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Measurement of longitudinal and transverse spin relaxation rates using the ground

state Hanle effect

N. Castagna∗ and A. Weis
Département de Physique, Université de Fribourg,

Chemin du Musée 3, 1700 Fribourg, Switzerland†

We present a theoretical and experimental study of the resonant circularly polarized light induced
Hanle effect in the ground state of Cs vapor atoms in a paraffin-coated cell. The effect manifests itself
as a narrow resonance (centered at B = 0) in the dependence of the optical transmission coefficient

of the vapor on the magnitude of an external magnetic field ~B. We develop a theoretical model that
yields an algebraic expression for the shape of these resonances for arbitrary field orientations and
arbitrary angular momenta of the states coupled by the exciting light, provided that the light power
is kept sufficiently small. An experimental procedure for assessing the range of validity of the model
is given. Experiments were carried out on the laser-driven Cs D1 transition both in longitudinal
and transverse field geometries, and the observed lineshapes of the corresponding bright and dark
resonances give an excellent confirmation of the model predictions. The method is applied for
determining the intrinsic longitudinal and transverse relaxation rates of the vector magnetization in
the vapor and their dependence on light power.

PACS numbers: 32.80.Xx, 07.55.Ge, 32.60.+i

I. INTRODUCTION

When polarized resonance radiation is sent through a
dilute atomic medium, the scattered light is, in general,
polarized. In the 1920s W. Hanle observed that the de-
gree of polarization (DOP ) of the resonance fluorescence
changes when the medium is exposed to a static mag-
netic field [1]. The effect manifests itself as a resonance
structure, centered at B = 0, in the dependence of the
DOP on B. The effect is known as magnetic depolariza-

tion of resonance fluorescence, zero field level crossing, or
just the Hanle effect (HE). Hanle studied the effect both
with linear and circularly polarized light, and a detailed
discussion is presented, e. g., in [2, 3]. The interest of the
Hanle effect lies in the fact that the resonance linewidth
obeys

∆B =
h̄

∆mg µB τ
, (1)

where τ is the excited state lifetime, g, the Landé factor,
and µB the Bohr magneton. The quantum treatment of
the Hanle effect shows that it originates from the pre-
cession and relaxation of spin orientation (∆m=1 coher-
ences) in the excited state, when excited with circularly
polarized light, while under excitation with linearly po-
larized light it involves the precession and relaxation of
a spin alignment (∆m=2 coherences). A measurement
of the Hanle linewidth thus yields g τ , thereby allowing a
determination of the lifetime τ , when the magnetic mo-
ment g µB is known, or vice-versa.
In the 1960s, Dupont-Roc et al. [4–8], observed a nar-

row resonance in the dependence of the intensity, I(B), of
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a resonant circularly polarized light beam on the strength
of a transverse magnetic field, B. Although intensity
rather than polarization was measured, the authors re-
ferred to the effect as ground state Hanle effect (GSHE).
A related effect can be observed with linearly polarized
resonance radiation, in which case, either changes of the
intensity or the polarization are recorded. The latter
effect was identified as being a linear dichroism [9, 10]
and became known as nonlinear Faraday effect. It has
been studied extensively, both experimentally and theo-
retically in the 1980s [11].
In contrast to the (normal) HE, the various manifes-

tations of the GSHE are nonlinear effects that involve
(at least) two interactions with the light field. Optical
pumping creates a spin polarization in the ground state
which evolves in the magnetic field and which is probed
in a subsequent interaction with the light field.
In the past decade, the GSHE with linearly polar-

ized light has received a renewed interest [12–18] by re-
interpreting it in terms of electromagnetically induced
transparency/absorption (EIT/EIA), degenerate state
coherent population trapping (CPT), or λ-resonances.
In this paper we report on a study of the GSHE with

circularly polarized light. We shall derive algebraic ex-
pressions for the parameters of Hanle resonance line-
shapes in arbitrarily oriented magnetic fields that are
valid (in the low power limit) for arbitrary nLJ , F →
n′L′

J′ , F ′ electric dipole transitions. Although the GSHE
with circularly polarized light has been studied by several
groups in the past (see, e. g., [6, 7, 19–22]), we are not
aware of any publication that derives explicit expressions
for the lineshapes. In analogy to the classical (linear)
HE, the linewidths of the GSHE resonances obey rela-
tions similar to Eq. 1. We derive those relations and use
them for a precision determination of the longitudinal
(γ1) and transverse (γ2) relaxation rates of spin orien-
tated Cs vapor atoms in a paraffin-coated cell.
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II. THEORY

A. Light absorption by spin-polarized atoms

The ground state Hanle effect is based on spin manip-
ulations in a vapor of polarized atoms by static magnetic
fields. The effect is detected by recording field-induced
changes of the optical properties of the medium. We
therefore start the discussion by addressing the relation
between the degree of spin polarization and the light in-
tensity transmitted by the atomic medium.
The resonant transmission T of a monochromatic laser

beam, tuned over an isolated atomic absorption line in
an atomic vapor is given by the Lambert-Beer law

T (xlaser) ≡
I

I0
≡ P

P0
= e−κ(xlaser)L , (2)

where I0(P0) and I(P ) are the intensity(power) of the
incident and transmitted laser beam and L the thickness
of the atomic vapour. In the Doppler limit the absorption
coefficient is given by

κ(xlaser) = κunpol
0 e−x2

laser , (3)

where κunpol
0 ≡ κ(xlaser = 0) is the peak absorption coef-

ficient of the unpolarized vapor, and

xlaser =
ω − ω0√
2ΓD

(4)

the dimensionless detuning from the atomic resonance
frequency ω0, where ω is the laser frequency and ΓD the
Doppler width. The absorption coefficient changes when
the medium becomes spin-polarized due to optical pump-
ing induced by the polarized light beam.
Spin polarization is conveniently described in terms

of multipole moments, mk,q, using the irreducible ten-
sor formalism [11]. It is well known [11, 23] that an
electric dipole transition is completely described by the
three lowest multipole moments, viz., the total level pop-
ulation (k=0), the spin orientation (k=1) and the spin
alignment (k=2), that have 1, 3, and 5 independent com-
ponents, respectively. More specifically, the absorption
coefficient of circularly polarized light propagating along
the quantization axis ẑ depends on the longitudinal vec-
tor polarization (orientation) Pz ∝ m1,0 ∝ 〈Fz〉 and on
the longitudinal second-rank tensor polarization (align-
ment) Azz ∝ m2,0 ∝

〈

F2 − 3F2
z

〉

. In Appendix A we
show that the absorption coefficient can be written as

κpol
0 = κunpol

0 (1− 3

2
Pz +

3

7
Azz) , (5)

In the present work we focus on the low power limit, for
which contributions from Azz can be neglected, so that
the polarization dependence of the absorption coefficient
is given by

κpol
0 (Pz) ≈ κunpol

0 (1− 3

2
Pz) . (6)

Here the longitudinal vector polarization is defined as
Pz = (1/4)

∑

mF pmF
, where the pmF

are the relative
populations of the magnetic sublevels |F,mF 〉. It is the
manipulation of this spin polarization by static fields
which is responsible for the GSHE investigated here.
Combining Eqs. (2–4), the laser frequency dependence

of the light power P transmitted by a medium with po-
larization Pz is given by

P (Pz) = P0 exp[−κpol
0 (Pz)L e

−
(ω−ω0)2

2 Γ2
D ] (7)

≡ P0 exp[−D(Pz) e
−

(ω−ω0)2

2 Γ2
D ] . (8)

The degree of spin polarization can be determined exper-
imentally in the following way: we record transmission
spectra when the medium is polarized (Pz = P0) and
unpolarized (Pz = 0), respectively (Fig. 1, center). Fit-
ting the lineshape function (8) to the data yields the fit
parameters D(P0) and D(0), respectively, which allows
inferring the spin polarization from

P0 =
2

3

D(0)−D(P0)

D(0)
. (9)

B. The ground state Hanle effect

Ground state Hanle resonances are recorded by locking
the laser frequency to the atomic transition frequency
(xlaser = 0) and measuring the change of the light power
P transmitted by the atomic vapor when the amplitude of

a static magnetic field ~B = Bε ε̂ of amplitude Bε applied
along ε̂ is scanned across Bε = 0.
Magnetic fields along the spin polarization vector sta-

bilize the latter, while transverse field components make
it precess, and hence depolarize the medium. The prin-
ciple of the Hanle effect is the interplay of polarization
creation by optical pumping, polarization stabilization
by longitudinal fields on one hand, and depolarization
by transverse fields and intrinsic relaxation processes, on
the other hand. The manifestation of the GSHE is the de-
tection of the mentioned spin creation and evolution dy-
namics via a measurement of the corresponding changes
in the transmitted light intensity. We note that similar
effects can be observed when the polarization rather than
the intensity of the transmitted light is recorded.
In what follows, we will express the field components

in terms of the corresponding Larmor frequencies ω‖ =
γF B‖ and ω⊥ = γF B⊥, where γF is the gyromagnetic
ratio of the ground state (γF=4 = 3.49862 [24] in the
experiments on 133Cs reported here).
We model the GSHE using the three-step approach

discussed by Budker et al. [11]:

• In a first step, a longitudinal spin orientation, ~P0 =
P0 ẑ is created by optical pumping. Starting from
a thermal distribution pF,mF

= (2F + 1)−1 of the
populations in the magnetic sublevels |F,mF >, a
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single cycle of absorption of a circularly polarized
photon followed by re-emission creates a longitudi-
nal vector polarization (orientation) Pz. When the
light power is sufficiently low, there is no creation of
higher order (quadrupole, octupole,...) polarization
moments by subsequent absorption/re-emission cy-
cles.

• The second step describes the time evolution of
the three components Pi of the vector polarization
under the action of the magnetic field and relax-
ation. The dynamics of the vector polarization is
described by the well known Bloch equations, which
yield the steady state solution (derived in Appendix
B) of the longitudinal polarization

Pz

P0
=

ω2
‖ + γ2

2

ω2
‖ + γ2

2 + γ2

γ1
ω2
⊥

(10)

where ω‖ = ωz and ω2
⊥ = ω2

x + ω2
y, and γ1,2 are the

longitudinal and transverse relaxation rates of the
vector polarization. P0 = Pz(ω‖ = ω⊥ = 0) is the
polarization in the absence of fields (difficult to re-
alize experimentally), or, equivalently, the asymp-
totic polarization Pz(ω‖ ≫ ω⊥) in a strong holding
field (easy to realize experimentally). The fact that
Pz depends only on ω‖ and ω⊥, independently of
the orientation of the transverse field reflects the
rotational symmetry of the system of the light field.

• Finally, the steady state polarization Pz is detected
via its effect of the optical absorption coefficient
κ(Pz) of the medium, as discussed in Section IIA.

We stress that this three-step approach is only valid when
the laser power is sufficiently low, so that the steady state
of the spin evolution is reached before the probing inter-
action occurs. The typical time scale for the spin dy-
namics (step 2) is given by γ−1

2 , while the time between
the preparation (step one) and probing (step three) in-
teractions is given by γ−1

p , where γp ∝ P is the optical
pumping rate. The three-step approach is thus valid as
long as γp < γ2.
From an experimental point of view, conditions for the

validity of the model may be difficult to assess, because
of the a priori unknown values of γ1,2. We have used
the following method that allows an empirical determi-
nation of the maximum allowed power, Pmax. The steady
state spin polarization Pz is a nonlinear function of the
laser power P0 that can be expressed as a power series of
γp/γ1. The linear term in that series describes the cre-
ation of vector polarization (orientation) only. As long as
γp ≪ γ1, the production of higher polarization moments
is negligible. A measurement of the dependence Pz(P0)
therefore allows to infer the linear regime, and hence to
determine Pmax.
A final remark: The three-step model has the draw-

back that it is only valid in the low power limit, but has
the positive aspect that it is valid for systems with arbi-
trary spin F , as long as the low power limit is respected.

Eq. (10) represents Lorentzian-shaped resonances
(Hanle resonances) when either the longitudinal or the
transverse field is scanned around zero. The amplitudes
and widths of these resonances depend on the relaxation
rates, and a systematic study of the resonances allows
the determination of γ1 and γ2.

C. Lineshapes in dimensionless units

Eq. 10 can be rewritten in terms of dimensionless vari-
ables as

Pz

P0
=

1+ x2
‖

1 + x2
‖ + x2

⊥

, (11)

where

x‖ =
ω‖

γ2
and x⊥ =

ω⊥√
γ1 γ2

. (12)

We speak of longitudinal(transverse) Hanle resonances
when the longitudinal(transverse) field is scanned, while
the transverse(longitudinal) acts as parameter field. The
left and right parts of Fig. 1 show sets of longitudinal
and transverse Hanle resonances as given by Eq. (11) for
a range of parameters fields.

D. The longitudinal Hanle effect (LHE)

Longitudinal Hanle resonances are obtained by scan-
ning the longitudinal magnetic field across ω‖ = 0 and
recording the corresponding change of the laser power
P (ω‖), ω⊥ being the parameter field.
In order to extract Pz from the experimental signals

we first linearize Eq. (7) by taking the logarithm of the
measured power P (ω‖). The corresponding theoretical
signal reads

S(Pz) ≡ lnP (Pz) = (lnP0 − κunpol
0 L) + (κunpol

0 L)Pz ,
(13)

i.e., a signal linear in Pz. Inserting Eq. (10) into (13),
one has

S(ω‖, ω⊥) ≡ lnP (ω‖, ω⊥) (14)

= lnP0 − κunpol
0 L

+ κunpol
0 LP0

ω2
‖ + γ2

2

ω2
‖ + γ2

2 + γ2

γ1
ω2
⊥

. (15)

After some algebra, Eq. (15) can be rewritten in the form

SLHE(ω‖;ω⊥) = bgd‖ −A‖(ω⊥) L‖(ω‖) , (16)

which shows the resonant dependence of the LHE on ω‖.
In fact, Eq. (16) represents a Lorentzian

L‖(ω‖) =
γ2
‖

ω2
‖ + γ2

‖

, (17)
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FIG. 1: Color online. Center: optical transmission spectrum, T (xlaser), in a polarized (red) and unpolarized (blue) medium.
Left: longitudinal Hanle resonances T (x‖ = ω‖/γ2) for a discrete set of transverse fields x⊥ = ω⊥/

√
γ1γ2. Right: transverse

Hanle resonances T (x⊥) for a discrete set of longitudinal fields x‖. For the Hanle scans the laser frequency is set to line center,
and the field-induced change in transmission varies between the polarized and unpolarized levels.

centered at ω‖ = 0, of amplitude

A‖(ω⊥) = κunpol
0 LP0

ω2
⊥

ω2
⊥ + γ1γ2

(18)

= κunpol
0 LP0

[

1− γ1γ2
ω2
⊥ + γ1γ2

]

, (19)

and half-width at half maximum

γ‖(ω⊥) =

√

γ2
2 +

γ2
γ1

ω2
⊥ , (20)

that is superposed on a background

bgd‖ = lnP0 − κunpol
0 L(1− P0) = ln

P0

κpol
0 L

. (21)

The amplitude function, A‖(ω⊥), has a Lorentzian de-
pendence on the parameter field ω⊥, while the width
function, γ‖(ω⊥), has a hyperbolic dependence on ω⊥.
The amplitude function yields the product of the relax-
ation rates, while the asymptotes of the width function
yield their ratio. These facts form the basis of the exper-
imental determination of the longitudinal and transverse
relaxation rates.

E. The transverse Hanle effect (THE)

In the THE, the transverse magnetic field, ω⊥, is
scanned, while ω‖ is the parameter field. We parametrize
the THE lineshapes in the same way as we did for the
LHE by rewriting Eq. 15 so that the scan variable ω⊥

appears explicitly, yielding

STHE(ω⊥;ω‖) = bgd⊥ +A⊥(ω‖) L⊥(ω⊥) . (22)

Eq. (22) represents a Lorentzian

L⊥(ω⊥) =
γ2
⊥

ω2
⊥ + γ2

⊥

, (23)

of amplitude

A⊥(ω‖) = κunpol
0 LP0 , (24)

and half-width at half maximum

γ⊥(ω‖) =

√

γ1γ2 +
γ1
γ2

ω2
‖ , (25)

that is superposed on a background

bgd⊥ = lnP0 − κunpol
0 L = ln

P0

κunpol
0 L

. (26)

As can be seen on the right part of Fig. 1, the transverse
resonances have a constant amplitude, independent of
the presence of a longitudinal field component, while the
longitudinal resonances can only be observed, when a
transverse field is present. The latter feature is of general
practical use for minimizing residual transverse fields, as
discussed below.

III. EXPERIMENTS

A. Experimental apparatus

The experimental setup is shown in Fig. 2. The exper-
iments use light from a distributed feedback (DFB) laser,
whose frequency is actively stabilized to the 4→3 hyper-
fine transition of the cesium D1 line using the DAVLL
technique [25].
The light beam is carried by a 400 µ multimode fiber

into a three-layer mu-metal shield, where the polariza-
tion of the collimated output beam is made circular by a
polarizer followed by a λ/4 plate.
The Cs vapor cell is an evacuated spherical glass cell of

30 mm diameter whose inner walls are coated with a thin
layer of paraffin which efficiently reduces spin depolariza-
tion by wall collisions. In [26] we have given an extensive
account on the preparation and properties of our in-house
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FIG. 2: Color online. Experimental setup. The circularly
polarized light of a DFB-laser stabilized on the F=4→ F=3
hyperfine transition of the cesium D1-line passes through a
paraffin-coated vapor cell. The transmitted power is recorded
by a photodiode. Three pairs of Helmholtz coils (two pairs
shown) control residual fields and allow the application of a
static field in an arbitrary direction. A three-layer mu-metal
shield strongly suppresses external fields. P: polarizer, λ/4:
quarter-wave plate, Cs: cesium vapor cell, PD: photodiode,
V/I: voltage-controlled current source, I/V: transimpedance
amplifier, DSO: digital storage oscilloscope.

paraffin-cell production. Since the cells contain no buffer
gas, the atoms move on ballistic trajectories at thermal
velocity, thereby efficiently averaging magnetic field inho-
mogeneities. This leads to a substantial line-narrowing
compared to buffer gas cells, which, however, is irrele-
vant in the present study carried out near zero magnetic
field. The atomic vapor is the saturated vapor produced
by a few mg solid Cs contained in a sidearm connected
by a capillary to the main cell body. The cell is kept
at room temperature, and the atomic number density is
3.5 1016 m−3, yielding an optical thickness of the unpolar-

ized sample of κunpol
0 L ≈ 0.60. The (3 mm FWHM diam-

eter) beam traverses the vapor cell along the z-direction,
and the transmitted light is detected by a photodiode
followed by a current-voltage converter (FEMTO, model
DLPCA-200) with an effective feedback resistor of 106–
108.

Three mutually orthogonal pairs of Helmholtz coils al-
low controlling all spatial components of the magnetic
field. We call the field component along ẑ, the longitudi-
nal field, while any field component perpendicular to it
is referred to as transverse field. The three main coils are
calibrated using magnetic resonances in the cell under in-
vestigation using the procedure described in Appendix C.
The photodiode voltage and the three voltages control-
ling the components of the applied field are recorded by
a four channel digital oscilloscope. We use digital aver-
aging by the oscilloscope in all recordings for increasing
the signal/noise ratio.

Before starting an experimental run, we minimize
residual transverse field by using the fact, discussed in

Section II E, that the longitudinal Hanle resonance van-
ishes in absence of transverse fields. For this, we observe
a Hanle resonance on the oscilloscope, while scanning the
longitudinal field around Bz = 0. By iteratively adjust-
ing the currents generating the field components Bx and
By, we minimize the amplitude of the Hanle resonance.
After this minimization, the currents in the transverse
field coils are a direct measure of the residual transverse
field components. The residual longitudinal field com-
ponent is obtained from the displacement of the LHE
resonance S(Bz) with respect to Bz = 0.
We note that this minimization procedure is extremely

sensitive to the quality of the light polarization, and can
thus also be used for optimizing the latter. When the
light contains a small component of linear polarization,
the Hanle resonance cannot be made to completely van-
ish by the field adjustment procedure described above. In
that case, rotation and tilt adjustments of the quarter-
wave plate shall be included in the iteration procedure.
For recording Hanle resonances, the amplitude of the
scan field (B‖ or B⊥) is scanned by a linear current
ramp applied to the coils using voltage-controlled cur-
rent sources driven by a voltage ramp from a function
generator. The voltage ramp is recorded together with
the transmitted power that contains the Hanle signal.

B. Power dependence of the spin polarization

The maximal spin polarization, P0(P ), that can be
obtained depends on the laser power, P .
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FIG. 3: Color online. Transmission spectra of the 4 →3
component of the D1 line of spin-polarized and -unpolarized
Cs vapor (dots: data, solid line: fit with combination of
Eqs. (2,3,6)). The average power associated with this mea-
surement is shown by the black dot on top. The line centers
do not exactly coincide because of laser frequency drifts be-
tween the scans.

For each laser power we have determined the degree of
spin polarization as follows. We record the transmitted
power P pol/unpol(ω), by scanning the laser frequency over
the 4− 3 resonance, under conditions in which the vapor
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is unpolarized (Pz = 0) or polarized (Pz = P0), respec-
tively. The polarized transmission spectrum P pol(ω) is
obtained by applying during the scan a longitudinal field
Bz of ≈ 3µT, which stabilizes the spin polarization cre-
ated by optical pumping. The unpolarized transmission
spectrum P unpol(ω) is obtained by application of trans-
verse field Bx of ≈ 1µT, which depolarizes the sample.
Fig. 3 shows a typical set of such transmission spectra.
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laser power HΜWL
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z
H%
L

FIG. 4: Dependence of the spin polarization P0 on the laser
power. Dots: experimental points, solid line: polynomial fit,
dashed line: linear part of the polynomial fit.

The spectra are fitted by Equation (7) together with
a linear variation of P0 = α + β ω that accounts for a
slight change of laser power during the scan. The spin
polarization P0 is then inferred from the fit parameters
using (9). Fig. 4 shows the power dependence of the spin
polarization, together with a polynomial fit to guide the
eye. The linear part of the fit is shown as dashed line and
indicates that the creation of spin alignment is negligible
for light powers below ≈ 1µW.

C. Recording of longitudinal Hanle resonances

We recorded longitudinal Hanle resonances by scan-
ning the longitudinal field over B‖ ≡ Bz = 0 and record-
ing the induced changes of the transmitted light power
with the laser frequency locked to the atomic transition.
The scan speed is chosen to be sufficiently low (typically
10 s for a recording such as the one shown in Fig. 5),
so that the spin evolution can follow the changing field
adiabatically, thus avoiding resonance distortions. We
repeat this scan for typically 25 different values of the
parameter field B⊥ ≡ Bx. Fig. 5 shows a typical subset
of such curves, linearized by taking the logarithm of the
voltage representing the light power, as discussed in Sec-
tion IID, together with fitted curves (Lorentzians on a
constant background) that represent Eq. (16).
The residual longitudinal field in the resonances of

Fig. 5 showed a slight drift during the measurements.
Their average value is δBz=3.6(1.4) nT. Similar values
and uncertainties which reflect the residual field stability
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FIG. 5: Color online. Subset of experimental LHE resonances
(recorded at P0 = 1.6µW) for applied transverse fields Bx of
- 4.2, - 4.5, - 4.9, - 5.5, - 6.6, - 8.5, - 10.4, and - 12.3 nT (in
order of increasing resonance amplitude). Data in blue and
Lorentzian fits in red.

over the typically duration (2 hours) of a run are also
found for the residual fields δBx and δBy. The back-
ground (asymptotic values of the spectra in Fig. 5) of
the raw data showed variations of ≈3 % over the whole
range of measurements. These fluctuations are presum-
ably due to slight fluctuations of the (unstabilized) laser
power. These variations were subtracted such as to make
all backgrounds overlap in Fig. 5.

D. Determination of the relaxation rates
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FIG. 6: Color online. Amplitudes of the LHE resonances
from Figure 5 (dots) together with fit (solid line) according
to Eq. (29). Statistical error bars (2σ) are on the order of the
dot size.

Each Lorentzian fit yields the amplitude, Az(ωx), and
the half-width at half maximum, γz(ωx), of the Hanle
curve. Figures 6 and 7 show the dependence of the am-
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plitudes and the widths of the resonances from Figure 5
on the applied transverse parameter field Bx.
Equations (19) and (20), respectively. Taking the pres-

ence of unknown residual transverse field components
δωx, δωy into account, the longitudinal amplitude func-
tion and the longitudinal linewidth function read

A‖(ωx) = κunpol
0 LP0

[

1− γ1γ2
(ωx + δωx)2 + δω2

y + γ1γ2

]

,

(27)
and

γ‖(ωx) =

√

γ2
γ1

(ωx + δωx)2 + γ2
2 +

γ2
γ1

δω2
y , (28)

respectively. The fit of the Lorentzian dependence (27)
to the data of Fig. 6 by the function

Afit
‖ (ωx) = p1

[

1− p2
(ωx + p3)2 + p24

]

, (29)

avoids possible correlations between γ1 γ2 and δωy, and
yields the product p2 = γ1 γ2 of the relaxation rates.
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FIG. 7: Color online. Half-widths at half maximum of the
LHE resonances from Fig. 5 (dots) together with fit (solid
line) according to Eq. (30). Statistical error bars (2σ) are on
the order of the dot size.

In a similar way we avoid parameter correlations in the
fitting of the linewidth function by using

γfit
‖ (ωx) =

√

p1 (ωx + p2)2 + p23 , (30)

which yields the ratio p1 = γ2/γ1 that represent the
slope of asymptotes to the hyperbola of (28). It is then
straightforward to infer the individual values of γ1 and
γ2 from their ratio and product.

E. Recording of transverse Hanle resonances

We recorded transverse Hanle resonances by scanning
the transverse field over B⊥ ≡ Bx = 0 and recording

the induced changes of the transmitted light power with
the laser frequency locked to the atomic transition. We
repeat this scan for various typically 25 values of the pa-
rameter field B‖ ≡ Bz. Fig. 8 shows a set of such curves,
linearized by taking the logarithm of the voltage repre-
senting the light power as discussed in Section II E, to-
gether with fitted curves (Lorentzians on constant back-
ground) reflecting Eq. (22).
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FIG. 8: Color online. Subset of experimental THE resonances
(recorded at P0 = 2.3µW) for applied longitudinal fieldsBz of
3.9, 2.3, 0.6, 7.9, - 1.1, - 3.9, and 13 nT (in order of increasing
resonance width). Data in blue and Lorentzian fits in red.
Error bars represent 2σ.

F. Determination of the relaxation rates

Each Lorentzian fit yields the amplitude, Ax(ωz), and
the half-width at half maximum, γx(ωz), of the Hanle
curve. However, the extraction of the relaxation rates
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FIG. 9: Color online. Half-widths at half maximum of the
THE resonances from Fig. 8 (dots) together with fit (solid
line) according to Eq. (31). Statistical error bars (2σ) are on
the order of the dot size.
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from the transverse Hanle data is less straightforward
than in the case of the longitudinal Hanle data.
The linewidth function, shown in Fig. 9 presents no

problem and can be fitted by (25), reexpressed in terms
of the applied field and residual field components

γ⊥(ωz) =

√

γ1γ2 + δω2
y +

γ1
γ2

(ωz + δωz)2 . (31)

Because of the correlation between γ1γ2 and δω2
y, the fit

permits only to extract the ratio γ1/γ2 of the relaxation
rates.
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FIG. 10: Color online. Amplitudes of the LHE resonances
from Figure 8 (dots) together with fit (solid line) according
to Eq. (32).

The amplitude function is more problematic. Although
it seems at first glance that the resonances of Fig. 8
demonstrate the independence of their amplitudes on the
value of the longitudinal parameter field as predicted by
theory (Eq. (24)), a plot of the fitted amplitudes (Fig. 10)
shows that the amplitudes have a small longitudinal field
dependence of a few %. The origin of this feature is the
presence of a residual transverse field component δωy, as
can be seen by including that component in (24)

A⊥(ωz) = κunpol
0 LP0

[

1−
δω2

y
γ1

γ2
(ωz + δωz)2 + γ1γ2 + δω2

y

]

.

(32)
The expression reduces to (24) only when δωy=0. The
poor signal/noise ratio of the data in (8) and parameter
correlations in (32) do not allow their use for extracting
information on the relaxation rates. Nonetheless, a fit
of the data with (32) permits to obtain the asymptotic

value A∞
⊥ ≡ A⊥(ωz → ∞) = κunpol

0 LP0 with a good
accuracy.
For the extraction of both γ1 and γ2 we found it useful

to introduce the combination

G⊥(ωz) ≡
A⊥(ωz) γ

2
⊥(ωz)

κunpol
0 LP0

(33)

in which the quantities in the numerator are the fitted
parameters of the individual Hanle resonances, and where

the denominator is the value obtained from the fit of
A⊥(ωz), outlined above.
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FIG. 11: Color online. G⊥ data calculated from the fit pa-
rameters of the transverse Hanle resonances according to (33),
together with fit using the function defined by (34).

Combining (31) and (32), one sees that the theoretical
expression for the G⊥-function is given by the parabolic
dependence

G⊥(ωz) =
γ1
γ2

(ωz + δωz)
2 + γ1γ2 , (34)

the fitting of which to the G⊥ data yields the product and
ratio, and hence the individual values of the relaxation
rates (Fig. 11).

G. Intrinsic relaxation rates

We have repeated the measurements described above
for a range of laser power levels. The resulting linewidths
are shown in Fig. 12.
At low powers both γ1 and γ2 depend in a linear man-

ner on the laser power P0, while their power broaden-
ing becomes non-linear for powers above ≈1µW, as ex-
pected from the discussion in paragraph III B. We have
fitted the power broadening data by (phenomenologi-
cal) weighted second order polynomials, whose intercepts
yield the intrinsic relaxation rates

γ10
2π

≡ γ1(P0 = 0)

2π
= 1.8(1)Hz, and (35)

γ20
2π

≡ γ2(P0 = 0)

2π
= 2.1(1)Hz , (36)

and linear power broadening rates

1

2π

d γ1
dP0

= 1.1(1)
Hz

µW
(37)

1

2π

d γ2
dP0

= 0.68(9)
Hz

µW
. (38)

We note that at low powers γ2 < γ1, while at large powers
γ1 > γ2. This can also be seen from a plot of the ratio
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FIG. 12: Color online. Dependence of the longitudinal and
transverse relaxation rates on laser power. Data from the
LHE runs in red, from the THE runs in blue. The solid line
represents a weighted fit of a second order polynomial to all
data points. The dashed line represents the constant and
linear part of that fit.

Rγ = γ2/γ1 represented in Fig. 13, which shows that
γ1 ≈ γ2 for P0=2.17(15) µW.
The solid line in Fig. 13 represents a weighted third

order polynomal, which is meant to guide the eye, since
we have no algebraic theoretical prediction for the power
dependence of Rγ . The ratio of relaxation rates extrap-
olates to Rγ(P0 → 0)=1.09(2).

The T1(= γ−1
1 ) time in paraffin-coated cells is believed

to be mainly due to losses of atoms into the (uncoated)
sidearm of the cell that connect the cell volume to the
reservoir containing the solid Cs droplet (reservoir effect)
and to imperfections in the coating layer. Following the
arguments and equations presented in [26] we can esti-
mate the effective loss surface of the inner cell wall to be
on the order of 4 mm2 (≈ 0.1% of the total inner cell
surface), which is 10 times larger than the cross section
of the capillary leading to the reservoir.
Two years ago we have measured the intrinsic relax-

ation rates in the same cell using the technique of op-
tically detected magnetic resonance described in [26].
That previous measurements yielded larger values of the
intrinsic relaxation rates of γ10/2π = 2.3(2) Hz and
γ20/2π = 3.5(1) Hz. The T1 time determined by ODMR
is compatible with its present determination (38), while

0 1 2 3 4 5 6 7
0.7

0.8

0.9

1.0

1.1

laser power P0 HΜWL

R
Γ
=
Γ

2
�Γ

1

P0
*

FIG. 13: Color online. Dependence of the ratio of relaxation
rates on laser power. Data from the LHE runs in red, from
the THE runs in blue. The solid line is a Lorentzian fit (see
the text). P ∗

0 denotes the power for which γ1 = γ2.

the T2 determined by the Hanle technique time is 1.7(1)
times larger than the one obtained in the ODMR study.
A possible explanation might be field inhomogeneities or
field instabilities (due to current source fluctuations) in
the ODMR experiment to which the GSHE technique is
not sensitive since it uses B ≈ 0.

IV. CONCLUSION AND OUTLOOK

We have derived an algebraic expression for the shape
of ground state Hanle resonances. The expression is valid
for magnetic fields of arbitrary orientation and for tran-
sitions between states with arbitrary angular momenta,
as long as the laser power is kept sufficiently low. We
have described an experimental method for assessing the
range of light powers that ensure the validity of the model
predictions. Our detailed study of the amplitudes and
widths of longitudinal and transverse Hanle resonances
are fully compatible with the model predictions. We have
applied the method to determine the intrinsisc longitudi-
nal and transverse relaxation rates of spin-oriented atoms
in a paraffin-coated cesium vapor cell by extrapolating
the light power dependence of the rates to zero power.
The relaxation rates are obtained with an accuracy of
≈5%.
The method described here complements our standard

procedure for assessing the quality of in-house produced
coated cells[26]. The latter method is based on optically
detected magnetic resonances and the determination of
intrinsic relaxation rates involves the extrapolation of
both the rf power and the laser power to zero values.
We have also derived algebraic expressions for the

GSHE excited with linearly polarized light. In that case
the spin polarization of the ground state is determined

by the second-rank atomic alignment tensor A(2)
q , whose
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relaxation is described by three independent relaxation
rates, γ|q|=0,1,2. We are currently making detailed mea-
surements of the characteristics of the GSHE with linear
light polarization. The results will be reported in a forth-
coming publication.

Appendix A: Resonant light absorption by
spin-polarized atoms

The absorption coefficient for σ+-polarized light on the
|6S1/2, F = 4,mF >→ |6P1/2, F = 3,mF + 1 > sublevel
transition is proportional to the square of the transition
dipole matrix element, itself proportional to the square
of the corresponding 3j-symbol

κ4,mF→3,mF+1 = K

(

3 1 4
−mF − 1 1 mF

)2

(A1)

=
K

504
(mF − 3)(mF − 4) . (A2)

In (A2) we have assembled all common proportionality
factors in the constant K. Note that the algebraic ex-
pression of the 3j-symbol reflects well the fact that the
mF = 3, 4 sublevels are dark states for σ+ light. The
total absorption coefficient is given by the weighted sum
of (A2)

κ =
4

∑

mF=−4

pmF
κ4,mF→3,mF+1 (A3)

where the pmF
are the relative,

∑

pmF
=1, sublevel pop-

ulations of the F=4 ground state.
Inserting the thermal populations pmF

=(2F+1)−1

=1/9, one obtains the unpolarized absorption coefficient

κunpol =
K

9

4
∑

mF=−4

κ4,mF→3,mF+1 =
K

27
. (A4)

The polarized absorption coefficient is obtained by in-
serting (A2) into (A3), yielding

κpol =
K

504

(

12
∑

pmF
− 7

∑

mF pmF
+
∑

m2
F pmF

)

.

(A5)
We define the longitudinal orientation,Pz, and the longi-
tudinal alignment, Azz , as

Pz ≡ 1

4

∑

mF pmF
(A6)

and

Azz ≡ 1

24

∑

[3m2
F − F (F + 1)] pmF

(A7)

=
1

24

∑

(3m2
F − 20) pmF

, (A8)

normalized such that Pz and Azz have unit value when
the medium is in the stretched state defined by pmF

=
δmF ,4. Introducing (A6) and (A8) into (A5) we obtain

κpol = K

(

1

27
− 1

18
Pz +

1

63
Azz

)

(A9)

= κunpol

(

1− 3

2
Pz +

3

7
Azz

)

. (A10)

where we have used (A4).

Appendix B: Steady state polarization

The evolution of the vector polarization ~P in a

static field ~B with corresponding Larmor frequencies
~ω = (ωx, ωy, ωz) is described by the Bloch equations

~̇P = ~ω × ~P − ~Prelax , (B1)

whose components read




Ṗx

Ṗy

Ṗz



 =





ωx

ωy

ωz



×





Px

Py

Pz



−





γ2Px

γ2Py

γ1(Pz − P0)



 ,

(B2)
where P0 is the spin polarization created by optical
pumping.

The steady state solutions, ~̇P = 0 , of Eq. (B2) are
readily obtained and yield

Pz = P0
ω2
z + γ2

2

ω2
z + γ2

2 + γ2

γ1
(ω2

x + ω2
y)

, (B3)

which is equivalent to Eq. (10).
It is interesting to note that in the case γ1 = γ2 ≡ γ.

Eq. (B3) can be written as

Pz

P0
=

1 + β2
z

1 + β2
, (B4)

where βi = ωi/γ and β = |~β|. This equation can be
expressed in the compact form

Pz

P0
=

1
∑

q=−1

|Cq
1 (θ, ϕ)|2

1 + q2 β2
, (B5)

where the C1q are the spherical components of the unit
vector

Cq
1 (θ, ϕ) =

√

4π

3
Y q
1 (θ, ϕ) . (B6)

Appendix C: Coil calibration

We calibrate the three coils Helmholtz coils using opti-
cally detected magnetic resonance (ODMR) signals with
the cell in the same position as for the Hanle measure-
ments proper (procedure similar to the one described in
Ref. [27]).
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FIG. 14: Color online. Field geometries for calibrating the Bx-coils (a), the By-coils (b), and the Bz-coils (c), respectively.
PD: photodiode, LIA: lock-in amplifier, Osc.: oscilloscope.

1. Calibration of Bz coil

We use the Mz magnetometer technique for calibrating
the coils producing the field component Bz (Fig.14.c).

A weak magnetic field ~Brf oscillating at the frequency
νrf of several hundred Hz is applied in the y-direction.
This field drives magnetic resonance transitions when the
condition

ωrf = 2πνrf = γF | ~Btot| =
√

B2
x +B2

y +B2
z (C1)

is met. Before the calibration measurements we minimize
at best the residual static field components δBx and δBy

using the technique described in the main text. Since we
cannot assure that all residual field components vanish,
we have to express Eq. (C1) as

νrf =
γF
2π

| ~Btot| =
√

δB2
x + δB2

y + (εz Vz + δBz)2 , (C2)

where Vz is the voltage controlling the current source that
drives the Bz coil and εz ([εz]=Hz/mV) is the sought
calibration constant.
We record variations of the transmitted light inten-

sity when the longitudinal field component ωz is scanned
around ωrf . We measured a set of such spectra for var-
ious discrete values of νrf in the range between 400 and
1700 Hz. Each spectrum was fitted by a Lorentzian on
a flat background and the voltage V ∗

z of the resonance
position was determined by a Lorentzian fit. A fit of
(C2) to the data thus obtained (Fig. 15) determines the
calibration constant εz.

2. Calibration of Bx and By coils

For the calibration of the transverse field coils we ap-
plied the Mx-magnetometer technique that relies on the
fact that the transmitted light intensity is modulated at
the frequency νrf when the magnetic field is neither par-

allel nor perpendicular to the propagation direction, k̂, of
the light. The amplitude of the intensity modulation is
extracted by a lock-in amplifier tuned to νrf . For calibrat-
ing the Bx-coil we had the weak field oscillating in the y-
direction at a fixed frequency of νrf=864.5 Hz (Fig.14.a).
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FIG. 15: Color online. Calibration of Bz coil (see the text).

We then applied a set of constant fields Bx and scanned
Bz over the (single) magnetic resonance line. From a
Lorentzian fit to the line we determined the voltage V ∗

z ,
and hence the frequency ν∗z = γF εz V

∗
z /2π of the reso-

nance line center. According to (C1), the relation ν∗z (Vx)
reads

ν∗z = −δνz +
√

ν2rf − δν2y − (εx Vx + δνx)2 , (C3)

which allows inferring the calibration constant εx from a
fit (Fig. 16).
The By-coil is calibrated in the same manner

(Fig.14.b).
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FIG. 16: Color online. Calibration of Bx-coil (see the text).
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