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We develop an approach, by calculating the autocorrelation function of spins, to derive the mag-
netic field gradient induced transverse (T2) relaxation of spins undergoing restricted diffusion. This
approach is an extension to the method adopted by McGregor. McGregor’s approach solves the
problem only in the fast diffusion limit; however, our approach yields a single analytical solution
suitable in all diffusion regimes, including the intermediate regime. This establishes a direct con-
nection between the well-known Torrey’s slow diffusion result and the fast diffusion result. We
also perform free induction decay measurements on spin-exchange optically polarized 3He gas with
different diffusion constants. The transverse relaxation profiles are compared with the theory and
satisfactory agreement has been found throughout all diffusion regimes. In addition to the transverse
relaxation, this approach is also applicable to solving the longitudinal relaxation (T1) regardless of
the diffusion limits. It turns out that the longitudinal relaxation in the slow diffusion limit differs
by a factor of two, compared with that in the fast diffusion limit.

PACS numbers: 33.25.+k 32.60.+i 34.10.+x 51.20.+d

I. INTRODUCTION

Longitudinal relaxation (T1 relaxation) and transverse
relaxation (T2 relaxation) are the most important param-
eters in Nuclear Magnetic Resonance (NMR), Magnetic
Resonance Spectroscopy and Magnetic Resonance Imag-
ing (MRI). Many factors can contribute to T1 and T2

relaxations. It is well known that, for liquid or gaseous
samples, such as spin polarized 3He, diffusion in a non-
uniform magnetic field can cause both T1 and T2 relax-
ations. In this manuscript, 1/TG

1 and 1/TG
2 represent

the relaxation rates solely due to diffusion in a magnetic
field gradient. The transverse relaxation due to diffusion
in free space was first solved by Torrey [1]. He general-
ized the Bloch equation by adding a diffusion term and
unveiled that the envelope of the transverse component
of the magnetization decays as

A(t) = exp(−1

3
Dγ2G2t3), (1)

where D is the diffusion constant, γ is the gyromag-
netic ratio of the spin and G is a constant gradient. In
practice, most diffusion happens in confined spaces, and
the stochastic diffusion process is restricted, which makes
the problem more complicated. Robertson [2] solved the
Bloch-Torrey equation [1] in restricted geometries, by im-
posing boundary conditions to the equation. His approx-
imate analytical solution showed that the envelop decays
exponentially with a constant relaxation rate. This re-
sult is valid when 4Dt >> L2, where L is the distance
between the boundaries. This limit is also known as fast
diffusion limit or motional averaging regime, where spins
have moved across the geometry many times in a time
period t and therefore any fluctuation in the magnetic
field averages out and a faster diffusion actually reduces
the relaxation. Neuman [3] solved the same problem by
calculating the accumulated phases of spins with the as-

sumption that the relative phase distribution of spins is
Gaussian in both the slow diffusion and fast diffusion
limits. His slow diffusion result reproduces the free dif-
fusion result, Eq. (1), and the fast diffusion result is the
same as that of Robertson. In the intermediate regime,
the Gaussian Phase Approximation (GPA) fails. How-
ever, it is crucial to quantitatively understand the inter-
mediate regime because many experiments have shown
edge enhancement phenomena in the slow diffusion and
intermediate regime, which was recognized later as a lo-
calization regime [4]. People have observed that, when
water diffuses in microscopic structures, the MRI signal
is enhanced at the edge of the structure [5–9]. Saam et al.

have also showed a similar edge enhancement effect, using
hyperpolarized 3He gas in cells with dimensions of about
1 cm [10]. This effect is ascribed to the more restricted
diffusion at the boundary, which lessens the relaxation,
and was first described quantitatively by De Swiet [11],
using Airy functions. Airy functions have been shown
to be the eigenfunction of the Bloch-Torrey equation in
the intermediate regime [12]. Axelrod also showed that
although GPA fails in the intermediate regime, it can be
used to interpolate the result in this regime, which turns
out to be close to the exact solution [13]. More detailed
discussion on the restricted diffusion in various limits can
be found in a review article [14] and references therein.

Despite of the widely used GPA method, Cates et al.

used the second order time-dependent perturbation the-
ory and carried out an expansion of spin density ma-
trix to obtain both longitudinal and transverse relax-
ation rates for a spherical cell [15]. Their results works
only in the fast diffusion regime, and they further di-
vided the fast diffusion regime into two limits: the high
pressure limit ω0R

2/8πD >> 1 and the low pressure
limit ω0R

2/8πD << 1, where ω0 is the Larmor preces-
sion frequency and R is the radius of the spherical cell.
These two limits can be thought of as the characteristic
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spin precession time τl = 2π/ω0 being much shorter or
longer than the characteristic diffusion time in the cell
τd = R2/4D, respectively. McGregor [16] used Redfield
theory discussed in [17] to solve the same problem also
in the fast diffusion regime. Redfield theory is a general-
ized treatment of the second-order time-dependent per-
turbation theory. It establishes a set of differential equa-
tions obeyed by the spin density matrix. Therefore, it is
closely related to the treatment of Cates et al. [18]. By
calculating autocorrelation function of spin under differ-
ent geometries, McGregor was able to obtain transverse
relaxation rates in the fast diffusion limit for different
geometries, including slabs, cylinders and spheres.
In this manuscript, we make an extension to McGre-

gor’s approach, which yields an analytical solution to
the transverse magnetization suitable for all diffusion
regimes. When 4Dt << L2, this solution reproduces
Torrey’s free diffusion result; when time 4Dt ≈ L2, it is
in the intermediate regime. In these two regimes, edge
enhancement effect is also observed. Eventually, when
4Dt >> L2, it is in the motional averaging regime and
a peak located at the center of the frequency spectrum
is observed. We also performed Free Induction Decay
(FID) measurements on polarized 3He gas to verify the
theoretical results. By changing the number density of
the gas, the observed transverse relaxation happens in
different diffusion regimes. When the decay envelopes are
compared to the theoretical predictions, they are found
to be in good agreements, especially in the intermedi-
ate regime. In addition to the transverse relaxation, our
approach can also be used to calculate longitudinal relax-
ation in different regimes. We found that the longitudinal
relaxation rate 1/TG

1 in the slow diffusion limit is twice as
fast as that in the fast diffusion limit. As diffusion in the
fast diffusion regime is more restricted, it could explain
this factor of two difference. In this manuscript, we solve
the problem in 1D for clarification purpose. However,
it can be easily extended to 3D with complex geome-
tries since one only needs to calculate the corresponding
probability density function. Once the density function
is known, the relaxation rate can be calculated readily,
which makes this approach suitable for numerical simu-
lations of complex geometries.

II. REDFIELD THEORY FOR MAGNETIC

FIELD GRADIENT-INDUCED RELAXATIONS

For simplicity, let spins diffuse in a cubic cell with
length L. A non-uniform magnetic field is applied along
the ẑ direction. At time t = 0, we track a spin starting
at ~x′

c. As time evolves, the expected position of the spin
will change due to the diffusion process. Therefore, we
use 〈~x′(t)〉 to represent the expected position of spin at
some later time t and has the property that 〈~x′(0)〉 = ~x′

c.
Since the field is non-uniform over the box, the spins also
see fluctuating magnetic fields during diffusion. The fluc-

tuating field ~B′ can be treated as a perturbation to the

zeroth order mean field ~B(〈~x′〉) by taking Taylor expan-
sion around ~x = 〈~x′〉,

~B′ ≡ ~B(~x(t))− ~B(〈~x′(t)〉) = ~∇ ~B · (~x(t)− 〈~x′(t)〉). (2)

As described in [17], Redfield theory gives solutions to the
problem with fluctuating magnetic fields. In our case,
the applied field is constant in time; however the time
dependence appears because of the diffusion process. The
equation of motion for the transverse and longitudinal
components of the spin can be written as [17]

d

dt
〈ST 〉 ≡

d

dt
(〈Sx〉+ i 〈Sy〉) = γ(〈ST 〉 ×B)−

γ2

{
1

2

[

JB′

x
(ω) + JB′

y
(ω)

]

+ JB′

z
(0)

}

〈ST 〉 (3)

d

dt
〈Sz〉 = −γ2

[

JB′

x
(ω) + JB′

y
(ω)

]

〈Sz〉 , (4)

where ST is the transverse component of spins, B =
Bz(〈~x′〉)ẑ, ω = γBz(〈~x′〉), the Larmor precession fre-
quency of spins at field strength Bz(〈~x′〉), and JB′

x
is

defined as [17]

JB′

x
(ω) =

∫ t

0

B′
x(t− τ)B′

x(t)e
−iωτdτ. (5)

The bar denotes an ensemble average of the autocorre-
lation of the perturbed magnetic field. JB′

z
(0) has the

similar definition with B′
x replaced by B′

z and ω = 0.
The first term in Eq. (3) describes the precession of the
spin under the field Bz(〈~x′〉), and the second term gives
the transverse relaxation rate 1/TG

2 ; whereas Eq. (4)
describes the longitudinal relaxation.
It should be noted that Eq. (5) was originally written

in [17] as an integral from 0 to infinity. It was argued
that the autocorrelation of the magnetic field would van-
ish quickly after a critical time τc, and consequently, in-
tegration from 0 to infinity introduces negligible errors as
long as t >> τc. For the case considered here, τc can be
defined as τc ≡ (L/2)2/4D. When the diffusion is slow,
the above approximation is invalid, and Eq. (5) must be
used. By utilizing Eq. (2) and realizing the fact that dif-
fusions in x̂, ŷ and ẑ directions are independent of each
other, JB′

x
(ω) can be re-written as

JB′

x
(ω) = (

∂B′
x

∂x
)2Jx(ω) + (

∂B′
x

∂y
)2Jy(ω) + (

∂B′
x

∂z
)2Jz(ω),

(6)
where Jx(ω) is expressed as

Jx(ω) =

∫ t

0

(x(t− τ) − 〈x′(t)〉)(x(t) − 〈x′(t)〉)e−iωτdτ,

(7)
and similar for Jy(ω) and Jz(ω). In general, Jx(ω) is
time-dependent and the relaxation rates are also time-
dependent. However, it will be shown that, in the fast
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diffusion limit, Jx(ω) approaches some constant values
and Jx(ω) = Jy(ω) = Jz(ω). Hence, one can define the
longitudinal relaxation rate 1/TG

1 as

1

TG
1

= γ2(|∇Bx|2 + |∇By|2)ℜ [Jx(ω)] , (8)

where ℜ [·] indicates taking the real part. Hence, in the
fast diffusion limit, the transverse relaxation rate 1/TG

2

can also be defined as

1

TG
2

=
1

2TG
1

+ γ2 |∇Bz|2 Jx(0). (9)

A. Magnetic Field Gradient-induced Transverse

Relaxation Rate 1/TG
2

The expected position of spin 〈x′(t)〉 at time t can be
computed as

〈x′(t)〉 =
∫ L/2

−L/2

xρ(x, t|x′

c, 0)dx, (10)

where ρ(x, t|x0, t0) is the conditional probability density
function of spin at position x at time t, if the spin is at
x0 at time t0 (t0 = t− τ). It is apparently that Eq. (10)
satisfies the condition 〈x′(0)〉 = x′

c.

In order to compute Jx(0), one needs to calculate po-
sition autocorrelation function, which, by definition, can
be expressed as

(x(t− τ)− 〈x′〉)(x(t) − 〈x′〉) =
∫ L/2

−L/2

∫ L/2

−L/2

(x0 − 〈x′〉)(x − 〈x′〉)ρ(x, t|x0, t0)ρ(x0, t0| 〈x′〉 , 0)dxdx0. (11)

Due to the symmetry of the cubic cell, ρ(x, t|x0, t0) can
be found by decomposing the 3D diffusion equation into
1D problem, subject to the boundary condition

∂

∂x
ρ(x, t|x0, t0)|x=±L/2 = 0,

and the initial condition

ρ(x, t0|x0, t0) = δ(x − x0).

The solution is found to be

ρ(x, t|x0, t0) =
1

L
+

2

L

∞∑

n=1,3

e−
n2π2Dτ

L2 sin(
nπx

L
) sin(

nπx0

L
)

+
2

L

∞∑

n=2,4

e−
n2π2Dτ

L2 cos(
nπx

L
) cos(

nπx0

L
).

(12)

By substituting Eq. (12) into Eq. (11), one obtains

(x(t− τ) − 〈x′〉)(x(t) − 〈x′〉) = 8L2

π4

∞∑

n=1,3

1

n4
exp(−n2π2Dτ

L2
) + 〈x′〉2

− 4 〈x′〉L
π2

∞∑

n=1,3

1

n2
exp(−n2π2Dt

L2
) sin(

nπ 〈x′〉
L

) sin(
nπ

2
)

− 4 〈x′〉L
π2

∞∑

k=2,4

1

k2
exp(−k2π2Dt0

L2
) sin(

kπ 〈x′〉
L

) sin(
kπ

2
)

+
16L2

π4

∞∑

n=1,3

∞∑

k=2,4

k2 + n2

n2(k2 − n2)2
exp(−n2π2Dτ

L2
) exp(−k2π2Dt0

L2
) cos(

kπ 〈x′〉
L

) cos(
kπ

2
). (13)
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Instead of substituting Eq. (13) into Jx directly, one can
first take the slow diffusion or fast diffusion limits on it.
It can be shown (see Appendix) that, in the slow diffusion
limit 4Dt << (L/2)2, Eq. (13) is simplified to

(x(t − τ)− 〈x′〉)(x(t) − 〈x′〉) ≈ 2D(t− τ). (14)

Jx(0) is then calculated as

Jx(0) =

∫ t

0

2D(t− τ)dτ = Dt2. (15)

This is also true for Jy(0) and Jz(0). As Jx,y,z(0) is time-
dependent, the relaxation rate is also time-dependent.
One has to substitute Jx,y,z(0) into Eq. (3) directly to
compute ST ,

d

dt
〈ST 〉 = γ(〈ST 〉×B(〈~x′〉))−(

1

2T1
+γ2|∇Bz |2Dt2) 〈ST 〉 .

(16)
If one assumes that the gradient in one direction

∂Bz/∂x ≡ G dominates, then |∇Bz| ≈ G and Bz =
Bz(0) + G 〈x′〉 ≈ Bz(0) + Gx′

c. 〈x′〉 ≈ x′
c because spins

are localized in the slow diffusion limit and the expected
position at time t will not change significantly from their
initial positions. Integrating upon time, Eq. (16) be-
comes

〈ST 〉 = S0 exp[iγ(Bz(0)+Gx′

c)t] exp(−
γ2G2Dt3

3
+

t

2TG
1

).

(17)
This coincides with 1D diffusion result derived by Torrey
[1]. Torrey’s derivation assumes free diffusion without
boundaries, which is equivalent to the slow diffusion in a
confined volume, as boundaries are not present to spins
when diffusion is slow.
In the fast diffusion limit, 4Dt >> (L/2)2, all the ex-

ponential terms containing t in Eq. (13) vanish, so does

〈x′〉2 term, which can be proved easily by taking the limit
4Dt/L2 → ∞ in Eq. (10). Therefore, the only surviving
term is the first one,

(x(t− τ) − 〈x′〉)(x(t) − 〈x′〉) =
∞∑

n=1,3

8L2

n4π4
e−

n2π2Dτ

L2 .

(18)
Jx(0) in this case becomes

Jx(0) =

∫ t

0

∑

n=1,3

8L2

n4π4
e−

n2π2Dτ

L2 dτ =
L4

120D
, (19)

where the fact that 4Dt >> (L/2)2 is used again after
the integration. Jy(0) and Jz(0) are the same as Jx(0)
in this limit. Substituting them back into Eq. (3), one
obtains

〈ST 〉 = S0 exp[iω0t− (
1

2T1
+

γ2L4 |∇Bz|2
120D

)t]. (20)

As 〈x′(t)〉 approaches zero in the fast diffusion limit, all
the spins precess at the same central frequency ω0 =

γBz(0), no matter where the spin is initially. This is
also known as motional averaging regime. If gradient in
one direction dominates the other two (|∇Bz | ≈ G), the
transverse component decays with a constant relaxation
rate 1/TG

2 given by

1

TG
2

=
1

2TG
1

+
γ2L4G2

120D
. (21)

This result is also derived by McGregor [16] and Robert-
son [2] using GPA method. However, it will be shown
in the discussion section that, by numerically calculating
Jx(0) using Eq. (13) without any approximation, one can
obtain the frequency spectrum of the precession signal in
various limits, which cannot be obtained from McGre-
gor and Robertson’s methods. As a constant gradient is
applied, the frequency spectrum is actually a frequency
encoded 1D image. In the slow diffusion limit, peaks
are observed at the edge of the geometry, known as edge
enhancement; whereas in the fast diffusion limit, a reso-
nance peak is observed at the center of the spectrum.
In the intermediate region 4Dt ≈ (L/2)2, one has to

substitute Eq. (13) directly into Jx(0) and then calcu-
late Eq. (3). Unfortunately, no concise analytical form
of ST (〈x′〉) can be obtained in this regime. Hence, a
numerical calculation of ST (〈x′〉) is performed and com-
pared with Free Induction Decay (FID) measurements on
gaseous 3He cells, and a good agreement in the interme-
diate regime is shown, see Sec. III.

B. Magnetic Field Gradient-induced Longitudinal

Relaxation Rate 1/TG
1

In order to compute Eq. (4), one needs to obtain Jx(ω)
first. In the slow diffusion limit (4Dt << (L/2)2), Eq.
(14) should be used,

Jx(ω) =

∫ t

0

2D(t− τ)e−iωτdτ

=
2D(1− e−iωt − iωt)

ω2
. (22)

Since, in most cases, ω >> 1, ℜ(1 − e−iωt) = 1 − cosωt
is a fast oscillating function, which averages to 1. Con-
sequently, substituting ℜ[Jx(ω)] into Eq. (8), the longi-
tudinal relaxation has an averaged decay rate as

1

TG
1

= γ2(|∇Bx|2 + |∇By|2)
2D

ω2
= 2D

|∇Bx|2 + |∇By|2
B2

0

,

(23)
where ω = γBz(〈~x′〉) ≈ γBz(0) ≡ γB0.
In the fast diffusion limit (4Dt >> (L/2)2), Eq. (18)

should be used to calculate Jx(ω),

Jx(ω) =
8L2

π4

∫ ∞

0

∞∑

n=1,3

1

n4
e−

n2π2Dτ

L2 e−iωτdτ

=
8L2

π4

∞∑

n=1,3

1

n4

1
n2π2D

L2 + iω
. (24)
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Hence, the real part of Jx(ω) is written as

ℜ[Jx(ω)] =
8L4D

π2

∞∑

n=1,3

1

n2

1

n4π4D2 + ω2L4
. (25)

In the fast diffusion limit with high pressure (τd/τl =
ωL2/32πD >> 1), the sum in Eq. (25) is simplified to

∞∑

n=1,3

1

n2

1

ω2L4
=

π2

8ω2L4
, (26)

and 1/TG
1 in this limit becomes

1

TG
1

= D
|∇Bx|2 + |∇By|2

B2
0

, (27)

It is interesting to see that there is a factor of 2 difference
between the slow diffusion 1/TG

1 and the high pressure
fast diffusion 1/TG

1 . More discussion on this topic is pre-
sented in Sec. IV.
In the fast diffusion with low pressure (τd/τl =

ωL2/32πD << 1), the sum in Eq. (25) becomes

∞∑

n=1,3

1

n6

1

π4D2
=

π2

960D2
, (28)

and the resultant 1/TG
1 in the low pressure limit is

1

TG
1

=
γ2L4

120D
(|∇Bx|2 + |∇By|2). (29)

This result is an analogy to the low pressure 1/TG
1 de-

rived by Cates et al. for a spherical cell geometry [15].
For geometries other than sphere and box, one only needs
to recalculate Eq. (13) and the corresponding 1/TG

1 can
be obtained readily through steps illustrated above. This
also applies to the transverse relaxation rate 1/TG

2 when
other geometries are considered.

C. Magnetic Field Gradient-induced Resonance

Frequency Shift

In Eq. (3), the imaginary part of the complex function
JB′

x
and JB′

y
gives rise to the shift of precession frequency

δω,

δω =
−γ2

2

[

|∇Bx|2 + |∇By|2
]

ℑ [Jx(ω)] , (30)

where ℑ [·] means taking the imaginary part. In the slow
diffusion limit, substituting Eq. (22) into Eq. (30) yields

δω =
γDt

B0
(|∇Bx|2 + |∇By|2). (31)

It is interesting to note that, in the slow diffusion limit,
the frequency shift increases linearly as a function of

Helmholtz coils

Gradient coils (Maxwell pair)

Pickup coils

RF coils (Saddle pair)

Measurement

cell (Cyl.)

Detachable cellto Turbo pump

Intermediate volumes

FIG. 1: The apparatus for measuring the transverse relax-
ation of 3He in the cylindrical measurement cell. 3He in the
detachable cell has been polarized by SEOP before it is trans-
ferred to the measurement cell.

time, different from the t3 dependence in the transverse
relaxation rate. In addition, Eq. (31) does not depend on
L as expected because the slow diffusion limit is equiva-
lent to the free diffusion, in which spins do not see bound-
aries.
In the fast diffusion limit with high pressures, substi-

tuting Eq. (24) into Eq. (30) and taking the correspond-
ing limit yields

δω =
γ2L2

12ω0
(|∇Bx|2 + |∇By|2) (32)

In the fast diffusion limit with low pressures, it yields

δω =
17ω0γ

2L8

20160D2
(|∇Bx|2 + |∇By|2) (33)

These two results are analogies to the frequency shifts
derived in [15] for a spherical cell.

III. EXPERIMENTS AND RESULTS

FID measurements have been performed to measure
transverse relaxation of polarized 3He gas at 34.5 kHz.
The 3He gas is polarized in a 2 inch diameter spheri-
cal detachable cell via Spin-Exchange Optical Pumping
(SEOP) technique. The cell is routinely filled with 760
torr 3He and 100 torr N2. After

3He is polarized, the de-
tachable cell is connected to a measurement cell sitting
at the center of the Helmholtz coils through a 2 mm in-
ner diameter glass tube. The measurement cell is made
of bare pyrex glass in a cylindrical shape with 2 inch for
both the diameter and the length. Three intermediate
volumes made of pyrex and a turbo pumping line are
connected to the glass transfer tube between the detach-
able cell and the measurement cell. The schematics of
the experimental apparatus is shown in Fig. 1. Before
the measurement, polarized 3He atoms are allowed to dif-
fuse into intermediate volumes first so that the number
density of 3He in the detachable cell is diluted. The inter-
mediate volumes are then isolated and the valve between
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the detachable cell and the measurement cell is opened.
Consequently, the rest of 3He in the detachable cell can
diffuse freely into the measurement cell. When the pres-
sure in the two cells reaches equilibrium, the valve is
closed and FID measurements are carried out.
A pair of 6 inch diameter pickup coils in Helmholtz coil

configuration is used, so that the coil has a rather uniform
sensitivity over the entire cylindrical cell. Each coil has
2000 turns of 30 AWG wires to maximize the signal. The
precession signal at 34.5 kHz is lock-in detected and the
envelop of the signal is extracted. The RF coil is a pair
of saddle coils with a length of 3.5 inch, a diameter of 3
inch and the opening angle is 120 degrees. Each coil has
10 turns of AWG 22 wires. The axis of the pickup coil,
the RF field direction and the magnetic holding field are
perpendicular to each other. A RF pulse with a tipping
angle∼ 20 degrees is sent to the measurement cell. A pair
of gradient coils in Maxwell coil settings [19] is also added
to provide a uniform field gradient of 2.3 mG/cm in the
holding field or ~z direction. The background gradients
are measured to be much smaller than this value and
therefore ignored in the calculation shown below.
In Fig. (2), we show the transverse relaxation mea-

surements of 3He with pressures of 327 torr, 2.94 torr
and 1.59 torr. The corresponding diffusion constants are
3.5, 388 and 717 cm2/s, respectively (scaled from 1.5
cm2/sec for 760 torr 3He, which is measured using Carr-
Purcell-Meiboom-Gill method [20]). When using the ra-
tio (L/2)2/4Dt to characterize the diffusion regime, it
is clear that 3.5 cm2/s is in the slow diffusion regime;
whereas 717 cm2/s is in the fast diffusion regime and 388
cm2/s is in the intermediate regime close to fast diffu-
sion limit. When diffusion is slow, the decay of signal
is mainly due to the dephasing of the spin precessing at
different frequencies. This can be understood by taking
D as zero, so that the exponential term in Eq. (17) is
identical to one and a rough estimate of the overall signal
Sall is simply integrating ST over the entire cell,

Sall ≈
∫ −L/2

L/2

ei(ω0+γGx′)dx′ ∝ eiω0tsinc(
γGLt

2
) (34)

where sinc(x) is defined as sin(x)/x and the first zero of
sinc function is at γGLt = 2π. Using the real values of
G and L, one can determine t = 26 ms. This value is the
same as the experimentally measured signal vanishing
time t ≈ 26 ms for the case D=3.5 cm2/s, see Fig. (2).
When diffusion is fast, spins will more or less precess at

the same frequency (motional averaging) and the diffu-
sion term dedicates the signal decay. As no simple form
of ST can be obtained in the intermediate regime, we
numerically calculate ST (〈x′〉) using the general form of
autocorrelation function, Eq. (13). To evaluate Eq. (13),
we compute one hundred terms in each of the first three
sums and four hundred terms in the last double sum.
We also evaluate 〈x′〉 up to 100 terms. Once ST (〈x′〉) is
known, it is weighted by B(〈x′〉), the sensitivity of the
Helmholtz pickup coil at position 〈x′〉, and then inte-
grated over the entire cylindrical cell to mimic the mea-

Simulation
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a
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. 
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n
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s
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Simulation
Signal

Simulation
Signal

(a)

(b)

(c)

FIG. 2: (Color online)Transverse relaxation measurements
with different diffusion constants. (a) is in the slow diffu-
sion regime and the sinc like shape of the decay profile is due
to the spin defocus, (b) is in the intermediate regime and (c)
is in the fast diffusion regime. Simulation results are shown as
dashed lines and compared to the measured decay envelops.

sured FID signal. The simulation results, shown as red
dashed curves, are compared with measured decay en-
velops. The background noise of the FID measurement is
around 150 arb. units. The simulation curves are shifted
up by this amount to account for the background. Good
agreements between measurements and simulations are
found for the intermediate regime and the fast diffusion
regime. One can also use Eq. (21) to predict T2 in Fig.
(2c) as it is in the fast diffusion regime. The prediction
yields T2 = 0.0589 s and an exponential fit of the data
yields T2 = 0.0557 s, which is very close to the predic-
tion. However, if Eq. (21) is used to predict T2 in Fig.
(2b), it overestimates T2 by 39% and the profile of the
measured relaxation is somewhere between the sinc and
exponential. This shows that Eq. (21) is inadequete to
use in the intermediate regime, and one has to use the
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FIG. 3: Frequency spectrum of ST as a function of 〈x′〉 /L
at t = 0.02 s. The length L of the cell is 1 cm. The solid
line corresponds to D = 1000 cm2/s, which is in the motional
averaging regime, and the dashed line corresponds to D = 1
cm2/s, which is in the slow diffusion limit.

non-approximated form of ST (〈x′〉) to do the calculation.
In the slow diffusion regime, the numerical calculation

correctly captures the time when signal vanishes, and it
also exhibits a small bump at 0.04 s, due to the partial
refocus of spin. However, this bump is not observed in
the experiment. It is probably due to the fact that in
the simulation, we only take into account the gradient in
the longitudinal direction. In reality, although gradients
in other directions are smaller than the longitudinal one,
they still affect the precession frequency of each individ-
ual spin. Consequently, spin refocus is disturbed and the
small bump is smeared out.

IV. DISCUSSION

In Sec. III, we numerically calculate ST (〈x′〉) with-
out any approximation. The time evolution of integrated
ST (〈x′〉) is compared to the FID signal of polarized 3He
gas and a good agreement is found, especially in the
intermediate regime. It is also interesting to see how
ST changes as a function of position 〈x′〉 when differ-
ent diffusion regimes are considered. In Fig. 3, we show
ST as a function of 〈x′〉, which is also equivalent to a
frequency spectrum due to the linear relationship be-
tween ω and 〈x′〉, known as frequency encoding. The
two curves shown in Fig. 3 are calculated at the time
instant t = 0.02 s, with γG = 1000 rad/s·cm, L = 1 cm
and D = 1 and 1000 cm2/s, respectively. The D = 1
cm2/s case is in the slow diffusion limit, and two peaks
close to the edges are observed. As diffusion is more re-
stricted at the boundary, the diffusion induced relaxation
is suppressed, compared with the relaxation at the cen-
ter. In contrast, the D = 1000 cm2/s case is in the fast
diffusion limit and only one peak centered at the mean
frequency presents, which means most of spins precess at
the same frequency and relax at the same rate, i.e. Eq.
(21). These results show that the approach developed

in this manuscript is able to capture all distinct behav-
iors of the transverse magnetization in different diffusion
regimes.
In Sec. II B, it is shown that the longitudinal relax-

ation rate 1/TG
1 differs by a factor of 2 between the slow

diffusion limit and the fast diffusion high pressure limit.
A possible explanation is that when t is small, i.e. in the
slow diffusion limit (4Dt << (L/2)2), most of the spins
do not see walls so spins diffuse freely; when t gets larger,
it gets into the fast diffusion limit (4Dt >> (L/2)2),
where spins see the wall frequently. As diffusion is more
restricted in the fast diffusion limit, the effective diffu-
sion speed is smaller than that in the free diffusion. As
a result, the relaxation rate in the fast diffusion limit is
smaller, similar to the explanation of the edge enhance-
ment effect.
We numerically evaluate ℜ[Jx(ω0)] as a function of

time to reveal how 1/TG
1 changes from the slow diffu-

sion limit to the fast diffusion limit (Fig. 4). Values
of the parameters used in the evaluation are assigned as
〈x′〉 = 0, D = 1 cm2/s, L = 1 cm and ω0 = 1 to 1000
rad/s. In the figure, the quantity ω2

0ℜ[Jx(ω0)] is actu-
ally plotted for the purpose of comparison. Therefore, in
the slow diffusion limit, ω2

0ℜ[Jx(ω0)] = 2D; whereas, in
the fast diffusion high pressure limit, ω2

0ℜ[Jx(ω0)] = D.
As shown in the figure, when t is small, i.e. in the slow
diffusion limit, the relaxation rate oscillates around 2D.
When t becomes larger, the oscillating amplitude of the
relaxation rate decreases and the mean of the oscilla-
tion converges to the fast diffusion results. The final
value of the fast diffusion result depends on the ratio of
τd/τl, see Sec. II B. When ω0 = 1000, it is in the high
pressure limit and ω2

0Jx(ω0) converges to D, which is 1
cm2/s in our case; and when ω0 = 1 rad/s, it is in the
low pressure limit and ω2

0Jx(ω0) = ω2
0L

4/120D = 1/120
cm2/s, see Eq. (29). The characteristic time to distin-
guish the slow diffusion limit from the fast diffusion limit
is also τc = (L/2)2/4D = 0.0625 s. As τc is usually
small in practice, TG

1 s measured by experiments are usu-
ally in the fast diffusion limit. Nevertheless, When D is
small enough or alternatively the cell dimension is large
enough, the characteristic time τc can be rather large and
it is possible to measure the longitudinal relaxation rate
in the slow diffusion regime.

V. CONCLUSIONS

A new approach based on Redfield theory is developed
to calculate magnetic field gradient-induced longitudinal
and transverse relaxations of 3He gas. As an extension
to the method developed by McGregor, the newly devel-
oped approach works in all diffusion regimes, including
the intermediate regime. It can also explain the edge
enhancement effect in the slow and intermediate diffu-
sion regime, which shows the ability to capture all the
relaxation related behaviors in one single unified model.
It also has an advantage in terms of numerical simula-
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FIG. 4: (Color online)The curve with ω0 = 1000 rad/s is
definitely in the high pressure limit, the normalized relaxation
rate evolves into D (D = 1 cm2/sec) as expected. The inset
figure shows the relaxation rate when ω0 = 1 rad/s, which is
in the low pressure limit. It evolves into ω2

0L
4/120D, which

is 1/120 cm2/s, when t becomes large. The other two curves
are in the intermediate region.

tions, because one only needs to re-compute the prob-
ability density function for new geometries. Since the
density function is easy to obtain, the relaxation rates
can be computed readily as described in this manuscript.
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Appendix A: Simplification of the Position

Autocorrelation Function in the Slow Diffusion Limit

In the slow diffusion limit, 4Dt << (L/2)2, Eq. (13)
is simplified by expanding all exponential terms in terms
of t, t0 and τ to the first order. Trigonometric functions,

such as sin(
nπ〈x′〉

L ), can be expanded in terms of
〈x′〉
L to

the first order. The first term of Eq. (13) becomes

8L2

π4

∞∑

n=1,3

1

n4
(1− n2π2Dτ

L2
) =

L2

12
−Dτ. (A1)

The second term 〈x′〉2 is unchanged, and the third term

becomes

4 〈x′〉L
π2

∞∑

n=1,3

1

n2
sin(

nπ

2
)
nπ 〈x′〉

L
(1− n2π2Dt

L2
)

=
4 〈x′〉2

π

∞∑

n=1,3

sin(nπ2 )

n
+O(1/L) = 〈x′〉2 . (A2)

The fourth term is the same as the third term, which

is also 〈x′〉2; and the last term becomes

16L2

π4

∞∑

n=1,3

∞∑

k=2,4

k2 + n2

n2(k2 − n2)2
cos(

kπ

2
)

× (1− n2π2Dτ

L2
− k2π2Dt0

L2
− k2π2 〈x′〉2

2L2
). (A3)

The first term in the bracket of Eq. (A3) is evaluated to
converge to −L2/12. The evaluation of the second term
yields Dτ . The third term and fourth term are the same,
except for different prefactors. They are evaluated to be

2Dt0 and 〈x′〉2, respectively. Collecting all these terms
together, the autocorrelation function of x becomes

(x(t− τ) − 〈x′〉)(x(t) − 〈x′〉)

=
L2

12
−Dτ

︸ ︷︷ ︸

1st term

+ 〈x′〉2
︸ ︷︷ ︸

2nd term

−〈x′〉2 − 〈x′〉2
︸ ︷︷ ︸

3rd and 4th term

−L2

12
+Dτ + 2Dt0 + 〈x′〉2

︸ ︷︷ ︸

5th term

+O(1/L) +O(t2)

= 2D(t− τ). (A4)

An alternative way to obtain Eq. (A4) is to solve the
diffusion equation in free space as slow diffusion is equiv-
alent to free diffusion. In this case, the conditional prob-
ability function ρ(x, t|x0, t0) is known to be

ρ(x, t|x0, t0) =
1√

4πDτ
e−

(x−x0)2

4Dτ . (A5)

In the free diffusion, the diffusion equation as well as
the autocorrelation is translational invariant. Therefore,
(x(t− τ) − 〈x′〉)(x(t) − 〈x′〉) = x(t − τ)x(t) and

x(t− τ)x(t) =

∫ ∞

−∞

dx0
x0e

−
x2
0

4Dt0

√
4πDt0

∫ ∞

−∞

xe−
(x−x0)2

4Dτ

√
4πDτ

dx

= 2D(t− τ), (A6)

which is exactly the same as Eq. (A4).
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