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Excitation  energies of the [Xel4f'5d' ns, [Xe]4f145d np;, [Xel]4f'*5d" nd;,
[Xe]4f145d"n' f;, and [Xe]df'*5d'%n’g; states in Hg' are evaluated (n < 10, n’ < 9, and
[Xe]=15225%2p%3523p%3d" 0 45%4p®4d'°55°5p®). First-, second-, third-order, and all-order Coulomb
energies and first- and second-order Coulomb-Breit energies are calculated. Reduced matrix
elements, oscillator strengths, and transition rates are determined for electric-dipole transitions
including the ns (n=6-11), np (n = 6 — 10), nd (n =6 — 10), nf (n =5—-9), and ng (n =5—-9)
states. Lifetime values are determined for all above mentioned states. The ground state El,
E2, and E3 polarizabilities are evaluated. The hyperfine structure in °Hg" and 2°*Hg™ ions is
investigated. The hyperfine A- and B-values are determined for the first low-lying levels up to n
= 7. The quadratic Stark effect on hyperfine structure levels of ***Hg™" and 2°'Hg" ground states
is investigated. The calculated shift for the **°Hg™ (F = 1, M =0) < (F = 0, M =0) transition
is -0.0597(2) Hz/(kV/cm)?, in agreement with previous theoretical result -0.060(3) Hz/(kV /cm)?.
These calculations provide a theoretical benchmark for comparison with experiment and theory
and provide values of BBR shifts for microwave frequency standards with °Hg" and ?°*Hg" ions.

PACS numbers: 31.15.A-, 31.15.ac, 31.15.ag, 31.15.aj

I. INTRODUCTION

Mercury is among the most frequently used elements in spectral sources; therefore, investigation of atomic properties
of the mercury ion could help to explain the properties of these sources, as well as continuous wave and pulsed
mercury lasers [1]. Measurements of the lifetimes for the 7p; /o and 7pz/o levels in Hg™ were carried out using
beam-foil excitation [2]. Maniak et al. [2] noted the importance to obtain the accurate values of the 7p; lifetimes.
The intrashell transitions to the 7s level give rise to the well-known He-Hg laser lines at 7944 A and 6149 A, and a
knowledge of their transition rates and lifetimes would be useful in the study of this and other light sources that employ
the mercury ion spectrum [2]. Hg™ properties are also needed for applications to stellar atmosphere modeling [3].

Both microwave and optical frequency standards based on laser-cooled Hg™ ions were discussed by Berkeland et
al. [4]. The ground-state hyperfine interval was measured to be 40507347996.84159(14)(41) Hz [4], where the first
number in parentheses was the uncertainty due to statistics and systematic errors, and the second was the uncertainty
in the frequency of the time scale to which the standard was compared. The frequency ratio of the Al and '"9Hg*
optical atomic clocks with a fractional uncertainty of 5.2 x 10~!7 was reported in [5]. High-resolution spectroscopy
has been performed on the ground-state hyperfine transitions in trapped 2°!Hg* ions in [6] as part of a program to
investigate the viability of 2°*Hg™ for clock applications. The differences between the two isotopes and how they can be
exploited for fieldable clock applications, particularly those in space was examined [6]. While present implementations
of the 19Hg™ clock were done at cryogenic temperatures, suppressing the blackbody radiation (BBR) shift [7] of the
clock transition, accurate calculations of the BBR shift will be needed if clock is implemented at room temperature.
Designing clocks with both isotopes may improve the limits on variations of the fine-structure constant [6]. Frequency
shift of hyperfine transitions due to blackbody radiation in '%“Hgt was investigated by Angstmann et al. [8] by
performing calculations of the size of the frequency shift induced by a static electric field. These calculations were
carried out for the clock transition frequencies of the hyperfine splitting of Yb™, Rb, Cs, Bat, and Hg™', but the
uncertainty of Hgt value was not estimated.

The Hg" ion has been studied in a number of experimental [1, 2, 9-21] and theoretical [3, 22-27] papers. The
beam-foil technique was used by Andersen and Sgrensen [9] to determine the radiative lifetimes of the 7s, 9s, 6p, 6d,
8d, 9d, and 5f states in HgT. The zero-field level-crossing technique was used by Andersen et al.. [12] to measure
the 6p3 /o — 6ds )2, 6d3/2 — 5f5/2, and 6ds/o — 5f7/o transition rates in Hg*. Lifetime measurements of the 6p; and
6d; levels in Hg™ were reported be Eriksen and Poulsen in Ref. [13]. The technique of beam foil spectroscopy was
applied by Pinnington et al. [19] to obtain measurements of the radiative lifetimes of the 6p;, 6d, and 7s levels in
Hg™. The multichannel delayed-coincidence method was used by Blagoev et al. in Ref. [1] to determine the radiative
lifetimes of the 9s, 10s, Tp;, 7d;, 8d;, 9d3,2, 5f;, 69, 7g, 8g, and 9g states.



Sansonetti and Reader [21] studied the Hg' spectrum and energy levels, obtaining about 500 lines classified as
transitions between 114 levels. Many of the observed configurations were theoretically interpreted by means of
Hartree-Fock calculations and least-squares fits of energy parameters. The fitted parameters were then used to
calculate oscillator strengths for most of the classified lines [21].

Theoretical oscillator strengths in Hg™ ion reported by Migdalek in Ref. [22] were obtained using a semiempirical
approach that determined nonrelativistic and relativistic wave functions and oscillator strengths, including exchange
effects. Some years later, Migdalek and Baylis [23] presented theoretical oscillator strengths in Hg™ calculated by
relativistic, single-configuration Hartree-Fock method that included core polarization effects. Numerical values of
oscillator strengths were given in Ref. [23] for the 6s — 6p;, 6p; — 6d;/, and 6p; — 7s transitions. The same transitions
were considered by Migdalek and Garmulewicz [26] using the relativistic ab initio model potential. Relativistic
many-body perturbation theory calculations through third order were performed by Chou and Johnson [24] to study
amplitudes of the 6s — 6p; transitions in Hg™. Theoretical oscillator strengths and hyperfine structure in Hgt were
presented by Brage et al. [3]. The fully relativistic multi-configuration Dirac-Fock methods (GRASP code) was
used to calculate oscillator strengths for the 6s — 6p; and 6p; — 6p; transitions. A larger number of transitions were
treated with a more flexible, but less accurate, version of the method. Authors utilized a highly systematic restricted
active space approach and predicted gf-values and hyperfine structure constants to an accuracy of a few percent. The
results were used in stellar atmosphere models, assuming local thermodynamic equilibrium (LTE), where a line-by-line
investigation was important [3]. Multi-configuration Dirac-Fock method (MCDF) was employed by Yu et al. [27] to
calculate excitation energies, ionization potentials and oscillator strengths for all neutral and up to 5 times ionized
species of element Uub, as well as the homologue elements Zn, Cd and Hg. Numerical values for oscillator strengths
in Hg* were given only for the 6s — 6p; transitions [27].

The infinite-order regular approximation (IORA) and IORA with modified metric (IORAmm) was used by Filatov
and Cremer [28] to develop an algorithm for calculating relativistically corrected isotropic hyperfine structure (HFS)
constants. The numerical value of the HFS constant was given for the Hgt 6s ground state.

Recently, Glowacki and Migdalek [29] presented calculations of relativistic configuration-interaction oscillator
strengths for lowest E1 transitions in the gold isoelectronic sequence. Numerical results for Hg™ ion were listed
only for the 6s — 6p; transitions. Relativistic corrections to transition frequencies of Ag I, Dy I, Ho I, Yb II, Yb III,
Au I, and Hg* ions were investigated recently by Dzuba and Flambaum [30] due to the search for variation of the
fine-structure constant. Relativistic many-body perturbation theory was used by Safronova and Johnson [31] to eval-
uate excitation energies, oscillator strengths, and lifetimes of levels along the gold isoelectronic sequence. Numerical
results for Hg™ ion were presented for the ns (n = 6 —9), np; (n = 6 — 8), nd; (n = 6 — 7), and 5f; states for
excitation energies and oscillator strengths between those states.

In this paper, we carry out a systematic study of atomic properties of singly ionized mercury. First-, second-, third-,
and all-order Coulomb energies and first- and second-order Coulomb-Breit energies are calculated for the 6s — 11s,
6p — 10p, 6d — 10d, 5f — 9f, and 5g — 9¢g levels. The electric-dipole reduced matrix elements, oscillator strengths,
and transition rates are determined for allowed transitions between these states. Additionally, lifetime values are also
determined for all above mentioned states. Electric-dipole (6s — np;, n = 6 — 26) matrix elements are calculated to
obtain the ground state E1 polarizabilities. We investigate the hyperfine structure in 1%Hg* and 2°!Hg™ ions. The
hyperfine A- and B-values are determined for the first low-lying levels up to n = 7. Finally, the quadratic Stark effect
on hyperfine structure levels of the ground state is also investigated to evaluate the relevant black-body radiation shift
in the microwave frequency standards with Hg* and 2°'Hg" ions.

II. THIRD-ORDER AND ALL-ORDER CALCULATIONS OF ENERGIES

Energies of nl; states in Hg" are evaluated for the 6s — 11s, 6p — 10p, 6d — 10d, 5f — 9f, and 5g — 9g states using
both third-order relativistic many-body perturbation theory (RMBPT) and the single-double (SD) all-order method
discussed in Refs. [32-34], in which single and double excitations of Dirac-Fock (DF) wave functions are iterated to
all orders.

We use B-splines [35] to generate a complete set of Dirac-Fock (DF) basis orbitals for use in the evaluation of all
atomic properties. The present calculation of the polarizabilities required accurate representation of rather highly
excited states, such as 6/; — 13;, leading to the use of the large R = 220 a.u. cavity for the generation of the finite
basis set and higher number of splines to produce high-accuracy single-particle orbitals.

Results of our energy calculations are summarized in Table I. Columns 2-6 give the lowest-order DF energies E(©),
second-order and third-order Coulomb correlation energies E(?) and E®) second-order Breit corrections B, and
an estimated Lamb shift contribution, ES). The Lamb shift F(5) is calculated as the sum of the one-electron self
energy and the first-order vacuum-polarization energy. The vacuum-polarization contribution is calculated from the
Uehling potential using the results of Fullerton and Rinker [36]. The self-energy contribution is estimated for the s,



p1/2 and p3 /9 orbitals by interpolating among the values obtained by Mohr [37, 38, 39] using Coulomb wave functions.
For this purpose, an effective nuclear charge Z.g is obtained by finding the value of Z.g required to give a Coulomb
orbital with the same average (r) as the DF orbital. Tt should be noted that the values of E™3) are very small.

We list the all-order SD energies in the column labeled ESP and list that part of the third-order energies missing from

ESP in the column labeled Eéizm. The sum of the five terms E(©) ESP, Eéi%ra, B® and E™) is our final all-order
result ESD | listed in the tenth column of Table I. Recommended energies from the National Institute of Standards
and Technology (NIST) database [40] are given in the column labeled Enisr. Differences between our third-order
and all-order calculations and experimental data, SEG) = Et(s’t) — EnisT and 6ESP = EtSO]? — EnNisT, are given in the
two final columns of Table I, respectively. We already mentioned we include both Coulomb and Breit contributions
to the Breit-Dirac-Fock potential and then treat the residual Breit and Coulomb interactions perturbatively. As a
result, the first-order Breit correction B(Y) was already included in the lowest-order DF energies E(©) and omitted
from Table I.

As expected, the largest correlation contribution to the valence energy comes from the second-order term E(2).
Therefore, we calculate E?) with higher numerical accuracy. The second-order energy includes partial waves up to
Imax = 8 and is extrapolated to account for contributions from higher partial waves (for details of the extrapolation
procedure, see Refs. [41, 42]). As an example of the convergence of E(?) with the number of partial waves I, consider
the 6s state. Calculations of E?) with [ = 6 and 8 yield E(Q)(Gsl/Q) = -18158.0 and -18351.4 cm ™!, respectively.
Extrapolation of these calculations yields -18387.3 and -18381.3 cm ™!, respectively. Thus, in this particular case, we
have a numerical uncertainty in E()(6s) of 6.0 cm™'. It should be noted that the 193.34 cm~! contribution from
partial waves with [ > 6 for the 6s state is the largest among all states considered in Table I; smaller (about 16 — 17
cm™!) contributions are obtained for the 6ds /2 and 6ds /5 states and much smaller contributions (2 — 3 cm™!) are
obtained for n=7 states.

Owing to computational complexity, we restrict | < lmax = 6 in the ESP calculation. As noted above, the second-
order contribution dominates ESP; therefore we can use the extrapolated value of the E(?) described above to account
for the contributions of the higher partial waves. Additionally, six partial waves are also used in the calculation of
E®) Since the asymptotic I-dependence of the second- and third-order energies are similar (both fall off as [~%), we

use the second-order remainder as a guide to estimate the remainder in the third-order contribution. The term Egizra
in Table I, which accounts for that part of the third-order MBPT energy missing from the SD energy, is smaller than
E®) by an order of magnitude for the states considered here.

The column labeled § ESP in Table I gives differences between our ab initio results and the available experimental
values [40]. The SD results are in substantially better agreement with recommended NIST values than the third-order
MBPT results (the ratio of §E(3) /§ESP is about three for some of cases) as expected, illustrating the importance of

fourth and higher-order correlation corrections.

III. ELECTRIC-DIPOLE MATRIX ELEMENTS, OSCILLATOR STRENGTHS, TRANSITION RATES,
AND LIFETIMES IN THE HG" ION

A. Electric-dipole matrix elements

The calculation of the transition matrix elements provides another test for both the quality of atomic-structure
calculations and the size of correlation corrections. Reduced electric-dipole matrix elements between low-lying states
of Hg™ calculated in various approximations are presented in Table IL.

In Table II, we list our recommended values for 50 E1 ns — n/p, nd — n’p, and nd — n’f transitions. While we
have calculated over 500 E1 matrix elements to evaluate lifetimes and polarizabilities presented in this work, only
matrix elements that give significant contributions to the atomic properties calculated in the other sections are listed.
To evaluate the uncertainties of these values, several calculations were carried out in different approximations. We
list the lowest-order Dirac-Fock (DF) ZP¥, second-order Z(P¥+2) and third-order Z(PF+2+3) values in the first three
numerical columns of Table II to demonstrate the size of the second, third, and higher-order correlation corrections.
The absolute values of the reduced matrix elements in atomic units (age) are given in all cases. The many-body
perturbation theory (MBPT) calculations are carried out following the method described in Ref. [43]. The values
Z(PF+2) are obtained as the sum of the second-order correlation correction Z) and the DF matrix elements ZPF.
The third-order matrix elements ZPF+2+3) include the DF values, the second-order Z(?) results, and the third-order
Z®) correlation correction. Z®) includes random-phase-approximation terms (RPA) iterated to all orders, Brueckner
orbital (BO) corrections, the structural radiation, and normalization terms (see [43] for definition of these terms).

Our calculations of the reduced matrix elements in the lowest, second, and third orders were carried out following
the pattern described in Refs. [43-45]. The lowest order DF values for transitions between valence v and w states



(labelled as Zi(,EF)) are given in the third column of Table II. The values Z$2F+2) are obtained as the sum of the

second-order correlation correction Zf,f,} and the DF matrix elements quBF). It should be noted that the second-order
Breit corrections Bf,i,) are rather small in comparison with the second-order Coulomb corrections Zl(,i,) (the ratio of

Bf,i,) to Zéfu) is about 1%-3%).
The third-order matrix elements ZqSEFHJrS) include the DF values, the second-order qui) results, and the third-

order qui) correlation correction. It should be noted the third-order matrix elements Z53F+2+3) are divided in the

following way:
24 = 20D 1 2D 1 200 1 2 4 7000 0

We include the corresponding set of the high-order contributions using the well known random phase approximation
in Z(®PA) term using the procedure described in Ref. [43]. The subscript BO stands for Brueckner orbitals. The last

two terms in Eq. (1) describe structural radiation, quiR), and normalization, Z%ORM).
The terms ZUSFPA) and ZUSEO) give the largest contributions to Z53F+2+3). The sum of terms ZUSFPA) and ZUSEO)

is about 20% of the Zl(,BF) term and has different sign for the 6s — 6p, 6p — 6d, 6p — 7s, and 6p — 7d transitions. That

decreases the Z(PF+2+3) yalues in comparison with the ZPF) Galues.

The value of Zv(fo) becomes the largest contribution for the 6p — 7s transitions. The ratios of values ZUSEPA) and
ZU(JUDF) are equal to -1.9 and -0.8 for the 6s — 7p; /o and 6s — Tps/, transitions, respectively. As a result, the value of
ZOF+243) Jecreases by a factor of 28 in comparison with the Z(P¥) term for the 6s — Tp3 /o transition, while value

of Z(PF+2+3) increases by a factor of 1.5 and changes sign in comparison with the Z(PF) term for the 6s — p1/2
transition (see Table II).

. (SR) S (NORM) . P
The structural radiation Zy,, ~ and normalization Zy., terms give small contribution in Z
(about 0.3-3.3 %). All results given in Table IT are obtained using length form of the matrix elements.

The next four columns of Table II contain four different all-order calculations. Ab initio electric-dipole matrix
elements evaluated in the all-order SD (single-double) and SDpT approximations (single-double all-order method
including partial triple excitations [46]) are given in columns labeled Z5P and Z5PPT. Differences between the Z5P
and ZSPPT values are generally 0.5 % - 2.0 % for the transitions listed in Table II. The SD and SDpT matrix elements
Z5P include Z®) completely, along with important fourth- and higher-order corrections. The fourth-order corrections
omitted from the SD matrix elements were discussed by Derevianko and Emmons [47].

Recently, we have developed some general criteria to establish the final values for all transitions and evaluate
uncertainties owing to the need to analyze a very large number of transitions [48]. To evaluate the uncertainties of
our matrix elements and to provide recommended values, we carried out semi-empirical evaluation of the missing
correlation corrections using the scaling procedure. The uncertainty evaluation was discussed in detail in Ref. [48],
and we briefly summarize it below.

The matrix elements of any one-body operator Z = 3. 2;; azaj are obtained within the framework of the SD
all-order method as

(DF+4-2+3) values

 (wjzw)
o = T W) )

In the SD approximation, the |¥,) and |¥,,) are given by the expansions

1
|\IJU> =1+ ; pmaajnaa + 3 Z pmnaba;rna;fzabaa

mnab

+ Z pmva;fnav + Z pmnwa;fnalaaav |\I/1(,0)>7 (3)

m#v mna

where |\IJS,0)> is the lowest-order atomic state vector. In Eq. (3), the indices m and n range over all possible virtual
states while indices a and b range over all occupied core states. The quantities pma, Pmov, Pmnab, ANA Pmnve are single-
excitation coefficients for core and valence electrons and double-excitation coefficients for core and valence electrons,
respectively. In the SD approximation, the resulting expression for the numerator of Eq. (2) consists of the sum of
the DF matrix element z,, and 20 other terms that are linear or quadratic functions of the excitation coefficients.

From these 20 terms, only two terms give dominant contributions for all transition matrix elements considered in
this work:

Z(a) = Z (Zam[)wm'ua + Zmaﬁr)mwa) (4)

ma



or

AORS Z (Zwmpm'u + vapjnw) ’ (5)

m

where Pmnab = Pmnab — Prmab aNd Zy, are lowest-order matrix elements of the corresponding one-body operator.
For most of the transitions considered in this work, term Z(¢) is the dominant term. To evaluate missing corrections
to this term, we need to improve the values of the valence single-excitation coefficients pp,,, [49]. These excitation
coefficients are closely related to the correlation energy 0 F,. The omitted correlation correction can be estimated by
adjusting the single-excitation coefficients p,,, to the experimentally known value of the valence correlation energy,
and then re-calculating the matrix elements using Eq. (2) with the modified coefficients [49]

5Eexpt
p;n'u = vam}#my. (6)

The 6ES*P' is defined as the experimental energy [40] minus the lowest order DF energy €,. Since the scaling
factors depend on the correlation energy given by the particular calculation, they are different for the SD and SDpT
calculations, and these values have to be scaled separately. This is a rather complicated procedure that involves
complete recalculation of the matrix elements with new values of the valence excitation coefficients. The corresponding
results are listed in Table IT with subscript “sc”. The scaled SD and SDpT values are close together, as expected.

The term Z(® is not corrected by the scaling procedure. However, it is dominant for very few transitions that
give significant contributions to the atomic properties considered in this work, and we consider such cases separately.
Therefore, the recommended set of values and their uncertainties can be established based on the ratio R = Z(©) /Z(®).
We take the SD scaled result as the final value if R > 1. Otherwise, we use SD result as the final value. If 0.5 < R < 1.5,
we evaluate the uncertainty in term Z(¢) as the maximum difference of the final value and the other three all-order
values from the SD, SDpT, SDg., and SDpTy. set. We assume that the uncertainty of all the other terms does not
exceed this value and add two uncertainties in quadrature. If 1.5 < R < 3, we evaluate the final uncertainty as the
max(SDg.—SD, SDg.—SDpT, SDs.—SDpTyc). If the term Z() strongly dominates and R > 3, we evaluate the final
uncertainty as max(SDg.—SDpT, SDg.—SDpTs.). We have conducted numerous comparisons of all available data
on various properties of many different monovalent systems with different types of experiments in many other works
(see [44, 46, 48-57], and references therein) and found that such procedures do not underestimate the uncertainties
in monovalent systems but may somewhat overestimate them in some cases. The case of Hg™ is more complicated
owing to the present of the low-lying one-hole-two-particle configurations. The procedure described above procedure
is only expected to estimate the uncertainties that are associated with the present approach, it can not estimate full
uncertainties due to mixing of the one-particle configurations considered in this work with the one-hole-two-particle
configurations. Such uncertainties can not be fully estimated within the framework of the present approach.

The last column of Table II gives relative uncertainties in the final values Zi"2! in % estimated as described above.
Our final results and their uncertainties are used to calculate the recommended values of the transition rates, oscillator
strengths, lifetimes, and polarizabilities as well as evaluate the uncertainties of these results.

B. Transition rates and oscillator strengths

We combine recommended NIST energies [40] and our final values of the matrix elements listed in Table II to
calculate transition rates A and oscillator strengths f. The transition rates are calculated using

18
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where the wavelength X is in A and the line strength S = d? is in atomic units.

Wavelengths and transition rates A, in the first-order (DF), second-order (RPA), and third-order RMBPT approxi-
mation are given in Table III for the limited number of transitions in Hg*. We chose transitions that can be compared
with data presented in NIST website [40] as recommended NIST data. We note that NIST data for these transition
rates mainly come from the theoretical calculations, generally obtained by using standard atomic codes which may
not accurately take into account the correlation corrections. The higher-order contributions are generally omitted in
such calculations. Therefore, it is instructive to compare NIST data with the first- , second-, and third-order MBPT
calculations. In Table III, our transition rates calculated in the first-, second-, and third-order approximations (Agf))
are compared with NIST transition rates, ANST)| This table shows some ANST) values agree better with A, values
obtained from each approximation, and a substantial part of the AMNST) values disagree with all of our results. In



the left column of Table III, we list the 39 transitions when the ANIST) values are in the better agreement with our

Agl) values obtained in the DF approximation. Disagreement between the AWNIST) a5 Agl) values is about 2-20 %.
The first 12 transitions given in the right column of Table IIT are transitions when the AMNST) values are in the better

agreement with our A$«2) values obtained in the RPA approximation. The next six lines present transitions when the
AMNIST) yalues are in better agreement with our AS’) values obtained in the third-order RMBPT approximation. Dis-
agreement between the ANIST) and ASZ) values in both cases with ¢ = 2 and 3 is about 2-20 %. The last 21 transitions

given in the right column of Table III present transitions when the ANST) values disagree with our Agj) values by a
factor of 1.3-20. These 21 transitions represent cases that illustrate the importance of correlation contributions. The
difference in Agl), ASQ), and Ag?’) values is about 10-50 % for the most of these cases.

Our final values of the transition rates A (s~!) and oscillator strengths (f) for the ns —n'p, np —n’s, np — n'd, and
nd —n'p, and nd — n/ f transitions in Hg' are summarized in Table IV. Vacuum wavelengths obtained from NIST
energies are also listed for reference. The relative uncertainties in per cent are listed in the column labeled “Unc.”.
The relative uncertainties of the transition rates and oscillator strengths are twice of the corresponding matrix element
uncertainties since these properties are proportional to the squares of the matrix elements.

Comparison of the oscillator strengths given by Glowacki and Migdalek [29], Migdalek and Garmulewicz [26], and by
Migdalek [22] with our theoretical values is illustrated by Table V. Uncertainties are given in parenthesis. Relativistic
configuration-interaction approximation was used in [29] to evaluate oscillator strengths for the 6s — 6p transitions.
These two values are in a better agreement (7-10 % difference) with our fPF+2+3) values. However, the theoretical
oscillator strengths presented by Migdalek in Ref. [22] are in better agreement with our f(P¥) values. It should be
noted that we evaluate the f(PF) values the Dirac-Fock energies, while the f(PF+2) and f(PF+2+3) yalues are calculated
with recommended NIST energies [40].

There is small difference (1-5 %) between our oscillator strengths values and the f) values given in Ref. [31]. The
approach used here differs from Ref. [31] by the treatments of the Breit interaction. In Ref. [31], Breit contributions
to the Dirac-Fock potential was omitted and Breit corrections were included perturbatively in second order MBPT.
In the approach used in the present paper, we include both Coulomb and Breit contributions to the Breit-Dirac-Fock
potential and then treat the residual Breit and Coulomb interactions perturbatively. In the present work, we increase
number of basis set orbitals up to 70 instead of 40 used in [31].

IV. LIFETIMES IN HG"

We calculate lifetimes of the nsi/, (n = 7 —11), np; (n = 6 — 10), nd; (n = 6 — 10), nf; (n = 5 —9), and ng;
(n =5 —9) states in Hg™ using our final values of the dipole matrix elements and NIST data [40] for energies, and
then compare the values with available experimental data [1, 19] in Table VI. The uncertainties in the lifetime values
are obtained from the uncertainties in the matrix elements listed in Table II.

Our lifetime values for the 7s; /5 and 6d; states agree with experimental measurements performed by Pinnington et
al. [19] when experimental uncertainties are taken into account. There is a small difference (10 — 15 %) between our 7
values and Pinnington’s measurements for the 6p; states, but disagreement between our results and the measurements
can be explained by considering only one channel for decay in [1]. For example, there are five channels for decay from
the 7d3/2 level (7d3/2 — 6]91/2, 7d3/2 — 6p3/2, 7d3/2 — 7]91/2, 7d3/2 — 7p3/2, and 7d3/2 — 5f5/2) If we take into
account only the 7dz/; — 6p;/2 channel with largest transition rate, we find 7(2) = 5.105 ns and 73 = 5.450 ns,
which agrees perfectly with the experimental lifetime for the 7ds /o state (5.04-0.6 ns, see Table VI).

The theoretical and experimental studies of the 7p; lifetime were presented by Maniak et al. in Ref. [2], who
underlined very large differences in transition rates A, for 65,2 — 7p;. The ratio of transition rates obtained in
different approximations was about 700 and 30 for the 6s1/5 — 7p1/2 and 6512 — Tp3 /2 transitions, respectively. As a
result, the ratio of calculated lifetimes was equal to 11 for the 7p, /5 level and about two for the 7ps/o level. It was
underlined in Ref. [2] that there is a large contribution to the 7ps /s lifetime in the 7p3/o — 5d~'6s* 2Dy /5 channel,
however in the we did not consider this channel in the present study. Regardless, experimental measurement for the
lifetime of 7p; /o level (14.541.0 ns) is in good agreement with our 72 = 15.52 ns and 7(® = 15.31 ns lifetimes.

V. STATIC MULTIPOLE POLARIZABILITIES OF THE 6s GROUND STATE OF HG™

The static multipole polarizabilities a”* of Hg* in its 65 ground state can be separated into two terms: a dominant
first term from intermediate valence-excited states, and a polarizability of the ionic core, which is evaluated in the
random-phase approximation (RPA) [58]. The accuracy of the RPA core value for the E1 polarizability is expected



to be better than 5% [7]. There are no available comparisons of the RPA ionic core values for the E2 and E3

polarizabilities with accurate theoretical or experimental data, so we have no direct way to assign uncertainties to

these values. We assign 5% uncertainties for the core E2 and E3 values as in the case of E1 polarizabilities. The ionic

core polarizability has to be corrected for the presence of the valence electron. This small valence-core (vc¢) term is

also calculated in the RPA. We assign 5% uncertainties to these values as in the case of the ionic core contributions.
The dominant valence contribution is calculated using the sum-over-state approach

1 |(nl;]|7* Chry|65)|?
Ek 2 : J q
p— 8
Q,, 2%k 41 ~ Enlj _ EGS ’ ( )

where Cpq(7) is a normalized spherical harmonic and where nl; is np;, nd;, and nf; for k = 1, 2, and 3, respectively
[59]. The reduced matrix elements in the above sum are evaluated using out final values of the reduced matrix
elements and NIST energies [40]. The uncertainties in the lifetime values are obtained from the uncertainties in the
matrix elements listed in Table II. We evaluate the final values together with uncertainties for the quadrupole and
octupole matrix elements using procedure that was described above for the dipole matrix elements.

Contributions to dipole, quadrupole, and octupole polarizabilities of the 6s ground state are presented in Table VII.
The first two terms in the sum-over-states for o', a2, and o3 contribute 92%, 72%, and 45%, respectively, of
the totals. The remaining 28% of a2 contribution from the (5-26)nd; is divided in two parts, from (7-12)nd; and
(13-26)nd;. The remaining 55% of a®? contribution from the (6-26)nf; states is divided into six parts: 6f;, 7f;, 8f;,
(9-12)n;, (13-18)nd,, and (19-26)nd;.

The rapid convergence of the sum over states for a! has been emphasized in many publications (for example,
Refs. [46, 60]). We use recommended energies from NIST [40] and values of ‘final’ matrix elements to evaluate terms
in the sum with n < 13, and we use theoretical SD energies and wave functions to evaluate terms with 13 < n < 26.
The remaining contributions to a* from basis functions with 27 < n < 70 are evaluated in the DF approximation.
These remainder tail contributions are assigned 30% uncertainties. As one can see from Table VII, sums over n for
n < 26 in a®? and of? essentially reproduce the final results, since the contributions from 27 < n < 70 are rater
small (0.2%, 3%, and 2% for the E1, E2, and E3 polarizabilities, respectively). Final result for the E1 polarizability
of the ground state Hg" is compared in Table VII with theoretical result from in Ref. [61].

Static dipole polarizability ags of Hg™ was calculated by Iliag and Neogrady [61] using the relativistic one-component
spin averaged DouglasKroll (DK) no pair approximation combined with the CCSD (coupled cluster with single- and
double-excitation amplitudes) treatment of the electron correlation. Different values for s were obtained by different
approaches, for example, the ags is equal to 22.59 a.u. and 19.49 a.u. in the DK approach and CCSD approaches,
respectively. Our value (18.93) is 3% smaller than the CCSD value.

VI. HYPERFINE CONSTANTS FOR 'HG'T AND ?“'HG™

Calculations of hyperfine constants follow the pattern described earlier for calculations of transition matrix elements.
In Table VIII, we list hyperfine constants A for 1"Hg* and 2°'Hg*t and compare our values with available theoretical
and experimental results from Ref. [3].

In this table, we present the lowest-order APF) all-order ASP), and AGPPT) values for the ns, np, and nd levels
up to n = 7. It should be noted that the values of ASPPT) are obtained by using single-double all-order method
including partial triple excitations. The difference between ASP) and AGSPPT) is about 0.1-2%, while the ratios of
ABGDP) and APF) are equal to 0.6 - 1.6 for some cases. We compare our ASP) and AGPPT) values with the APF+2+3)
values evaluated in the third-order RMBPT (see, also Ref. [31]). The difference between the ASP) and APF+2+3)
gives the contributions of the fourth-order and other high-order RMBPT. The largest difference between ASP) and
APF+2+3) (about 30 % and 40 %) occurred for the 6ds/ and 6ds o levels. The smallest difference (about 0.4-0.6 %)
is for the 7sy/5 and 6p; /o levels. For other levels given in Table VIII, the difference between ABD) and ADF+2+3) g
about 3-7 %.

Our results for the hyperfine constants B in 2 Hg™ are compared with theoretical values from Ref. [3] in Table IX.
The nuclear quadrupole moment @ in 2°’Hg™ was taken to be 0.455 barns (1 barn=10"2?4cm?) [3]. The first three
columns of Table IX list the BPT) BGP) and BOPPT) values divided by nuclear quadrupole moment . The next
three columns list the B(PF) BDP) and BGPPT) yalues. The ratios BEP) and B(PF) are equal to 1.5 - 2.7 for some
cases. In the last column of Table IX, we show few available theoretical values of B constants.



VII. HYPERFINE-INDUCED TRANSITION POLARIZABILITY OF THE 'HG II AND ?°'HG II
GROUND STATES

We now turn to the calculation of the quadratic Stark shifts of the ground-state hyperfine interval (F =1—F = 0)
in 1%Hg* and the ground-state hyperfine interval (F = 2 — F = 1) in 2°'Hg*. The quadratic Stark shift is closely
related to the black-body radiation shift discussed, for example, in Refs. [32, 33, 62, 63]. Our calculation follows the
methodology outlined in those works. The dominant second-order contribution to the polarizability cancels between
the two hyperfine components of the 6s state so the Stark shift of the hyperfine interval is governed by the the

third-order F-dependent polarizability ag) (0). The expression for the ag)(O) is [32):

o) = pvenerinersa{ ¢ 17 ©

grpn (1) (2T + C + R)

where g7 is the nuclear gyromagnetic ratio, u,, is the nuclear magneton equal to 0.5058852 for '*°Hg™, I is the nuclear
spin, and j, = 1/2 is the total angular momentum of the atomic ground state. The formulas for the F-independent
terms T, C, and R are given in Ref. [62]. These terms are similar to the polarizability sum-over-state expression but
are more complicated.

We note first that in the DF approximation the values of T, C, and R in atomic units for '°Hg* are

2TPF = 58545 x 1074, CP¥ =1.4482 x 1077,
RPY = 8.8095 x 1077 (10)
Since the value of CPF is smaller than the TPF and RPF by almost two orders of magnitude, we do not recalculated
the C term in the SD approximation.

The expression for R is similar to that for ! [32]. The difference is an additional factor of the diagonal hyperfine
matrix element:

199651 o] T|651/2)5P) = 7.4523 x 1075 a.u.
20865, 1o| T|651/2) 5P = —3.8797 x 1075 a.u.

We use our all-order recommended values for the reduced electric-dipole matrix elements described in Section IIT A
and their uncertainties to calculate the main terms in the 7" and R sums. We refer to these values as the “best set”
values. Available recommended NIST energies [40] are used for nl = 6s — 10s,6p — 8p, and SD energies are used for
the other states up to n = 26. The sum of terms for n < 26 is R,<2s = 4.728(20) x 10~ for 1%9Hg*. The remainder
of the sum, evaluated in the DHF approximation, R,~26 = 1.4 x 1077 that gives R = 4.729(20) x 10~%.

Term T contains two sums, over ns and over mp;. We evaluate main contributions, that include n < 26 and
m < 26 using all-order matrix elements and NIST or all-order energies as described above. We find that the remaining
contributions with n > 26 and m > 26, are very small. We break down each mp term as

> (%[...] +7ZOS:[...]> .

mp s 27s

Each mp term is given by

26
(65]| Dl[mp;) {(mp; || Dl|ns) {ns|| T]|6s)
Z AT (Emp - EGS) (Ens - EGS) ’ (11)

n="7

where Ar is an angular factor. Our final value for this term is 2778 = 3.838(22) x 10~* for '’Hg*. Combining
these contributions, we obtain for 199 Hg*

orfinal 1 OPF 4 Rpfinal — 8 712(30) x 1072 a.u. (12)
The F-dependent factor (see Eq. (9))

A(F) = 9;’;" D21+ 1)(2I + 2)

Jo I F |, \F+I+j,
X{I jv1}< 2



is equal to -0.4130535 for F' = 0 and 0.1376845 for F = 1 in the case of 19?Hg" isotope and is equal to 0.2541232 for
F =1 and -0.1524739 for F = 2 in the case of 2° Hg" isotope. Using these values and the result from Eq. (12), we
obtain for two isotopes

199003 (0) — ¥ (0) = 4.798(16) x 107 a.u.

20103 (0) -l (0) = —3.452(12) x 10~* a.u.
The Stark shift coefficient k defined as Av = kE? is k = —1 ag,f:l(O) —ag)ZO(O) for 9Hg * and k =
-3 04922(0) - ag)zl(O)} for 2 Hg*. Converting from atomic units, we obtain

1995D) — _9.399(8) x 10~ *a.u=-5.969(20) x 10~'2 Hz/(V/m)".
20155D) — 1.726(6) x 10~ %a.u=4.295(15) x 102 Hz/(V/m)?

In the DHF approximation (Eq. (10)), we find k(PF)= -10.147x10~12Hz/(V/m)? in the case of *Hg™" isotope.
The relative blackbody radiative shift 5 is defined as

2 1
B= o (aﬂ')?’ T4ahf(651/2) (13)

where vy is the Hg™ hyperfine (F = 1 and F = 0) splitting equal to 40507.347997 MHz [4] and the 21Hg™
hyperfine (F = 2 and F = 1) splitting equal to 29920 MHz [3]. T is a temperature that we take to be 300 K. Using
those factors, we can rewrite Eq. (13) as
1998 = —2.1258 x 107 B y7? (651 2) (14)
01 = 2.8781 x 10~ "*aif" (6s1/2) (15)

Using the final value for a1?%(6s1/2) = 4.798(16)x10~* a.u. and ! (6s1/2) = -3.452(12)x10~* a.u, we obtain finally

199 glfinal) - — 1 020(3) x 10716 (16)
201 gfinal) — - _(.994(3) x 1071¢ (17)

Our result for 9Hg™ isotope is in an excellent agreement with result -1.02(5)x10716 from Ref. [64]. Such an
excellent agreement between results obtained by different methods is very important when correlation contributions
are so large.

VIII. CONCLUSION

In summary, a systematic all-order study of the properties of the nsy /2, np;, nd;, n'f;, and n'g;, (n < 10, n' < 9)
states in singly ionized mercury is presented. The energy values are in excellent agreement with existing experimental
data. Reduced matrix elements, oscillator strengths, and transition rates for electric-dipole transitions including the
6s — 11s, 6p — 10p, 6d — 10d, 5f — 9f, and 5g — 9¢g states are calculated. Lifetime values are determined for all
above mentioned states, and electric-dipole (6s1/2 — npj, n = 6-12) matrix elements are calculated to obtain the
ground state E1 polarizability. We evaluate the uncertainties of our calculations for most of the values listed in this
work. Hyperfine A- and B-values for the for '»?Hg* and 2°'Hg™ ions are presented for the first low-lying levels up
to n=7. The quadratic Stark shifts of the ground-state hyperfine intervals in '"Hg* and 2°'Hg™* and corresponding
values of the BBR shifts are also evaluated. These calculations provide a theoretical benchmark for comparison with
experiment and theory.
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TABLE I: The total all-order ESY and third-order E(Y), Hg™ energies (E¢), = E©® + E® 4+ E® 4 B® ESD — p© 4 ESP 4
3)
E

) o + B@) for Hgt are compared with experimental energies Enist [40], 6E = Eiot - Exist. E™ is zeroth-order (DF),
second-, and third-order Coulomb correlation energies, ES® is single-double all-order Coulomb energies, and Eéilra is the third
order energies missing from ESP. Lastly, B® is the second-order Coulomb-Breit corrections. All units are in cm™*.

nlj E© E® E®  B®» g g6 ESP E® . ESD Exist  0E®  §ESP
6512  -136333.2 -18387.3 56225 -756.0 789 -149775 -15827.1 16654 -151172 -151284 1509 112
6p12  -89541.3 -11017.7 2811.1 -375.1  -1.7  -98125 -10548.2  877.7  -99589  -99798 1674 210
6ps2  -81958.6  -8889.9 2201.0 -272.0 0.5  -88919  -8861.0  740.0  -90351  -90676 1757 325
6dss  -44301.7  -1985.3 4104  -57.7 0.0  -45934  -2094.2  183.1  -46271  -46300 366 30
6ds/,  -43867.1  -1870.6  367.7  -59.6 0.0  -45430  -1967.6  168.0  -45726  -45740 311 14
Tsy;2  -52800.2  -3313.7 1009.3 -129.1 7.2 -55226  -2901.0  343.3  -55480  -55570 344 90
Tpi,  -40851.3  -2479.4 6244  -90.3  -0.3  -42797  -2327.9  210.6  -43059  -42986 189  -73
Tpssy  -387T115  -2208.4  527.8  -745 0.0  -40467  -2092.3  189.0  -40689  -39313 -1154 1376
5fs2  -27610.6  -5748 1175  -2.8 0.0 -28071  -6053 628 -28156  -27873  -198  -283
5fr2  -27625.6  -5749 1152 2.8 0.0 -28088  -619.3  61.9  -28186  -28131 43 55
Tds,  -25170.4  -781.9  150.6  -27.1 0.0  -25829  -808.3  67.4  -25938  -25959 130 20
Tds;,  -24966.3  -7445 1175  -27.9 0.0  -25621  -761.6  62.1  -25694  -25705 84 11
8s1/2  -28828.4  -1241.1 3811  -49.7 1.7  -29736  -1077.0  130.7  -29823  -29868 131 45
8pip  -23776.2  -1020.2 2537  -38.2  -0.1  -24581  -986.0  88.0  -24713  -24343  -238  -370
8ps2  -228345  -934.5 2160 -325 0.0 -23586 -1017.1  80.6  -23804  -23489  -97  -315
9sy/,  -18208.7  -605.9 1864  -246 0.6 -18652  -526.6  64.2  -18695  -18724 72 29
6fs2  -17700.8  -3344 646  -23 0.0 -17973  -370.9 341  -18040  -18015 2 25
6f7,  -177123  -3342 627 24 0.0 -17986  -371.1  33.3  -18052  -18001 14 -52
5972 -17559.1 75.0 165 00 00 -17618 -74.8 9.7  -17624  -17630 12 5
5992 -17559.2 75.0 165 00 00 -17618 -74.8 9.7  -17624  -17629 12 5
83,  -16309.7  -399.1 712  -146 0.0  -16652  -4134 335  -16704  -16722 69 17
8ds;,  -16199.6  -383.7 363 -150 0.0 -16562  -372.2 311  -16559  -16585 23 26
9p1p  -15595.9  -526.2 1205  -19.9  -0.1  -16013  -525.2 457  -16095
93 -15095.8  -489.1 1102  -17.2 0.0  -15492  -576.9 423  -15648  -15474  -18  -174
10s1,  -12550.8  -342.4 1054  -140 03  -12801  -2985 364  -12827  -12850 48 23
Tfs;2  -12293.6  -205.7 382  -1.6 0.0 -12463  -233.8  20.2  -12509  -12489 26 -20
Tfz2  -12301.5  -2055  36.8  -1.7 0.0 -12472  -2335  19.7  -12517  -12471 -1 46
6972 -12194.3 486 10.7 0.0 00 -12232 -48.6 6.2 -12237  -12240 8 3
6go/2  -12194.3 -48.6  10.6 00 00 -12232 -48.6 6.2  -12237  -12240 8 3
9ds,  -114412  -2328 386  -87 0.0 -11644  -241.8 193  -11672  -11657 13 -15
9ds;,  -11375.4  -225.8 1.6  -90 00 -11609  -2389 179  -11605 -11596  -13 -9
10py,  -11025.0  -3085 755 -11.7 0.0 -11270  -286.0  26.9  -11296
10ps;,  -10727.4  -289.1 643 -10.3 0.0 -10962  -296.9  25.1  -11010
8fs/2 -9028.5  -1341 245  -12 00  -9139  -1552 129  -9172  -9156 17 -16
8f7/2 -9033.9  -1338 234  -12 00  -9146  -1547 125  -9177  -9150 5 27
T97/2 -8959.2 -32.6 7.2 00 00  -8985 -32.6 41  -8988  -8990 5 2
Tgo,2 -8959.2 -32.6 7.2 00 00  -8985 -32.6 41  -8988  -8990 5 2
10ds/, ~ -8472.9  -147.9 230  -56 0.0  -8603  -155.0  12.2  -8621  -8624 21 3
10ds,,  -8430.5  -1447  -11.6  -58 0.0  -8593  -147.8 113  -8573  -8572  -20 -1
9fs/2 -6908.8 -91.9 144  -08 00  -6987  -107.6 8.7  -7009
9f7/2 -6912.7 91,7 134  -08 00  -6992  -107.1 84  -7012
8972 -6859.4 -22.7 6.1 00 00  -6876 -22.8 28 6879  -6881 5 2
899,32 -6859.4 -22.7 6.1 00 00  -6876 -22.8 28  -6879  -6881 4 1
9972 -5419.8 -17.7 4.6 00 00  -5433 -16.4 20  -5434  -5435 2 1
999, -5419.8 -17.7 4.6 00 00  -5433 -16.4 2.0  -5434  -5435 2 1
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TABLE II: Recommended values of the reduced electric-dipole matrix elements in atomic units. The first-order, second-order,
third-order MBPT, and all-order SD and SDpT values are listed; the label “sc” indicates the scaled values. Final recommended
values are given in the Zf"® column. Absolute values are given. The last column gives relative uncertainties of the final values
in %. These are estimated uncertainties associated with the present all-order approach. These uncertainties do not account for
the mixing of the one-particle and one-hole-two-particle configurations.

Transition ZPF 7Z(DF+2)  7(DF+2+3) 78D A ZSDpT Z5beT Zfinal Unc. (%)
6512 6p1)a 2.2802 1.8185 1.6383 1.6600 1.6646 1.6651 1.6627 1.6646 0.28
6512 6pso 3.1845 2.5661 2.4026 2.3510 2.3586 2.3585 2.3563 2.3586 0.32
Tsi2  6pijo 1.7106 1.7093 1.5335 1.5187 1.5214 1.5234 1.5163 1.5214 0.34
712 6psa 3.1029 3.0528 2.7920 2.7348 2.7292 2.7444  2.7258 2.7292 0.56
Tsi2  Tpija 5.2298 5.0803 48460  4.8600  4.8615 48759  4.8610  4.8600 0.42
8s12  6pija 0.4843 0.4802 0.4668  0.4664  0.4665 0.4678  0.4676  0.4665 0.28
8512 6psja 0.7328 0.7027 0.6079  0.6956  0.6964  0.6983  0.6993  0.6964 0.41
9515 6pijs 0.2673 0.2634 0.2627  0.2668  0.2668 0.2682 0.2681 0.2668 0.52
9512 6pso 0.3912 0.3696 0.3759  0.3787  0.3791 0.3806  0.3811 0.3791 0.53
9512 Tpiy 0.9608 0.9740 0.9386  0.9381 0.9379 0.9400  0.9402 0.9379 0.24
9512  8ps;, 117655 117758 11.2408  11.0845  11.1985  11.2353  11.2498  11.1985 0.46
9512  9ps;, 185382 18.5035 18.0569  18.2017  18.1870  18.1752  18.1364  18.1870 0.28
6ds/s  6pas 3.6118 3.2841 2.9607 2.9225 2.9246 2.9326  2.9205 2.9225 0.39
6ds/2  6pso 1.8788 1.7262 1.5778 1.5532 1.5524 1.5591 1.5504 1.5532 0.61
6ds/s  Tpij 6.5612 6.4793 6.2220 6.2073 6.2074  6.2307  6.2054 6.2074 0.38
6ds/2  6pso 5.5647 5.1199 46680  4.5908  4.5881 46089 45818  4.5908 0.64
6ds/s  5frp  11.8444 115388 10.9887  10.9418  10.9462  10.9814  10.9398  10.9462 0.32
Tds;s  8pss 5.5199 5.5125 5.4149 54037 53877  5.3868  5.3692 5.3877 0.34
7ds;,  8psjs  16.9078  16.8812 16.6001  16.5812  16.5415  16.5280  16.4879  16.5415 0.32
8ds/s  Tpisa 2.0426 1.9983 1.9201 1.9112 1.9133 1.9150 1.9164 1.9133 0.16
8ds/2  8pso 4.9838 4.9721 46360  4.6499 47154 47208 4.7396  4.7154 0.51
8ds/s  9pss 8.9750 8.9714 8.8663 8.8284  8.8088 8.8202 8.7900 8.8088 0.21
8ds/>  8ps/s  16.9078  16.8812 16.6001  13.4127  13.6648  13.6913  13.7342  13.6648 0.51
852 9ps;p 274180  27.4046 27.0938  27.1020  26.9877  26.9981  26.9261  26.9877 0.23
9ds/s  Tpij 1.1405 1.1049 1.0801 1.0664 1.0669 1.0714 1.0694 1.0669 0.42
9ds/2  8pso 1.4304 1.4199 1.3886 1.3785 1.3779 1.3828 1.3829 1.3779 0.37
9ds/s  Tfs;» 319963  32.0084 31.6460  31.4671  31.6525  31.4337  31.6650  31.6525 0.69
9ds/2  8psja 4.3106 4.2820 41738 41927 4.1893 42179 42177 4.1893 0.68
952 Tfs 8.4295 8.4330 8.3313 8.2170 8.2833 8.2275 8.2749 8.2833 0.67
5gra Bl 3.0037 3.0702 2.9425 2.9253 2.9531 2.9369  2.9527 2.9531 0.55
5972 6fs;  21.0220  21.0198 21.1035  21.2291  21.1740  21.2137  21.1694  21.1740 0.19
5gr/2  6fr 4.0488 4.0483 40650  4.0805  4.0723 40868  4.0714  4.0723 0.36
5goj2  BSfra  18.3030  18.1639 17.4095  17.3067  17.4711  17.3751  17.4688  17.4711 0.55
5gojs  6fr;s 239522 23.9495 24.0485  24.1931  24.0917  24.1773  24.0865  24.0917 0.36
6g72 5l 0.9450 0.9282 0.9419  0.9406  0.9361 0.9399  0.9363  0.9406 0.67
6g7/2  Tfsa  37.5965  37.5946 37.7237  37.8647  37.7895  37.8491  37.7820  37.7895 0.16
6g72 Tl 7.2404 7.2401 7.2656 7.2037  7.2657 7.2912 7.2643 7.2657 0.35
6goj2  Bfra 5.5904 5.4912 5.5732 5.5646 55384  5.5605 5.5393 5.5646 0.67
6gos Tl 428340  42.8317 42.0827  43.1490  42.9843  43.1344  42.9758  42.9843 0.35
79752 6fs)2 7.2143 7.1742 7.0891 7.0408 7.0576 7.0528 7.0600 7.0576 0.07
T9r/2 612 1.3877 1.3800 1.3632 1.3541 1.3590 1.3564 1.3594 1.3590 0.20
Tgrs  8fs; 563033 56.3019 56.4640  56.5957  56.5101  56.5833  56.5000  56.5101 0.13
7972 8fr2 108421  10.8418 10.8735  10.9004  10.8749  10.8987  10.8729  10.8749 0.22
Tgos2  6fr)2 8.2100 8.1644 8.0652 8.0114  8.0403 8.0245 8.0427  8.0403 0.20
Tgoj2  Sfrj2 641414  64.1396 64.3272  64.4861  64.3369  64.4764  64.3251  64.3369 0.22
8g7/2  6fsa 3.9919 3.9578 4.0045 3.9875 39777  3.988  3.9791 3.9875 0.35
8g72  6fra 0.7688 0.7623 0.7709  0.7678  0.7649 0.7677  0.7651 0.7678 0.53
8g7/2  Tfs 9.3593 9.3397 9.0473 8.9485 9.0165 8.9789  9.0211 9.0165 0.42
8902 6fra 4.5483 4.5095 45610  4.5425  4.5263 45420 45275 4.5425 0.51
9g7/2  6fs2 2.6491 2.6201 2.6860 2.6788 2.6656 2.6756  2.6664 2.6656 0.50
9972 Tfsp 5.3193 5.3014 5.2597  5.2166 5.2282 5.2247  5.2308 5.2282 0.07
9972 Tl 1.0234 1.0199 1.0114 1.0033 1.0073 1.0048 1.0077 1.0073 0.24
9g7/2  8fs; 115547 11.5443 11.0136  10.8574  10.9924  10.9075  10.9993  10.9924 0.77
9902 Tfrjo 6.0544 6.0341 5.9838 5.9360 5.9592 5.0447  5.9618 5.9592 0.24
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TABLE III: Transition rates (A, in 1/s) for transitions in Hg™ calculated in lowest- (DF approximation) AW second- A
and third-order A£3) RMBPT are compared with recommended NIST values AgNIST) [40].

nlj — n’l;-, A(NIST) 4 (NIST) Aﬁ.l) Aﬁ.z) A$3) nl; — n’l;/ \(NIST) 4 (NIST) Aﬁ.l) Aﬁ.z) A$3)

6512 Opij2 19423 7 58] 7.25[8] 4.57[8] 3.94[8] 6ps;s 6ds;z 22535 1.2[8]  1.56[8] 1.32[8] 1.10[8]
6512 Opsz 16499 1.2[9]  1.14[9] 7.43[8] 6.51[8] 6ps;2 6ds, 22254 T.5[8]  9.49[8] 8.03[8] 6.68[8]
6p1ss 6dgn 18692 1.0[9]  1.01[9] 8.37[8] 6.80[8] 6pis Tds, 13543 2.1[8]  2.84[8] 1.96[8] 1.85[8]
6ds/2 6fs/> 35354 3.0[7)  3.25[7] 2.76[7] 2.73[7] 6ps;2 Tds, 15391 1.8[]8]  2.27[8] 1.58[8] 1.57[g]
6ds/> 6f7/2 36049 3.0[7]  3.00[7] 2.53[7] 249[7] Tsip Tpie 79467 43[7)  5.52[7] 5.21[7] 4.74[7]
6ds/2 6fs;2  3606.8 2.0[6]  2.02[6] 1.71[6] 1.67[6] 6512 8pss 7825 1.0[7]  3.32[7] 9.44[6] 1.11[7]
6p1s2 Tsie 22610 3.0[8]  2.57[8] 2.56[8] 2.06[8] 6pis 8ds, 12037 9.0[7)  1.28[8] 7.91[7] 7.91[7]
6ps/s Tdsn 15452 3.0[7)  3.56[7] 2.44[7] 2.42[7] 6pi;; 10ds;, 10968 2.1[7)  4.28[7] 2.35[7] 2.46[7]
6ds/2 Tfs/2  2957.6 9.5(6)  1.05[7] 7.95[6] 7.95[6] Ts1. 8ps;, 31171 88[6]  1.15[7] 8.87[6] 7.46[6]
6ds/o  Tfr2 30057 9.5[6]  9.02[6] 6.72[6] 6.59[6] Ts1o 9ps;e  2499.5 2.4[6]  4.00(6] 2.56[6] 2.09[6]
6ds/2 Tfsy2 30074 6.3[5]  6.14[5] 4.59[5] 4.49[5] Tpi2 10ds;, 29102 9.0[6]  1.21[7] 1.12[7] 1.09[7]
6ds/o 5fr2 56787 1.8[8]  1.94[8] 1.84[8] 1.67[8] 5fs;s 6grs 63967 1.8[7)  2.33[7] 2.25[7] 2.32[7]
Tds;s Tfs;s 74239 11[7]  1.16[7] 1.11[7] 1.09[7]
Tds;y Tfrs  7556.2 11[7]  1.11[7] 1.07[7] 1.04[7] 6psya Tsio  2848.5 3.0[8]  4.22[8] 4.09[8] 3.42[8]
6p1/s 8si2  1430.0 85[7]  813[7] 7.99[7] 7.55[7] Tps;s Tds;y 73485 5.3[7)  7.84[7] 7.68[7] 6.54[7]
6ps/2 8sip 16445 11[8]  1.22[8] 1.13[8] 1.11[8] 6s12 8pie 7878 3.1[7]  1.15[6] 2.03[7] 3.31[7]
6ps/s Sdgm 13522 1.5[7]  1.50[7] 8.95[6] 9.48[6] Tpis 9ds, 31919 15[7)  2.03[7] 1.90[7] 1.82[7]
6ps/2 Sdsp 13497 88[7]  9.71[7] 5.96[7] 6.36[7] 8s10 9ps;,  6990.0 2.2[6]  3.13[6] 2.93[6] 2.58[6]
6ds/2 Sps2 43838 85[4]  8.13[4] 7.02[4] 3.19[4] 6ds;y 5fs;; 54268 14[8]  2.00[8] 1.90[8] 1.71[g]
6ds/y 8fsn 26922 3.8[6]  4.57[6] 3.13[6] 3.11[6]
6ds/2 8fr2  2733.0 3.8[6]  3.71[6] 2.45[6] 2.36[6] 6512 Tpise 9234 6.5[8]  1.24[7] 1.08[7] 1.65[7]
6p1ss 9512 12334 46[7)  3.86[7] 3.74[7] 3.73[7] 6s12 Tps) 893.1 5.8[7]  1.11[8] 5.21[6] 2.70[6]
6ps/2 9dssp 12645 43[7)  5.19[7] 2.94[7] 3.27[7] 6ds;2 8ps;y 44941 755 4175 3.37[5] 8.05[4]
6ps/s 10s1,, 12849 34[7]  3.23[7] 2.83[7] 3.00[7] 6ps;2 9s1,,  1389.8 7.0[7]  5.78[7] 5.16[7] 5.33[7]
Tprys Tdgy 58729 1.0[8]  9.40[7] 9.24[7] 7.72[7] 6pin  1lsy 11059 3.8[7]  1.33[7] 1.27(7] 1.32[7]
Tprja 8s1p 76229 4.0[7]  3.58[7) 3.63[7] 3.14[7] Tsyp Tps;, 61512 6.2[7]  1.09[8] 1.04[8] 9.487]
Tprys 8dgy 38074 32[7)  3.83[7] 3.67[7] 3.38[7] Tps;, Tds;, 74884 85[6]  1.20[7] 1.27(7] 1.09[7]
Tds;y 8fs;2 59513 4.506]  4.99[6] 4.66[6] 4.64[6] Tsio 8pin 32023 1.0[7]  1.986] 9.36[5] 5.37[5]
Tds;y 8fz;s  6040.6 4.506]  4.58[6] 4.27[6] 4.22(6] Tps;, 8ds;, 44265 1.3[6]  5.02[6] 4.74[6] 4.55[6]
Tprys 9s1, 41216 1.2[7]  1.34[7] 1.37[7] 1.28[7] Tps;. 8ds;,  4399.9 9.0[6]  3.13[7] 2.97(7] 2.84[7]
8pij2 9dsp 78832 9.5(6)  9.82(6] 9.73[6] 8.97[6] Tps;2 9s1.  4856.9 2.2[6]  1.63[7] 1.64[7] 1.56[7]
8ps/s 9dsn 84084 9.8[6]  1.06[7] 1.04[7] 9.90[6] Tps;2 9ds» 36159 855  2.57(6] 2.36[6] 2.36[6]
8p1j2 10ds, 63620 48[6]  5.79[6] 5.71[6] 5.42[6] Tps;2 9ds,  3607.9 5.7[6]  1.63[7] 1.51[7] 1.50[7]
8ps/s 10ds, 67039 5.3[6]  5.95[6] 5.82[6] 5.72[6] Tpi2 10s1, 33182 556  7.04[6] 7.29[6] 6.91[6]
5frj2 Bgos2 95228 72[7)  7.86[7) 7.74[7] 7TA1[7] Tps;2 10s1,, 37788 2.7(6]  8.84[6] 8.88[6] 8.65[6]
5fr2 6gos2  6293.0 2.6[7]  2.54[7] 245[7] 253[7] Tpi2 10s1,, 33182 5.5[6]  7.04[6] 7.29[6] 6.91[6]
5fr2 Tgess 52244 1.3[7)  1.21[7] 115[7] 1.24[7] Tps;2 10ds;»  3253.0 2.506]  9.68[6] 8.80[6] 8.91[6]
5fr/2 89gos2  AT05.9 6.7(6]  6.86[6] 6.43[6] 7.12[6] Tpi2 1lsi, 29749 80[6]  4.23[6] 4.40[6] 4.21[6]
5f/2 99o/2  4406.1 4.5[6)  4.33[6] 4.02[6] 4.53[6] Tps;2 1lsin  3339.9 2.6[4]  5.40(6] 5.41[6] 5.33[6]
6ds/2 5fs2  5596.8 88[6]  1.35[7] 1.28[7] 1.16[7]
5fs2 Bgre 97623 517  7.06[7] 6.95(7] 6.38[7]
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TABLE IV: Wavelengths A (A), transition rates A (s™') and oscillator strengths (f) for transitions in Hg" calculated using our
recommended values of reduced electric-dipole matrix elements Z%% and their uncertainties. The relative uncertainties in the
values of transition rates and oscillator strengths are the same, listed in column “Unc.” in %. These are estimated uncertainties
associated with the present all-order approach. These uncertainties do not account for the mixing of the one-particle and one-
hole-two-particle configurations. Numbers in brackets represent powers of 10.

Transition A A b Unc.(%) Transition A A f Unc.(%)
G512 6pie 10423 3.83[8] 2171 0.6 6dss  5fa/2 54268  1.63[] 1.11[0] 180
G512 6psa 1649.9  6.27[8] 5121  0.64 6ds/a 550 5506.8  1.14[7]  5.36[-2]  1.58
G512 Tpis 9234  3.50[7]  4.47[-3]  2.00 6ds/a  5fr0 5678.7  1.66]8] 1.07(0]  0.64
65172 Tpsje 893.1  1.73[5]  4.14[5  2.00 6dssp  Tfs) 2057.6  7.74[6]  1.52[-2]  2.00
8512 Spis 18098.8  1.36[7]  6.66[-1  2.00 6ds/s  Tfs/o 3007.4  4.30[5 5.82[-4]  2.00
85172 8pse 15676.8  1.84[7] 1.35[0] 0.72 Gdsjo  Tfr/o 30057  6.32(6] 1.14[2]  2.00
95172 9pisa 36008.7  3.82[6] 7.80-1]  0.50 6ds/2 80 26922 3.01[6] 4.91[-3]  2.00
95172 9pse 30769.4  5.75[6] 1.63[0]  0.56 Gdsjo  Sfs/o 27334 1.53(5] 1.71[-4]  2.00

Gdse  Sfr/o 2733.0  2.22(6] 3.32[-3]  2.00
6prja Ts1 2261.0  2.03]8] 1.55}-1]  0.68 Tdsss  6fs 125881  3.59[7] 1.28(0] 1.74
6ps/2  Tsi/o 2848.5  3.26[8] 1.99-1 1.12 Tdss  6fsp 130041  247(6]  6.27-2] 146
6prja 8510 1430.0  7.54[7]  231-2]  0.56 Tdsss  6fr2 129800  3.72[7]  1.25[0] 2.8
6psj2 85170 1644.5  1.10[8]  2.24[-2]  0.82 8dss  Tfs 236254 1.14[7]  143[0]  2.80
6prja 9510 12334 3.84[7] 8.76[-3] 1.04 8ds/s  Tfs 244133 7.93[5] T.08}2] 2.2
6psja 9510 1389.8  5.42[7] 7.85[-3]  1.06 8ds/2  Tfra 243057  1.19[7] 1.41[0]  3.98
6pija 1081/ 1150.1  2.30[7]  4.56[-3]  1.82 83> S8fs 132177 A51[6]  L771] 174
6psj2 105172 1284.9  3.12[7] 3.86[-3] 1.18 852 Sfs 134607  2.95[5]  8.00[-3]  2.06
Sprje 10810 87011  3.63[6] 4.13[-2]  0.60 Sy Sfrn 134505  4.45[6] 1611  3.20
8psj2 1051/ 9309.2  5.51[6] 3.65]-2] 048 Ods/s  Sfsj2 399770  447(6]  1.60[0] 2.28
Oprje  10s1,5 315981  3.20(6] 4.93[1]  2.92 Odss  Sfse 409807  3.16[5] 7.9502  1.64
9pse  10s1,,  38107.3  5.41(6] 5.80[1] 144 Odss  Sfrn 408857  A75[6]  1.59[0]  2.82
6pija  6dss 1869.2  6.62[8] 6.94-1] 0.78 Gfso  Sdsp 773195 4.49[5] 2,681  1.70
6psjz  6ds /e 22535  1.07]8] 8.13[-2] 122 6fse  Sdsn 699328  2.80[4]  2.05[2] 178
6psje  6ds/e 22254  6.46]8] T7.19[-1]  1.28 Gfro  Sds 706389  5.46[5]  3.06-1  2.78
6prja  Tds 1354.3  1.66[8] 9.12[-2]  2.00
6psja  Tds 15452 2.22[7] 7.94[-3]  2.00 6fs2 9912 7949.3  3.58[6]  4.53[-2]  1.00
6prjz  Sds 12037 6.69[7] 291[-2]  2.00 6fr2 9902 7958.1  3.60[6] 4.38[-2]  1.48
6psje  Sdso 1352.2  8.46[6] 2.32[-3] 2.0 6fss  Sgr/ 8981.5  5.56(6] 8.96[-2]  0.70
6psjz  Sds/e 13497 5.75[7]  2.36[-2]  2.00 6fr2 81/ 8093.1  2.05[5] 2.49[-3  1.06
6prja  9dse 11345  3.32[7] 1.28-2]  2.00 6f12  8goso 8092.8  5.756] 8.71[2]  1.02
6ps/2  9d3/o 12655  4.13[6]  9.91[4] 2.0 6fs;2  Tgr 110800  9.27(6]  228[1] 0.4
6psjz 9ds /2 1264.5 3557  1.28-2]  2.00 6fr2  Tgre 110976 3.42(5]  6.32[3]  0.40
6prje  10ds)s 10968  1.86[7] 6.70[-3]  2.00 6fre  Tgap 110075  9.58[6]  2.21[-1]  0.40
6psja  10ds, 12187  2.33[6]  5.18[-4]  2.00 Tfs;e 9972 141769  2.43[6] 9.76[-2]  0.14
6ps3 /2 10ds,2 1218.0 1.78]7] 5.94[-3] 2.00 Tf7/2 997/2 14213.5 8.95[4] 2.71[-3] 0.48
8p1/2  10ds) 6362.0 5.32[6] 6.45-2] 0.44 Tfr;2  9gee 142128  251[6]  9.49[-2]  0.48
8psj2  10ds, 6727.3  8.835] 5.99[-3 140 Tfs;e  Sgrje 178319  3.63[6] 231[1] 0.84
Spsje  10dss 6703.9 7.27(6] 7.34-2  2.62 Tfe  Sgrs 178898  1.34[5]  6.44[-3]  2.02
912 9ds 22951.0  6.04[6] 9.54[1]  5.76 Tfie  Sgoje 178886  3.76[6]  2.2501  1.98
9p3/2 9ds3 /2 26201.8 1.23]6] 1.26]-1] 1.60 8fs/2 997/2 26875.8 1.58]6] 2.28[-1] 1.54
R 95787.9  7.04[6] 1.05[0]  2.08 8fr2 9972 269168  5.84[4]  6.3503] 272
9prja  10ds, 135312 3.49(6] 1.91[1] 214 8fr2 99052 269144  1.64[6] 22201 2.6
9pse  10ds» 145991  6.20(5] 2.01[2] 0.76 6fss  Bgre 2595010  6.50[3] 8.75[2]  0.38
9psj2 105, 144892 5.16(6] 2.43}1]  2.68 6fr2  Bgre 2694983  2.15[2]  2.34[3]  0.72
Gfre  Bgas 2604697  6.01[3] 8182  0.72
8dss  Opi, 1414255 152(5]  2.27}1]  0.84 Tfs;e  6grja 4016902  5.58[3]  1.80[1]  0.32
Sy 9pse 80149.1  7.63[4] 7.35[-2]  0.42 Tfs  Ggrm 4332604  1.642]  4.63[3]  0.70
Sds/s  9pse 90003.9  5.06[5] 4.10-1]  0.46 Tfie  Ggan 4332598  4.60[3] 16211  0.70
8fs;e  Tgre 6013110  3.72(3] 26911  0.26
8fr/2  Tgre 6225437  124]2]  7.21[3] 044
8fr  Tgeyr 6223871  3.48[3] 25301  0.44
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TABLE V: Comparison of our final values for the oscillator strengths with theoretical values given by Glowacki and Migdalek
[29], Migdalek and Garmulewicz [26], and by Migdalek [22]. Uncertainties associated with the present all-order approach
are given in parenthesis. These uncertainties do not account for the mixing of the one-particle and one-hole-two-particle
configurations. References are given in square brackets.

Transitions Present Other
6512 6p1/2 0.217(1) 0.200[29]
6s1/2 6p3/2 0.512(3) 0.493[29]
6p1 /2 781/2 0.155(1) 0.164 [26]
6p3 /2 781/2 0.199(2) 0.208 [26]
6p1/2 8s1/2 0.0231(1) 0.0212 [22]
6p3 /2 8s1/2 0.0224(2) 0.0229 [22]
6p1/2 6ds /2 0.694(5) 0.684 [26]
6p3 /2 6ds3 /2 0.081(1) 0.0791 [26]
6p3 /2 6ds /2 0.719(9) 0.706 [26]
6p3 /2 Td3 /o 0.0079(2) 0.0118 [22]
6p1 /2 8ds3 /2 0.0291(6) 0.0498 [22]
6p3 /2 8ds3/2 0.0023(0) 0.00389 [22]
6p3 /2 8ds /2 0.0236(5) 0.0379 [22]
7s1/2 Tp3)2 1.08(12) 1.063 [22]
p1/2 8s1/2 0.275(5) 0.268 [22]
7ps/2 8512 0.36(8) 0.361 [22]
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TABLE VI: Comparison of the Hg" lifetimes (in nsec) with experiment. Uncertainties associated with the present all-order
approach are given in parenthesis. These uncertainties do not account for the mixing of the one-particle and one-hole-two
particle configurations. References are given in square brackets. Only decay channels via the one-particle states are considered.
We note that some of the experimental values give the lifetimes due to only a single decay channel.

Level Present Expt.
7512 1.889(14) 1.99(10)[19]
8s1/2 3.85(14)

9s1/2 7.10(12) 7.5(4)[1]
10512 11.62(24) 3.8(4)[1]
6p1/2 2.610(15) 2.91(11)[19]
6p3/2 1.594(10) 1.80(8)[19]
Tp1/2 11.89(11) 18.8(12)[1]
p3/2 9.56(96) 3.1(2)[1]
8p1/2 63.9(6.0)

8p3/2 32.8(2.9)

6ds3 /2 1.300(9) 1.15(10)[19]
6ds /2 1.548(20) 1.56(10)[19]
Td3/2 3.535(58) 5.0(6)[1]
Tds/2 4.44(18) 6.7(5)[1]
8ds3/2 7.44(15) 10.6(6)[1]
8ds /2 9.52(17) 10.7(5)[1]
9d3 /2 13.31(17) 11.3(6)[1]
9ds /2 14.55(62)

10ds,2 23.17(40) 18.9(17)[1]
10ds,2 24.5(1.6)

5f5/2 5.58(9) 3.2(2)[1]
5f7/2 6.04(4) 8.6(9)[1]
6f5/2 14.96(36)

6f7/2 16.27(69)

7fs/2 30.79(43)

Tf1/2 34.02(87)

8f5/2 54.6(1.2)

8f7/2 61.2(2.2)

5g7/2 14.37(71)

5992 13.96(15)

697/2 23.32(35) 26.8(20)[1]
699/2 23.99(69)

797/2 38.0(1.7)

799/2 36.43(65) 40.7(24)[1]
899/2 53.49(90)

997 /2 84.8(4. 90(7)[1]

6)
999/2 81.5(1.3)
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TABLE VII: Contributions to multipole polarizabilities of the 6s state of Hg' in a3. Uncertainties associated with the present
all-order approach are given in parenthesis. These uncertainties do not account for the mixing of the one-particle and one-hole-
two-particle configurations. The final results are compared with other theory [61].

Contr. afl
6p1,2 3.937(22)
6ps3/2 6.715(43)
(7= 26)p; 0.938(0)
Tail 0.004
Core 7.37(37)
ve -0.040
Total 18.93(37)
afle1) 19.49

Contr. af?
6ds,2 16.89(6)
(7 —12)d3,» 3.59(2)
(13 — 26)ds» 0.23(0)
6ds 5 23.84(9)
(7 —12)ds,2 5.07(4)
(13 — 26)ds » 6.61(0)
Tail 2.6(0.8)
Core 37.1(1.9)
ve -5.1(3)
Total 90.8(2.1)

Contr. a3
5752 116.0(7.5)
6fs,2 44.8(0.4)
Tfso 20.9(0.1)
8fs,2 11.6(0)
(9 — 12) fs 2 17.3
(13— 18) f5 2 7.4
(19 — 26) f5,2 73.3
5f1/2 159.6(2.5)
6f7/2 56.6(0.7)
Tf7/2 25.7 (0.2)
8f1/2 13.8 (0)
(9 —12) f2/2 19.8
(13 — 18) f7/2 8.1
(19 — 26) f7/2 39.2
Tail 13.7(4.1)
Core 171.5(8.6)
ve 0

Total 799(12)
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TABLE VIII: Hyperfine constants A (in MHz) in Hg". The SD and SDpT (single-double all-order method including partial
triple excitations) data are compared with experimental results. The data are compared with theoretical and experimental
results from Ref. [3] - (a).

Level A(DF) A(SD) A(SDpT) A(thcor) A(cxpt)
Hg™, I=1/2, u=0.5058852 [65]

6s1/2 34002 41909 41477 42366“ 40460
781/2 6470 7506 7422 6730

6p1/2 5482 7063 6984 7116* 6970
6p3 /2 454 651 642 659°

6ds /2 55.0 96.2 94.4 92.2¢

6ds /2 224 36.8 36.2 45.3%

p1/2 1433 1578 1562

Tp3/2 132 196 195

Td3 /o 25.8 42.3 41.7

Tds )2 10.5 16.8 16.6

W01t 1=3/2, u=-0.560225 [65]

6s1/2 -12551 -15470 -15311 -15527¢ -14960*
781/2 -2388 -2771 -2740 -2466

6p1/2 -2023 -2607 -2578 -2608" -2610*
6p3 /2 -167 -240 -237 -241%

6ds /2 -20.3 -35.5 -34.8 -33.8¢

6ds /2 -8.27 -13.60 -13.35 -16.6°

p1/2 -529 -582 -577

Tp3/2 -48.9 -72.3 -71.9

Td3 /o -9.54 -15.60 -15.38

Tds )2 -3.87 -6.21 -6.13
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TABLE IX: Hyperfine constants B (in MHz) in 201Hg*. Nuclear quadrupole moment @ is taken to be 0.455b in barns
(1 b=10"**c¢m?)[3]. The SD and SDpT (single-double all-order method including partial triple excitations) data are compared

with other theoretical results [3].

Level B(ZF) B(ZD) B<SZPT> B(DF) BGD) B(SDpT) B(th)
6p ZPS/Q 927 1451 1434 422 660 652 659
Tp 2P3/2 270 357 355 123 163 161
6d 2D3/2 38.0 127 126 17.3 57.9 57.1 28.7
7d 2D3/2 17.9 50.3 49.8 8.14 22.9 22.7
6d 2D5/2 46.6 165 163 21.2 75.1 74.1 34.1
7d 2D5/2 21.8 65.3 64.7 9.92 29.7 29.5




