rep-
resents the strength of interatomic interaction character-
ized by the s-wave scattering length a(r, t), which can be
adjusted experimentally by an inhomogeneous external
magnetic field B = B(x, y, t) in the vicinity of a Fes-
hbach resonance [30, 31]. The trapping potential can
be assumed to be Vext = m(ω2

rr
2 + ω2

zz
2)/2, where ωr

and ωz are the confinement frequencies in the radial and
axial directions, respectively, and in particular, the ra-
dial confinement frequency ωr is assumed to be time-
dependent as in [25, 34]. In the following, we consider
the atoms in the |F = 1,mF = 1〉 hyperfine state of 7Li
and |F = 1,mF = 1〉 hyperfine state of 87Rb trapped in
a very thin disc-shaped potential, i.e., the trapping po-
tential in the radial direction is much weaker than that
in the axial direction as ωr(t)/ωz ≪ 1, such that the
motion of atoms in the z direction is essentially frozen
to the ground state ϕ(z) of the axial harmonic trapping
potential.
Then we can separate the wave function as Ψ(r, t) =

ψ(x, y, t)ϕ(z) to derive the 2D GP equation
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= − ~

2

2m
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2
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, (1)

with η =
∫

dz|ϕ(z)|4/
∫

dz|ϕ(z)|2. Introducing the scales
characterizing the trapping potential, the length, time,
and wave function are scaled as

x = ahx̃, y = ahỹ, t = t̃/ωz, ψ = ψ̃/ah
√

4πa0η,

respectively, with ah = (~/mωz)
1/2 and a0 is a constant

length chosen to measure the s-wave scattering length.
After the tilde is omitted, the 2D GP equation (1) is
reduced to a dimensionless form as

i
∂ψ

∂t
= −1

2
∇2ψ + V (r, t)ψ + g(r, t) |ψ|2 ψ + iΩ

∂ψ

∂θ
, (2)

where the interaction strength g(r, t) = a(r, t)/a0, Ω =
Ω0/ωz and the radial trapping potential can be written
as V (r, t) = ω2(t)r2/2 with ω(t) = ωr(t)/ωz. In what
follows, we consider not only the harmonic potential like
this but also an anharmonic potential.
In order to find the exact vortex solutions to Eq. (2)

with spatiotemporally modulated interaction, we first as-
sume its exact solution as

ψ(r, θ, t) = eiSθ+iφ(r,t)ρ(r, t)U [R(r, t)] , (3)

here S is the topological charge related to the angular mo-
mentum of the condensate, ρ(r, t) denotes the amplitude
of wave function and R(r, t) is a intermediate variable
reflecting the changes of main wave function U . Substi-
tuting Eq. (3) into (2) and furthermore, letting U [R(r, t)]
satisfy

d2U/dR2 + µ0U + µ1U
3 = 0, (4)

where µ0 and µ1 are real constants, we can get
a set of partial differential equations (PDEs) about
ρ(r, t), R(r, t), φ(r, t), V (r, t) and g(r, t) as

Rt + φrRr = 0,

2 gρ2 + µ1Rr
2 = 0,

ρRr + 2 rρrRr + rρRrr = 0,

rρφrr + 2 rφrρr + ρφr + 2 rρt = 0, (5)

ρrr
ρ

− 2φt − φr
2 − S2

r2
+ 2ΩS +

ρr
ρ r

− 2V − µ0Rr
2 = 0,

here subscripts r and t mean the derivative of function
with respect to r and t. If letting V (r, t) = ω(t)

2
r2/2 −

µ0R
2
r/2 (µ0 = 0 corresponds to harmonic potential) and

φ(r, t) = f1r
2 + f2 (f1 and f2 are time-dependent func-

tions, and f1 is frequency chirp and f2 is phase), then
solving the set of PDEs (5) we get

ρ(r, t) = e−2
∫
f1dtΘ(re−2

∫
f1dt), (6)

and

R(r, t) =

∫ re−2
∫

f1dt

0

1/[Θ2(τ)τ ]dτ, (7)

and

g(r, t) = −µ1R
2
r/2ρ

2, (8)

where µ1 is a parameter controlling the sign of in-
teraction parameter g(r, t), Θ(τ) is defined by Whit-
taker M and W functions [35], i.e. Θ(τ) =
[c1M(λ1/4λ2, S/2, λ2τ

2) + c2W (λ1/4λ2, S/2, λ2τ
2)]/τ,

where λ1, λ2, c1, c2 are nonzero constants and c1c2 > 0.
In particular, the above f1 and f2 satisfy the following
two ordinary differential equations

2ΩS − λ1e
−4

∫
f1dt − 2df2/dt = 0,

ω2(t) + 4 f2
1 + 2 df1/dt− λ22e

−8
∫
f1dt = 0. (9)
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FIG. 1: (Color online) The spatiotemporally dependent in-
teraction parameter g(r, t) in Eq. (8) for parameter Ω =
0.7, λ1 = 4, λ2 = 2, c1 = c2 = 1, S = 1, µ1 = 1000 and
ω(t) = 0.028. (a) The radial structure of g(r, t) at t = 0.
(b) The spatiotemporal structure of g(r, t). Here the unit of
length is 1.51 µm and the unit of time is 0.25 ms.

When the parameter µ0 = 0, the external potential
is just harmonic form V (r, t) = ω2(t)r2/2, and we get
explicit solution of Eq. (4) as U(R) = ν1cn(ν1R +

ν0,
√
2/2)/

√
µ1, where ν0 and ν1 are arbitrary constants

and µ1 > 0. So the exact vortex solution to Eq. (2) is

ψ =
ν1√
µ1
ρei(Sθ+f1r

2+f2) cn(ν1R+ ν0,
√
2/2), (10)

where functions ρ and R are given above. Here cn
and sn (below) are Jacobi elliptic functions. When
imposing the boundary conditions for vortex solution
as lim|r|→0 ψ(r, θ, t) = lim|r|→∞ ψ(r, θ, t) = 0, we can

get ν0 = K(
√
2/2), ν1 = 2nK(

√
2/2)/R(+∞, 0), where

K(s) =
∫ π/2

0
[1− s2 sin2 τ ]−1/2dτ is the first kind elliptic

integral and n is a nonnegative integer. In this case, since
µ1 should be positive and thus the interaction strength
g(r, t) is negative corresponding to the condensates con-
sisting of 85Rb [36] or 7Li atoms [37, 38] experimentally.
The structures of the interaction parameter g(r, t) with
respect to radial coordinate r and time t are demon-
strated in Fig. 1. It is observed that the interaction
parameter is inverse Gaussian in r and periodic in t.
When the parameter µ0 6= 0, the external poten-

tial becomes V (r, t) = ω2(t)r2/2 − µ0R
2
r/2 (an anhar-

monic potential) as shown in Fig. 2, where there is
a convex hull in the center of the harmonic poten-
tial, and the anharmonic potential is periodic in time
t. We get the exact solution of Eq. (4) as U(R) =
√

2 (δ2 − µ0)/ µ1sn
(

δR,
√

µ0/δ2 − 1
)

, where µ0/2 <

δ2 < µ0 and µ1 < 0. So the exact vortex solution to
Eq. (2) is

ψ =

√

2 (δ2 − µ0)

µ1
ρei(Sθ+f1r

2+f2)sn
(

δR,
√

µ0/δ2 − 1
)

,

(11)
where functions ρ and R are given above. When im-
posing the boundary conditions for vortex solution as
lim|r|→0 ψ(r, θ, t) = lim|r|→∞ ψ(r, θ, t) = 0, we can get

δ = 2nK(
√

µ0/δ2 − 1)/R(∞, 0). In this case, the pa-

FIG. 2: (Color online) The shapes of the anharmonic potential
V (r, t) = ω2(t)r2/2−µ0R

2

r/2. (a) The radial structures of the
anharmonic potential at t = 0 with parameters S = 1, δ = 7.4
(dashed line) and S = 5, δ = 1172.4 (solid line), respectively.
(b) The spacial structure of the anharmonic potential at t =
0 with parameter S = 1, δ = 7.4. (c) The spatiotemporal
structure of the anharmonic potential with parameter S =
1, δ = 7.4. The unit of time is 0.25 ms and the unit of length
is 0.43 µm for 87Rb atom. The other parameters are Ω =
0.7, λ1 = 4, λ2 = 2, c1 = c2 = 1, µ0 = 62.2 and ω(t) = 0.028.

rameter µ1 should be negative and thus the interaction
strength g(r, t) is positive corresponding to the conden-
sates consisting of 87Rb [39] or 23Na atoms [40] experi-
mentally.
Seen from the exact vortex solutions (10) and (11),

there exists two class of vortex states (distinguishing
them with two quantum numbers which are radial node
n and topological charge S, also called angular momen-
tum quantum number) corresponding to the harmonic
potential (µ0 = 0) and anharmonic potential (µ0 6= 0) in
attractive and repulsive BECs, respectively. In the fol-
lowing, we will first examine the structures of these exact
vortex solutions and then study the dynamic properties
and stability of these vortex states under different situa-
tions.

III. STRUCTURES OF VORTEX STATES

The structures of the exact vortex solutions (10) and
(11) can be controlled by modulating the frequency of
the trapping potential and the spatiotemporal inhomo-
geneous s-wave scattering length as seen from Eq. (9).
Taking into account the feasibility of the experiment, we
only consider the case of harmonic potential (µ0 = 0)
which corresponds to the attractive BEC as explained
above.
In real experiment, we assume an attractive 7Li con-

densate in the internal atomic state |F = 1,mF = 1〉
[37, 38] trapped in an axis-symmetric disk-shaped po-
tential, where the axial confinement energy ~ωz is much
larger than the radial confinement and interaction en-
ergies, and the radial frequency of the trap is time-
dependent which can be written as

ω(t) = ωr(t)/ωz = ω0 + ǫ cos(ω1t), (12)
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n=4n=3

n=1 n=2

FIG. 3: (Color online) (a)-(d) The density distributions
|ψ(x, y, 0)|2 (at t = 0), and the corresponding radial wave
profiles (bottom) for the vortex solution (10) of the attrac-
tive rotating BEC for topological charge S = 1 and various
radial quantum numbers. The parameters are Ω = 0.7, µ1 =
1000, λ1 = 4, λ2 = 2, c1 = c2 = 1, ǫ = 0 and ω0 = 0.028. Here
the unit of length is 1.51 µm for 7Li atom.

with 0 ≤ ǫ < ω0. For ǫ = 0, the radial frequency of the
trap is time-independent and here, we choose the time-
independent part of radial frequency ωr = (2π) × 18 Hz
and axial frequency ωz = (2π) × 628 Hz as in [41], so
ω(t) = ω0 = 0.028.
As shown in Fig. 3, we demonstrates the density distri-

butions for different radial quantum number n with fixed
topological charge S = 1 at t = 0, which is based on the
exact vortex solution (10). The Fig. 3(a) corresponding
to n = 1 is a lowest energy state and Figs. 3(b)-3(d)
corresponding to n = 2, 3, 4 are three excited states. In
the Fig. 3(e), we show the radial wave profiles of the
exact vortex solution (10) at t = 0. It is clear to see that
the number of ring structure of vortex solution increases
by one with changing the radial quantum number n by
one, which is similar to the quantum states of harmonic
oscillator.
One of the interesting properties for the exact vortex

solution (10) is shown in Fig. 4 by choosing different
topological charge S with fixed radial quantum number
n = 1. We can see that the density profiles of the vor-
tex states become more and more localized with increas-
ing the topological charge S due to the larger angular
momentum for the higher topological charge S. More-
over, vortex expands outwards with the increasing of the

FIG. 4: (Color online) The radial structures of the density
distributions and phase diagrams for the vortex solution (10)
of the attractive rotating BEC with radial quantum number
n = 1 and different topological charges at t = 0, where the
unit of length is 1.51 µm for 7Li atom. The insets are the
corresponding phase diagrams and the other parameters are
the same as Fig. 3.

FIG. 5: (Color online) Time evolution of the monopole mo-
ment 〈r〉 in the attractive rotating BEC for different fre-
quencies of the harmonic potential. (a) The radial quan-
tum number is n = 1 and (b) n = 2. In both figures,
the topological charge is S = 1, the frequency of the trap
is ω(t) = ω0 + ǫ cos(ω1t) with parameters Ω = 0.7, ω0 =
0.028, λ1 = 4, λ2 = 2, µ1 = 1000, c1 = c2 = 1, and the unit of
time is 0.25 ms.

topological charges and so will obtain the larger angular
momentum.

Another interesting aspect of the condensate is to
study the monopole moment [34, 42] defined by 〈r〉 =
∫

r|ψ|2dr which can be directly compared with experi-
ments in BEC. In Fig. 5, we show the time evolution
of the monopole moment for different oscillation frequen-
cies ω1, amplitude ǫ in (12), and different radial quantum
numbers n = 1, 2 with fixed topological charge S = 1.
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FIG. 6: (Color online) Time evolution of the density distribu-
tions |ψ(x, y, 0)|2 (at t = 0) and phase diagrams for the vortex
solution (10) of the attractive rotating BEC for radial quan-
tum number n = 1. (a) Stable vortex for topological charge
S = 1. (b)-(c) Unstable vortex for S = 2 and 3, respectively.
For all cases, the domain is (x, y) ∈ [−15, 15]× [−15, 15]. The
other parameters are Ω = 0.7, λ1 = 4, λ2 = 2, µ1 = 1000, c1 =
c2 = 1, ǫ = 0 and ω0 = 0.028. Here the unit of time is 0.25 ms
and the unit of length is 1.51 µm for 7Li atom.

It is seen that the monopole moment represents regular
oscillation following the oscillating frequency of the trap
when ω1 is large, but irregular oscillation when ω1 is small
which can be observed experimentally. The amplitude
and center position of oscillation of monopole moment
for the case n = 2 are a little larger than that for the
case n = 1, but their periods are the same. In particular,
at ǫ = 0 i.e. time-independent trapping potential, the
oscillation of the monopole moment is only determined
by the spatiotemporally nonlinear interaction which also
represents regular behavior in our studied case. These
phenomena connect to the resonance of certain collective
modes in the system. It is seen that the interaction pa-
rameter g(r, t) varies periodically in time from Fig. 1,
and the frequency of the external potential can be mod-
ulated periodically as ω(t) = ω0 + ǫ cos(ω1t). Therefore,
the oscillating behaviour of the monopole moment is the
result of tuning interaction parameter and frequency of
the external potential.

IV. STABILITY ANALYSIS

It has been shown that attractive Bose condensates like
85Rb and 7Li become mechanically unstable and collec-
tively collapse [30, 31, 38] when the number of atoms in
the condensate exceeds critical value Nc. So it is impor-
tant to produce the stable states in attractive Bose con-
densates. Saito and Ueda [34] have demonstrated that a
matter-wave bright soliton can be stabilized in 2D free

FIG. 7: (Color online) The dynamic instability of the vor-
tex solution (10) of the attractive rotating BEC with time-
dependent harmonic potential for topological charge S = 3
and two different radial quantum numbers. Here the unit of
time is 0.25ms, the unit of length is 1.51 µm for 7Li atom, and
the parameters are Ω = 0.7, λ1 = 10, λ2 = 5, µ1 = 1000, c1 =
c2 = 1, ω1 = 1, ǫ = 0.02 and ω0 = 0.028.

space by causing the strength of interactions to oscillate
rapidly between repulsive and attractive by using, e.g.,
Feshbach resonance [30, 31]. In previous work, we [24]
have found an exact stable localized nonlinear matter
wave in quasi-2D BEC with spatially modulated nonlin-
earity in harmonic potential. In this section, we investi-
gate the dynamical stability of the exact vortex solutions
(10) and (11) by numerical simulation of Eq. (2). We
show that only some types of the stable vortices (defined
by radial and angular quantum numbers) can be sup-
ported by the spatiotemporally modulated interaction in
this system.
In order to elucidate the dynamical stability of the ex-

act vortex solutions proposed in Section II, we conduct
numerical experiments by solving Eq. (2) and take the
exact vortex solutions (10) and (11) at t = 0 as initial
data. To begin with, we consider the attractive rotating
BEC with harmonic potential at ǫ = 0 in (12), which has
exact vortex solution (10). In Fig. 6, we show the den-
sity evolutions and phase diagrams of vortex solution (10)
as initial condition with radial quantum number n = 1
and different topological charge S or angular momentum
quantum numbers based on numerical simulation of Eq.
(2). It is shown that only when topological charge S = 1,
vortex solution (10) is stable against perturbation with
an initial Gaussian noise of level 0.5%, but for topological
charge S ≥ 2, giant vortex solution (10) will be unstable
and split into single charge vortices and so destruct the
ring structures.
When the harmonic trap is time-dependent which cor-

responds to ǫ 6= 0 and ω1 6= 0 in (12), Fig. 7 shows
the unstable dynamics and phase diagrams of the giant
vortex solution (10) with S = 3 and two different radial
quantum numbers n = 1, 2 for the attractive rotating
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FIG. 8: (Color online) Time evolution of the density distri-
butions |ψ(x, y, 0)|2 and phase diagrams for the vortex solu-
tion (11) of the repulsive rotating BEC for topological charge
S = 1 and radial quantum numbers n = 1 and 2, respectively,
with an initial Gaussian noise of level 0.5%. Here the domain
is (x, y) ∈ [−25, 25] × [−25, 25], the parameters are δ = 7.4
(top) and δ = 14.9 (bottom), Ω = 0.7, λ1 = 4, λ2 = 2, c1 =
c2 = 1, µ1 = −10, ǫ = 0 and ω0 = 0.028, the unit of time is
0.25 ms and the unit of length is 0.43 µm for 87Rb atom.

BEC. It is observed that the time-dependent frequency
of trap affects the dynamics of the vortex significantly.
The instability of vortex states with S = 2 and 3 in Figs.
6 and 7 is concerned with the resonance with the col-
lective modes described by the harmonics with the an-
gular momentum quantum number. Following the de-
scription in [3, 43], we can explore the energy excitations
near to the stationary state by introducing a small devi-
ation from the stationary state and linearizing the mo-
tion equation. Because the interaction parameter g(r, t)
and the frequency of the external potential vary follow-
ing time, the vortex states may correspond to many high
energy collective excitation modes even for the lowest ra-
dial mode n = 1. For the lowest mode with n = 1 and
angular momentum mode S = 1, the vortex state is sta-
ble against a Gaussian noise. However, the vortex states
with angular momentum modes S = 2 and 3 in Figs. 6
and 7 are inclined to decay as they correspond to high en-
ergy collective excitations. In addition, the vortex state
with radial mode n = 2 in Fig. 7 is also unstable as it
corresponds to higher energy collective excitations.

Next we consider the repulsive rotating BEC in an-
harmonic potential V (r, t) = ω2(t)r2/2 − µ0R

2
r/2 with

µ0 6= 0 shown in Fig. 2, which has exact vortex solution
(11). In Fig. 8 and 9, we demonstrate the density evolu-
tions and phase diagrams of vortex solution (11) as initial
condition with different radial quantum numbers n = 1, 2
and fixed angular momentum quantum numbers S = 1
and S = 5, respectively. It is very interesting to note
that when the radial quantum number n = 1, the exact
vortex solution (11) is always stable even for very large

FIG. 9: (Color online) Time evolution of the density distri-
butions |ψ(x, y, 0)|2 and phase diagrams for the vortex solu-
tion (11) of the repulsive rotating BEC for topological charge
S = 5 and radial quantum numbers n = 1 and 2, respec-
tively, with an initial Gaussian noise of level 0.5%. Here the
domain is (x, y) ∈ [−25, 25] × [−25, 25], and the parameters
are δ = 1172.4 (top) and δ = 2344.9 (bottom). The other
parameters and units of time and length are the same as Fig.
8.

topological charge S = 5, which is very different from the
attractive rotating BEC with harmonic potential where
a stable region for vortex solution (10) was found only
for S = 1 as shown in Fig. 6. Our results have provided
a very promising method for stabilizing the giant vor-
tex having very large topological charge S ≥ 2 which has
been conjectured unstable [33] by tuning the external po-
tential and nonlinear interaction simultaneously in time.
Numerical simulation shows that for the radial quantum
number n > 1, the vortex solution (11) is always unstable
for any topological charge S.

Finally, we investigate the effect of the slightly asym-
metrical potential to the stability of quantized vortices.
To do so, we take the asymmetrical external trap as
V (r, t) = ω2(t)[(1+ǫx)x

2+(1+ǫy)y
2]/2−µ0R

2
r/2, where

parameters ǫx and ǫy describe small deviations of the
trap from the axisymmetry. The ENS group [44] stirred
a BEC of 87Rb confined in this kind of magnetic trap us-
ing a focused laser beam. Fig. 10 shows the evolutions of
density profiles and phase diagrams of the vortex solution
(11) at t = 1000 for the inhomogeneous repulsive rotating
BEC in this slightly asymmetrical anharmonic potential
with parameters ǫx = 0.02 and ǫy = 0.03. Here the quan-
tum number n = 1 and topological charges S = 1 and
5, respectively, and the level of the initial Gaussian noise
is still 0.5%. It is seen that the quantized vortices with
S = 1 and 5 in slightly asymmetrical anharmonic poten-
tial are still stable at t = 1000. The stability of these
quantized vortices is related with collective modes de-
scribed by the anharmonic potential, and the spatiotem-
porally modulated interaction and anharmonic potential
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FIG. 10: (Color online) Density profiles and phase diagrams
for the vortex solution (11) at t = 1000 for the repulsive
inhomogeneous rotating BEC in slightly asymmetrical anhar-
monic potential V (r, t) = ω2(t)[(1 + ǫx)x

2 + (1 + ǫy)y
2]/2 −

µ0R
2

r/2 with ǫx = 0.02 and ǫy = 0.03. Here the quantum
numbers n = 1 and topological charges S = 1 and 5, respec-
tively, and the level of the initial Gaussian noise is still 0.5%.
The parameters are δ = 7.4 (top) and δ = 1172.4 (bottom).
The other parameters are the same as Figs. 8 and 9. Here
the unit of time is 0.25 ms and the unit of length is 0.43 µm
for 87Rb atom.

can support stable giant vortex states.
We now give an experimental protocol to observe

the above vortex states in future experiments. For the
attractive interactions, we take 7Li condensate in inter-
nal atomic state |F = 1,mF = 1〉 [37, 38], containing
about 6.55 × 104 atoms, confined in a pancake-shaped
trap with radial frequency ωr = (2π) × 18 Hz and axial
frequency ωz = (2π) × 628 Hz [41]. Experimentally,
this trap can be determined by combination of spectro-
scopic observations, direct magnetic field measurement,
and the observed spatial cylindrical symmetry of the
trapped atom cloud [45]. For the repulsive interac-
tions, we take 87Rb condensate in internal atomic
state |F = 1,mF = 1〉 [39], containing about 8 × 105

atoms, confined in an anharmonic potential which is a
pancake-shaped harmonic trap with radial frequency
ωr = (2π) × 18 Hz and axial frequency ωz = (2π) × 628
Hz [41] plus a convex hull, see Fig. 2. The key step is

how to realize the spatiotemporal variation of the scat-
tering length. Near the Feshbach resonance [30, 31], the
scattering length as(B) varies dispersively as a function
of magnetic field B, i.e. as(B) = ã[1 − ∆/(B − B0)],
with ã being the asymptotic value of the scattering
length far from the resonance, B0 being the resonant
value of the magnetic field, and ∆ being the width of
the resonance at B = B0. For the magnetic field in z
direction with gradient α along x-y direction, we have
~B = [B0 + αB1(x, y, t)]~ez . In this case, the scattering
length is dependent on x, y and time t. So in real
experiments, we can use Feshbach resonance technique
to realize spatiotemporal variation of interaction pa-
rameters shown in Fig. 1. Finally, in order to observe
the density distributions in Figs. 3 and 6-9 clearly in
experiment, the atoms should be evaporatively cooled to
low temperatures, say in the range of 50 to 150 nK.

V. CONCLUSIONS

In conclusion, we have investigated the quantized
vortices in a rotating BEC with spatiotemporally
modulated interaction in harmonic and anharmonic
potentials, respectively. Two families of exact vortex
solutions for the 2D GP equation are constructed
explicitly by similarity transformation. It is interesting
to see that a new series of stable giant vortex states with
topological charge S ≥ 2 can be supported by tuning the
external potential and the spatiotemporally modulated
interaction in this system. We hope that this paper will
stimulate further research on quantized vortices and
help to understand the behavior of nonlinear excitation
in physical systems with spatiotemporally modulated
interaction.
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