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Excitation energies of the [Xe]4f145d10ns, [Xe]4f145d10npj , [Xe]4f145d10ndj ,
[Xe]4f145d10n′fj , and [Xe]4f145d10n′gj states in Hg+ are evaluated (n ≤ 10, n′

≤ 9, and
[Xe]=1s22s22p63s23p63d104s24p64d105s25p6). First-, second-, third-order, and all-order Coulomb
energies and first- and second-order Coulomb-Breit energies are calculated. Reduced matrix
elements, oscillator strengths, and transition rates are determined for electric-dipole transitions
including the ns (n=6-11), np (n = 6 − 10), nd (n = 6 − 10), nf (n = 5 − 9), and ng (n = 5 − 9)
states. Lifetime values are determined for all above mentioned states. The ground state E1,
E2, and E3 polarizabilities are evaluated. The hyperfine structure in 199Hg+ and 201Hg+ ions is
investigated. The hyperfine A- and B-values are determined for the first low-lying levels up to n
= 7. The quadratic Stark effect on hyperfine structure levels of 199Hg+ and 201Hg+ ground states
is investigated. The calculated shift for the 199Hg+ (F = 1, M =0) ↔ (F = 0, M =0) transition
is -0.0597(2) Hz/(kV/cm)2, in agreement with previous theoretical result -0.060(3) Hz/(kV/cm)2.
These calculations provide a theoretical benchmark for comparison with experiment and theory
and provide values of BBR shifts for microwave frequency standards with 199Hg+ and 201Hg+ ions.

PACS numbers: 31.15.A-, 31.15.ac, 31.15.ag, 31.15.aj

I. INTRODUCTION

Mercury is among the most frequently used elements in spectral sources; therefore, investigation of atomic properties
of the mercury ion could help to explain the properties of these sources, as well as continuous wave and pulsed
mercury lasers [1]. Measurements of the lifetimes for the 7p1/2 and 7p3/2 levels in Hg+ were carried out using
beam-foil excitation [2]. Maniak et al. [2] noted the importance to obtain the accurate values of the 7pJ lifetimes.
The intrashell transitions to the 7s level give rise to the well-known He-Hg laser lines at 7944 Å and 6149 Å, and a
knowledge of their transition rates and lifetimes would be useful in the study of this and other light sources that employ
the mercury ion spectrum [2]. Hg+ properties are also needed for applications to stellar atmosphere modeling [3].
Both microwave and optical frequency standards based on laser-cooled Hg+ ions were discussed by Berkeland et

al. [4]. The ground-state hyperfine interval was measured to be 40507347996.84159(14)(41) Hz [4], where the first
number in parentheses was the uncertainty due to statistics and systematic errors, and the second was the uncertainty
in the frequency of the time scale to which the standard was compared. The frequency ratio of the Al+ and 199Hg+

optical atomic clocks with a fractional uncertainty of 5.2 × 10−17 was reported in [5]. High-resolution spectroscopy
has been performed on the ground-state hyperfine transitions in trapped 201Hg+ ions in [6] as part of a program to
investigate the viability of 201Hg+ for clock applications. The differences between the two isotopes and how they can be
exploited for fieldable clock applications, particularly those in space was examined [6]. While present implementations
of the 199Hg+ clock were done at cryogenic temperatures, suppressing the blackbody radiation (BBR) shift [7] of the
clock transition, accurate calculations of the BBR shift will be needed if clock is implemented at room temperature.
Designing clocks with both isotopes may improve the limits on variations of the fine-structure constant [6]. Frequency
shift of hyperfine transitions due to blackbody radiation in 199Hg+ was investigated by Angstmann et al. [8] by
performing calculations of the size of the frequency shift induced by a static electric field. These calculations were
carried out for the clock transition frequencies of the hyperfine splitting of Yb+, Rb, Cs, Ba+, and Hg+, but the
uncertainty of Hg+ value was not estimated.
The Hg+ ion has been studied in a number of experimental [1, 2, 9–21] and theoretical [3, 22–27] papers. The

beam-foil technique was used by Andersen and Sørensen [9] to determine the radiative lifetimes of the 7s, 9s, 6p, 6d,
8d, 9d, and 5f states in Hg+. The zero-field level-crossing technique was used by Andersen et al.. [12] to measure
the 6p3/2 − 6d5/2, 6d3/2 − 5f5/2, and 6d5/2 − 5f7/2 transition rates in Hg+. Lifetime measurements of the 6pj and

6dj levels in Hg+ were reported be Eriksen and Poulsen in Ref. [13]. The technique of beam foil spectroscopy was
applied by Pinnington et al. [19] to obtain measurements of the radiative lifetimes of the 6pJ , 6dJ , and 7s levels in
Hg+. The multichannel delayed-coincidence method was used by Blagoev et al. in Ref. [1] to determine the radiative
lifetimes of the 9s, 10s, 7pj, 7dj, 8dj , 9d3/2, 5fj, 6g, 7g, 8g, and 9g states.
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Sansonetti and Reader [21] studied the Hg+ spectrum and energy levels, obtaining about 500 lines classified as
transitions between 114 levels. Many of the observed configurations were theoretically interpreted by means of
Hartree-Fock calculations and least-squares fits of energy parameters. The fitted parameters were then used to
calculate oscillator strengths for most of the classified lines [21].
Theoretical oscillator strengths in Hg+ ion reported by Migdalek in Ref. [22] were obtained using a semiempirical

approach that determined nonrelativistic and relativistic wave functions and oscillator strengths, including exchange
effects. Some years later, Migdalek and Baylis [23] presented theoretical oscillator strengths in Hg+ calculated by
relativistic, single-configuration Hartree-Fock method that included core polarization effects. Numerical values of
oscillator strengths were given in Ref. [23] for the 6s− 6pj, 6pj − 6dj′ , and 6pj − 7s transitions. The same transitions
were considered by Migdalek and Garmulewicz [26] using the relativistic ab initio model potential. Relativistic
many-body perturbation theory calculations through third order were performed by Chou and Johnson [24] to study
amplitudes of the 6s− 6pj transitions in Hg+. Theoretical oscillator strengths and hyperfine structure in Hg+ were
presented by Brage et al. [3]. The fully relativistic multi-configuration Dirac-Fock methods (GRASP code) was
used to calculate oscillator strengths for the 6s− 6pj and 6pj − 6pj′ transitions. A larger number of transitions were
treated with a more flexible, but less accurate, version of the method. Authors utilized a highly systematic restricted
active space approach and predicted gf-values and hyperfine structure constants to an accuracy of a few percent. The
results were used in stellar atmosphere models, assuming local thermodynamic equilibrium (LTE), where a line-by-line
investigation was important [3]. Multi-configuration Dirac-Fock method (MCDF) was employed by Yu et al. [27] to
calculate excitation energies, ionization potentials and oscillator strengths for all neutral and up to 5 times ionized
species of element Uub, as well as the homologue elements Zn, Cd and Hg. Numerical values for oscillator strengths
in Hg+ were given only for the 6s− 6pj transitions [27].
The infinite-order regular approximation (IORA) and IORA with modified metric (IORAmm) was used by Filatov

and Cremer [28] to develop an algorithm for calculating relativistically corrected isotropic hyperfine structure (HFS)
constants. The numerical value of the HFS constant was given for the Hg+ 6s ground state.
Recently, Glowacki and Migdalek [29] presented calculations of relativistic configuration-interaction oscillator

strengths for lowest E1 transitions in the gold isoelectronic sequence. Numerical results for Hg+ ion were listed
only for the 6s− 6pj transitions. Relativistic corrections to transition frequencies of Ag I, Dy I, Ho I, Yb II, Yb III,
Au I, and Hg+ ions were investigated recently by Dzuba and Flambaum [30] due to the search for variation of the
fine-structure constant. Relativistic many-body perturbation theory was used by Safronova and Johnson [31] to eval-
uate excitation energies, oscillator strengths, and lifetimes of levels along the gold isoelectronic sequence. Numerical
results for Hg+ ion were presented for the ns (n = 6 − 9), npj (n = 6 − 8), ndj (n = 6 − 7), and 5fj states for
excitation energies and oscillator strengths between those states.
In this paper, we carry out a systematic study of atomic properties of singly ionized mercury. First-, second-, third-,

and all-order Coulomb energies and first- and second-order Coulomb-Breit energies are calculated for the 6s − 11s,
6p − 10p, 6d − 10d, 5f − 9f , and 5g − 9g levels. The electric-dipole reduced matrix elements, oscillator strengths,
and transition rates are determined for allowed transitions between these states. Additionally, lifetime values are also
determined for all above mentioned states. Electric-dipole (6s − npj , n = 6− 26) matrix elements are calculated to
obtain the ground state E1 polarizabilities. We investigate the hyperfine structure in 199Hg+ and 201Hg+ ions. The
hyperfine A- and B-values are determined for the first low-lying levels up to n = 7. Finally, the quadratic Stark effect
on hyperfine structure levels of the ground state is also investigated to evaluate the relevant black-body radiation shift
in the microwave frequency standards with 199Hg+ and 201Hg+ ions.

II. THIRD-ORDER AND ALL-ORDER CALCULATIONS OF ENERGIES

Energies of nlj states in Hg+ are evaluated for the 6s− 11s, 6p− 10p, 6d− 10d, 5f − 9f , and 5g − 9g states using
both third-order relativistic many-body perturbation theory (RMBPT) and the single-double (SD) all-order method
discussed in Refs. [32–34], in which single and double excitations of Dirac-Fock (DF) wave functions are iterated to
all orders.
We use B-splines [35] to generate a complete set of Dirac-Fock (DF) basis orbitals for use in the evaluation of all

atomic properties. The present calculation of the polarizabilities required accurate representation of rather highly
excited states, such as 6lj − 13lj, leading to the use of the large R = 220 a.u. cavity for the generation of the finite
basis set and higher number of splines to produce high-accuracy single-particle orbitals.
Results of our energy calculations are summarized in Table I. Columns 2–6 give the lowest-order DF energies E(0),

second-order and third-order Coulomb correlation energies E(2) and E(3), second-order Breit corrections B(2), and
an estimated Lamb shift contribution, E(LS). The Lamb shift E(LS) is calculated as the sum of the one-electron self
energy and the first-order vacuum-polarization energy. The vacuum-polarization contribution is calculated from the
Uehling potential using the results of Fullerton and Rinker [36]. The self-energy contribution is estimated for the s,
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p1/2 and p3/2 orbitals by interpolating among the values obtained by Mohr [37, 38, 39] using Coulomb wave functions.
For this purpose, an effective nuclear charge Zeff is obtained by finding the value of Zeff required to give a Coulomb
orbital with the same average 〈r〉 as the DF orbital. It should be noted that the values of E(LS) are very small.
We list the all-order SD energies in the column labeled ESD and list that part of the third-order energies missing from

ESD in the column labeled E
(3)
extra. The sum of the five terms E(0), ESD, E

(3)
extra, B

(2), and E(LS) is our final all-order
result ESD

tot , listed in the tenth column of Table I. Recommended energies from the National Institute of Standards
and Technology (NIST) database [40] are given in the column labeled ENIST. Differences between our third-order

and all-order calculations and experimental data, δE(3) = E
(3)
tot − ENIST and δESD = ESD

tot − ENIST, are given in the
two final columns of Table I, respectively. We already mentioned we include both Coulomb and Breit contributions
to the Breit-Dirac-Fock potential and then treat the residual Breit and Coulomb interactions perturbatively. As a
result, the first-order Breit correction B(1) was already included in the lowest-order DF energies E(0) and omitted
from Table I.
As expected, the largest correlation contribution to the valence energy comes from the second-order term E(2).

Therefore, we calculate E(2) with higher numerical accuracy. The second-order energy includes partial waves up to
lmax = 8 and is extrapolated to account for contributions from higher partial waves (for details of the extrapolation
procedure, see Refs. [41, 42]). As an example of the convergence of E(2) with the number of partial waves l, consider
the 6s state. Calculations of E(2) with lmax = 6 and 8 yield E(2)(6s1/2) = -18158.0 and -18351.4 cm−1, respectively.

Extrapolation of these calculations yields -18387.3 and -18381.3 cm−1, respectively. Thus, in this particular case, we
have a numerical uncertainty in E(2)(6s) of 6.0 cm−1. It should be noted that the 193.34 cm−1 contribution from
partial waves with l > 6 for the 6s state is the largest among all states considered in Table I; smaller (about 16− 17
cm−1) contributions are obtained for the 6d3/2 and 6d5/2 states and much smaller contributions (2 − 3 cm−1) are
obtained for n=7 states.
Owing to computational complexity, we restrict l ≤ lmax = 6 in the ESD calculation. As noted above, the second-

order contribution dominates ESD; therefore we can use the extrapolated value of the E(2) described above to account
for the contributions of the higher partial waves. Additionally, six partial waves are also used in the calculation of
E(3). Since the asymptotic l-dependence of the second- and third-order energies are similar (both fall off as l−4), we

use the second-order remainder as a guide to estimate the remainder in the third-order contribution. The term E
(3)
extra

in Table I, which accounts for that part of the third-order MBPT energy missing from the SD energy, is smaller than
E(3) by an order of magnitude for the states considered here.
The column labeled δESD in Table I gives differences between our ab initio results and the available experimental

values [40]. The SD results are in substantially better agreement with recommended NIST values than the third-order
MBPT results (the ratio of δE(3)/δESD is about three for some of cases) as expected, illustrating the importance of
fourth and higher-order correlation corrections.

III. ELECTRIC-DIPOLE MATRIX ELEMENTS, OSCILLATOR STRENGTHS, TRANSITION RATES,

AND LIFETIMES IN THE HG+ ION

A. Electric-dipole matrix elements

The calculation of the transition matrix elements provides another test for both the quality of atomic-structure
calculations and the size of correlation corrections. Reduced electric-dipole matrix elements between low-lying states
of Hg+ calculated in various approximations are presented in Table II.
In Table II, we list our recommended values for 50 E1 ns − n′p, nd − n′p, and nd − n′f transitions. While we

have calculated over 500 E1 matrix elements to evaluate lifetimes and polarizabilities presented in this work, only
matrix elements that give significant contributions to the atomic properties calculated in the other sections are listed.
To evaluate the uncertainties of these values, several calculations were carried out in different approximations. We
list the lowest-order Dirac-Fock (DF) ZDF, second-order Z(DF+2), and third-order Z(DF+2+3) values in the first three
numerical columns of Table II to demonstrate the size of the second, third, and higher-order correlation corrections.
The absolute values of the reduced matrix elements in atomic units (a0e) are given in all cases. The many-body
perturbation theory (MBPT) calculations are carried out following the method described in Ref. [43]. The values
Z(DF+2) are obtained as the sum of the second-order correlation correction Z(2) and the DF matrix elements ZDF.
The third-order matrix elements Z(DF+2+3) include the DF values, the second-order Z(2) results, and the third-order
Z(3) correlation correction. Z(3) includes random-phase-approximation terms (RPA) iterated to all orders, Brueckner
orbital (BO) corrections, the structural radiation, and normalization terms (see [43] for definition of these terms).
Our calculations of the reduced matrix elements in the lowest, second, and third orders were carried out following

the pattern described in Refs. [43–45]. The lowest order DF values for transitions between valence v and w states
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(labelled as Z
(DF)
vw ) are given in the third column of Table II. The values Z

(DF+2)
vw are obtained as the sum of the

second-order correlation correction Z
(2)
vw and the DF matrix elements Z

(DF)
vw . It should be noted that the second-order

Breit corrections B
(2)
vw are rather small in comparison with the second-order Coulomb corrections Z

(2)
vw (the ratio of

B
(2)
vw to Z

(2)
vw is about 1%–3%).

The third-order matrix elements Z
(DF+2+3)
vw include the DF values, the second-order Z

(2)
vw results, and the third-

order Z
(3)
vw correlation correction. It should be noted the third-order matrix elements Z

(DF+2+3)
vw are divided in the

following way:

Z(DF+2+3)
vw = Z(DF)

vw + Z(RPA)
vw + Z(BO)

vw + Z(SR)
vw + Z(NORM)

vw . (1)

We include the corresponding set of the high-order contributions using the well known random phase approximation
in Z(RPA) term using the procedure described in Ref. [43]. The subscript BO stands for Brueckner orbitals. The last

two terms in Eq. (1) describe structural radiation, Z
(SR)
vw , and normalization, Z

(NORM)
vw .

The terms Z
(RPA)
vw and Z

(BO)
vw give the largest contributions to Z

(DF+2+3)
vw . The sum of terms Z

(RPA)
vw and Z

(BO)
vw

is about 20% of the Z
(DF)
vw term and has different sign for the 6s− 6p, 6p− 6d, 6p− 7s, and 6p− 7d transitions. That

decreases the Z(DF+2+3) values in comparison with the Z
(DF)
vw values.

The value of Z
(BO)
vw becomes the largest contribution for the 6p− 7s transitions. The ratios of values Z

(RPA)
vw and

Z
(DF)
vw are equal to -1.9 and -0.8 for the 6s− 7p1/2 and 6s− 7p3/2 transitions, respectively. As a result, the value of

Z(DF+2+3) decreases by a factor of 28 in comparison with the Z(DF) term for the 6s − 7p3/2 transition, while value

of Z(DF+2+3) increases by a factor of 1.5 and changes sign in comparison with the Z(DF) term for the 6s − 7p1/2
transition (see Table II).

The structural radiation Z
(SR)
vw and normalization Z

(NORM)
vw terms give small contribution in Z(DF+2+3) values

(about 0.3-3.3 %). All results given in Table II are obtained using length form of the matrix elements.
The next four columns of Table II contain four different all-order calculations. Ab initio electric-dipole matrix

elements evaluated in the all-order SD (single-double) and SDpT approximations (single-double all-order method
including partial triple excitations [46]) are given in columns labeled ZSD and ZSDpT. Differences between the ZSD

and ZSDpT values are generally 0.5 % - 2.0 % for the transitions listed in Table II. The SD and SDpT matrix elements
ZSD include Z(3) completely, along with important fourth- and higher-order corrections. The fourth-order corrections
omitted from the SD matrix elements were discussed by Derevianko and Emmons [47].
Recently, we have developed some general criteria to establish the final values for all transitions and evaluate

uncertainties owing to the need to analyze a very large number of transitions [48]. To evaluate the uncertainties of
our matrix elements and to provide recommended values, we carried out semi-empirical evaluation of the missing
correlation corrections using the scaling procedure. The uncertainty evaluation was discussed in detail in Ref. [48],
and we briefly summarize it below.

The matrix elements of any one-body operator Z =
∑

ij zij a†iaj are obtained within the framework of the SD
all-order method as

Zwv =
〈Ψw|Z|Ψv〉

√

〈Ψv|Ψv〉〈Ψw|Ψw〉
. (2)

In the SD approximation, the |Ψv〉 and |Ψw〉 are given by the expansions

|Ψv〉 =

[

1 +
∑

ma

ρmaa
†
maa +

1

2

∑

mnab

ρmnaba
†
ma†nabaa

+
∑

m 6=v

ρmva
†
mav +

∑

mna

ρmnvaa
†
ma†naaav



 |Ψ(0)
v 〉, (3)

where |Ψ
(0)
v 〉 is the lowest-order atomic state vector. In Eq. (3), the indices m and n range over all possible virtual

states while indices a and b range over all occupied core states. The quantities ρma, ρmv, ρmnab, and ρmnva are single-
excitation coefficients for core and valence electrons and double-excitation coefficients for core and valence electrons,
respectively. In the SD approximation, the resulting expression for the numerator of Eq. (2) consists of the sum of
the DF matrix element zwv and 20 other terms that are linear or quadratic functions of the excitation coefficients.
From these 20 terms, only two terms give dominant contributions for all transition matrix elements considered in

this work:

Z(a) =
∑

ma

(zamρ̃wmva + zmaρ̃
∗
vmwa) (4)
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or

Z(c) =
∑

m

(zwmρmv + zmvρ
∗
mw) , (5)

where ρ̃mnab = ρmnab − ρnmab and zwv are lowest-order matrix elements of the corresponding one-body operator.
For most of the transitions considered in this work, term Z(c) is the dominant term. To evaluate missing corrections
to this term, we need to improve the values of the valence single-excitation coefficients ρmv [49]. These excitation
coefficients are closely related to the correlation energy δEv. The omitted correlation correction can be estimated by
adjusting the single-excitation coefficients ρmv to the experimentally known value of the valence correlation energy,
and then re-calculating the matrix elements using Eq. (2) with the modified coefficients [49]

ρ′mv = ρmv
δEexpt

v

δEtheory
v

. (6)

The δEexpt
v is defined as the experimental energy [40] minus the lowest order DF energy ǫv. Since the scaling

factors depend on the correlation energy given by the particular calculation, they are different for the SD and SDpT
calculations, and these values have to be scaled separately. This is a rather complicated procedure that involves
complete recalculation of the matrix elements with new values of the valence excitation coefficients. The corresponding
results are listed in Table II with subscript “sc”. The scaled SD and SDpT values are close together, as expected.
The term Z(a) is not corrected by the scaling procedure. However, it is dominant for very few transitions that

give significant contributions to the atomic properties considered in this work, and we consider such cases separately.
Therefore, the recommended set of values and their uncertainties can be established based on the ratio R = Z(c)/Z(a).
We take the SD scaled result as the final value if R > 1. Otherwise, we use SD result as the final value. If 0.5 < R < 1.5,
we evaluate the uncertainty in term Z(c) as the maximum difference of the final value and the other three all-order
values from the SD, SDpT, SDsc, and SDpTsc set. We assume that the uncertainty of all the other terms does not
exceed this value and add two uncertainties in quadrature. If 1.5 < R < 3, we evaluate the final uncertainty as the
max(SDsc−SD, SDsc−SDpT, SDsc−SDpTsc). If the term Z(c) strongly dominates and R > 3, we evaluate the final
uncertainty as max(SDsc−SDpT, SDsc−SDpTsc). We have conducted numerous comparisons of all available data
on various properties of many different monovalent systems with different types of experiments in many other works
(see [44, 46, 48–57], and references therein) and found that such procedures do not underestimate the uncertainties
in monovalent systems but may somewhat overestimate them in some cases. The case of Hg+ is more complicated
owing to the present of the low-lying one-hole-two-particle configurations. The procedure described above procedure
is only expected to estimate the uncertainties that are associated with the present approach, it can not estimate full
uncertainties due to mixing of the one-particle configurations considered in this work with the one-hole-two-particle
configurations. Such uncertainties can not be fully estimated within the framework of the present approach.
The last column of Table II gives relative uncertainties in the final values Zfinal in % estimated as described above.

Our final results and their uncertainties are used to calculate the recommended values of the transition rates, oscillator
strengths, lifetimes, and polarizabilities as well as evaluate the uncertainties of these results.

B. Transition rates and oscillator strengths

We combine recommended NIST energies [40] and our final values of the matrix elements listed in Table II to
calculate transition rates A and oscillator strengths f . The transition rates are calculated using

Aab =
2.02613× 1018

λ3

S

2ja + 1
s−1, (7)

where the wavelength λ is in Å and the line strength S = d2 is in atomic units.
Wavelengths and transition rates Ar in the first-order (DF), second-order (RPA), and third-order RMBPT approxi-

mation are given in Table III for the limited number of transitions in Hg+. We chose transitions that can be compared
with data presented in NIST website [40] as recommended NIST data. We note that NIST data for these transition
rates mainly come from the theoretical calculations, generally obtained by using standard atomic codes which may
not accurately take into account the correlation corrections. The higher-order contributions are generally omitted in
such calculations. Therefore, it is instructive to compare NIST data with the first- , second-, and third-order MBPT

calculations. In Table III, our transition rates calculated in the first-, second-, and third-order approximations (A
(i)
r )

are compared with NIST transition rates, A(NIST). This table shows some A(NIST) values agree better with Ar values
obtained from each approximation, and a substantial part of the A(NIST) values disagree with all of our results. In
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the left column of Table III, we list the 39 transitions when the A(NIST) values are in the better agreement with our

A
(1)
r values obtained in the DF approximation. Disagreement between the A(NIST) and A

(1)
r values is about 2-20 %.

The first 12 transitions given in the right column of Table III are transitions when the A(NIST) values are in the better

agreement with our A
(2)
r values obtained in the RPA approximation. The next six lines present transitions when the

A(NIST) values are in better agreement with our A
(3)
r values obtained in the third-order RMBPT approximation. Dis-

agreement between the A(NIST) and A
(i)
r values in both cases with i = 2 and 3 is about 2-20 %. The last 21 transitions

given in the right column of Table III present transitions when the A(NIST) values disagree with our A
(i)
r values by a

factor of 1.3-20. These 21 transitions represent cases that illustrate the importance of correlation contributions. The

difference in A
(1)
r , A

(2)
r , and A

(3)
r values is about 10-50 % for the most of these cases.

Our final values of the transition rates A (s−1) and oscillator strengths (f) for the ns−n′p, np−n′s, np−n′d, and
nd − n′p, and nd − n′f transitions in Hg+ are summarized in Table IV. Vacuum wavelengths obtained from NIST
energies are also listed for reference. The relative uncertainties in per cent are listed in the column labeled “Unc.”.
The relative uncertainties of the transition rates and oscillator strengths are twice of the corresponding matrix element
uncertainties since these properties are proportional to the squares of the matrix elements.
Comparison of the oscillator strengths given by Glowacki and Migdalek [29], Migdalek and Garmulewicz [26], and by

Migdalek [22] with our theoretical values is illustrated by Table V. Uncertainties are given in parenthesis. Relativistic
configuration-interaction approximation was used in [29] to evaluate oscillator strengths for the 6s− 6p transitions.
These two values are in a better agreement (7-10 % difference) with our f (DF+2+3) values. However, the theoretical
oscillator strengths presented by Migdalek in Ref. [22] are in better agreement with our f (DF) values. It should be
noted that we evaluate the f (DF) values the Dirac-Fock energies, while the f (DF+2) and f (DF+2+3) values are calculated
with recommended NIST energies [40].
There is small difference (1-5 %) between our oscillator strengths values and the f (3) values given in Ref. [31]. The

approach used here differs from Ref. [31] by the treatments of the Breit interaction. In Ref. [31], Breit contributions
to the Dirac-Fock potential was omitted and Breit corrections were included perturbatively in second order MBPT.
In the approach used in the present paper, we include both Coulomb and Breit contributions to the Breit-Dirac-Fock
potential and then treat the residual Breit and Coulomb interactions perturbatively. In the present work, we increase
number of basis set orbitals up to 70 instead of 40 used in [31].

IV. LIFETIMES IN HG+

We calculate lifetimes of the ns1/2 (n = 7 − 11), npj (n = 6 − 10), ndj (n = 6 − 10), nfj (n = 5 − 9), and ngj
(n = 5 − 9) states in Hg+ using our final values of the dipole matrix elements and NIST data [40] for energies, and
then compare the values with available experimental data [1, 19] in Table VI. The uncertainties in the lifetime values
are obtained from the uncertainties in the matrix elements listed in Table II.
Our lifetime values for the 7s1/2 and 6dj states agree with experimental measurements performed by Pinnington et

al. [19] when experimental uncertainties are taken into account. There is a small difference (10−15 %) between our τ
values and Pinnington’s measurements for the 6pj states, but disagreement between our results and the measurements
can be explained by considering only one channel for decay in [1]. For example, there are five channels for decay from
the 7d3/2 level (7d3/2 → 6p1/2, 7d3/2 → 6p3/2, 7d3/2 → 7p1/2, 7d3/2 → 7p3/2, and 7d3/2 → 5f5/2). If we take into

account only the 7d3/2 → 6p1/2 channel with largest transition rate, we find τ (2) = 5.105 ns and τ (3) = 5.450 ns,
which agrees perfectly with the experimental lifetime for the 7d3/2 state (5.0±0.6 ns, see Table VI).
The theoretical and experimental studies of the 7pj lifetime were presented by Maniak et al. in Ref. [2], who

underlined very large differences in transition rates Ar for 6s1/2 − 7pj. The ratio of transition rates obtained in
different approximations was about 700 and 30 for the 6s1/2 − 7p1/2 and 6s1/2 − 7p3/2 transitions, respectively. As a
result, the ratio of calculated lifetimes was equal to 11 for the 7p1/2 level and about two for the 7p3/2 level. It was

underlined in Ref. [2] that there is a large contribution to the 7p3/2 lifetime in the 7p3/2 → 5d−16s2 2D5/2 channel,
however in the we did not consider this channel in the present study. Regardless, experimental measurement for the
lifetime of 7p1/2 level (14.5±1.0 ns) is in good agreement with our τ (2) = 15.52 ns and τ (3) = 15.31 ns lifetimes.

V. STATIC MULTIPOLE POLARIZABILITIES OF THE 6s GROUND STATE OF HG+

The static multipole polarizabilities αEk of Hg+ in its 6s ground state can be separated into two terms: a dominant
first term from intermediate valence-excited states, and a polarizability of the ionic core, which is evaluated in the
random-phase approximation (RPA) [58]. The accuracy of the RPA core value for the E1 polarizability is expected
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to be better than 5% [7]. There are no available comparisons of the RPA ionic core values for the E2 and E3
polarizabilities with accurate theoretical or experimental data, so we have no direct way to assign uncertainties to
these values. We assign 5% uncertainties for the core E2 and E3 values as in the case of E1 polarizabilities. The ionic
core polarizability has to be corrected for the presence of the valence electron. This small valence-core (vc) term is
also calculated in the RPA. We assign 5% uncertainties to these values as in the case of the ionic core contributions.
The dominant valence contribution is calculated using the sum-over-state approach

αEk
v =

1

2k + 1

∑

n

|〈nlj‖r
kCkq‖6s〉|

2

Enlj − E6s
, (8)

where Ckq(r̂) is a normalized spherical harmonic and where nlj is npj , ndj , and nfj for k = 1, 2, and 3, respectively
[59]. The reduced matrix elements in the above sum are evaluated using out final values of the reduced matrix
elements and NIST energies [40]. The uncertainties in the lifetime values are obtained from the uncertainties in the
matrix elements listed in Table II. We evaluate the final values together with uncertainties for the quadrupole and
octupole matrix elements using procedure that was described above for the dipole matrix elements.
Contributions to dipole, quadrupole, and octupole polarizabilities of the 6s ground state are presented in Table VII.

The first two terms in the sum-over-states for αE1, αE2, and αE3 contribute 92%, 72%, and 45%, respectively, of
the totals. The remaining 28% of αE2 contribution from the (5-26)ndj is divided in two parts, from (7-12)ndj and
(13-26)ndj. The remaining 55% of αE3 contribution from the (6-26)nfj states is divided into six parts: 6fj, 7fj, 8fj,
(9-12)nj, (13-18)ndj, and (19-26)ndj.
The rapid convergence of the sum over states for αE1 has been emphasized in many publications (for example,

Refs. [46, 60]). We use recommended energies from NIST [40] and values of ‘final’ matrix elements to evaluate terms
in the sum with n ≤ 13, and we use theoretical SD energies and wave functions to evaluate terms with 13 ≤ n ≤ 26.
The remaining contributions to αEk from basis functions with 27 ≤ n ≤ 70 are evaluated in the DF approximation.
These remainder tail contributions are assigned 30% uncertainties. As one can see from Table VII, sums over n for
n ≤ 26 in αE2 and αE3 essentially reproduce the final results, since the contributions from 27 ≤ n ≤ 70 are rater
small (0.2%, 3%, and 2% for the E1, E2, and E3 polarizabilities, respectively). Final result for the E1 polarizability
of the ground state Hg+ is compared in Table VII with theoretical result from in Ref. [61].
Static dipole polarizability α6s of Hg

+ was calculated by Iliaš and Neogrády [61] using the relativistic one-component
spin averaged DouglasKroll (DK) no pair approximation combined with the CCSD (coupled cluster with single- and
double-excitation amplitudes) treatment of the electron correlation. Different values for α6s were obtained by different
approaches, for example, the α6s is equal to 22.59 a.u. and 19.49 a.u. in the DK approach and CCSD approaches,
respectively. Our value (18.93) is 3% smaller than the CCSD value.

VI. HYPERFINE CONSTANTS FOR 199HG+ AND 201HG+

Calculations of hyperfine constants follow the pattern described earlier for calculations of transition matrix elements.
In Table VIII, we list hyperfine constants A for 199Hg+ and 201Hg+ and compare our values with available theoretical
and experimental results from Ref. [3].
In this table, we present the lowest-order A(DF), all-order A(SD), and A(SDpT) values for the ns, np, and nd levels

up to n = 7. It should be noted that the values of A(SDpT) are obtained by using single-double all-order method
including partial triple excitations. The difference between A(SD), and A(SDpT) is about 0.1-2%, while the ratios of
A(SD) and A(DF) are equal to 0.6 - 1.6 for some cases. We compare our A(SD), and A(SDpT) values with the A(DF+2+3)

values evaluated in the third-order RMBPT (see, also Ref. [31]). The difference between the A(SD) and A(DF+2+3)

gives the contributions of the fourth-order and other high-order RMBPT. The largest difference between A(SD) and
A(DF+2+3) (about 30 % and 40 %) occurred for the 6d3/2 and 6d5/2 levels. The smallest difference (about 0.4-0.6 %)

is for the 7s1/2 and 6p1/2 levels. For other levels given in Table VIII, the difference between A(SD) and A(DF+2+3) is
about 3-7 %.
Our results for the hyperfine constants B in 201Hg+ are compared with theoretical values from Ref. [3] in Table IX.

The nuclear quadrupole moment Q in 201Hg+ was taken to be 0.455 barns (1 barn=10−24cm2) [3]. The first three
columns of Table IX list the B(DF), B(SD) and B(SDpT) values divided by nuclear quadrupole moment Q. The next
three columns list the B(DF), B(SD), and B(SDpT) values. The ratios B(SD) and B(DF) are equal to 1.5 - 2.7 for some
cases. In the last column of Table IX, we show few available theoretical values of B constants.
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VII. HYPERFINE-INDUCED TRANSITION POLARIZABILITY OF THE 199HG II AND 201HG II

GROUND STATES

We now turn to the calculation of the quadratic Stark shifts of the ground-state hyperfine interval (F = 1−F = 0)
in 199Hg+ and the ground-state hyperfine interval (F = 2 − F = 1) in 201Hg+. The quadratic Stark shift is closely
related to the black-body radiation shift discussed, for example, in Refs. [32, 33, 62, 63]. Our calculation follows the
methodology outlined in those works. The dominant second-order contribution to the polarizability cancels between
the two hyperfine components of the 6s state so the Stark shift of the hyperfine interval is governed by the the

third-order F -dependent polarizability α
(3)
F (0). The expression for the α

(3)
F (0) is [32]:

α
(3)
F (0) =

1

3

√

(2I)(2I + 1)(2I + 2)

{

jv I F
I jv 1

}

× (9)

gIµn (−1)
F+I+jv (2T + C +R)

where gI is the nuclear gyromagnetic ratio, µn is the nuclear magneton equal to 0.5058852 for 199Hg+, I is the nuclear
spin, and jv = 1/2 is the total angular momentum of the atomic ground state. The formulas for the F -independent
terms T , C, and R are given in Ref. [62]. These terms are similar to the polarizability sum-over-state expression but
are more complicated.
We note first that in the DF approximation the values of T , C, and R in atomic units for 199Hg+ are

2TDF = 5.8545× 10−4, CDF = 1.4482× 10−5,

RDF = 8.8095× 10−4. (10)

Since the value of CDF is smaller than the TDF and RDF by almost two orders of magnitude, we do not recalculated
the C term in the SD approximation.
The expression for R is similar to that for αE1 [32]. The difference is an additional factor of the diagonal hyperfine

matrix element:

199〈6s1/2‖T ‖6s1/2〉
(SD) = 7.4523× 10−6 a.u.

201〈6s1/2‖T ‖6s1/2〉
(SD) = −3.8797× 10−5 a.u.

We use our all-order recommended values for the reduced electric-dipole matrix elements described in Section III A
and their uncertainties to calculate the main terms in the T and R sums. We refer to these values as the “best set”
values. Available recommended NIST energies [40] are used for nl = 6s− 10s, 6p− 8p, and SD energies are used for
the other states up to n = 26. The sum of terms for n ≤ 26 is Rn≤26 = 4.728(20)× 10−4 for 199Hg+. The remainder
of the sum, evaluated in the DHF approximation, Rn>26 = 1.4× 10−7 that gives Rfinal = 4.729(20)× 10−4.
Term T contains two sums, over ns and over mpj . We evaluate main contributions, that include n ≤ 26 and

m ≤ 26 using all-order matrix elements and NIST or all-order energies as described above. We find that the remaining
contributions with n > 26 and m > 26, are very small. We break down each mp term as

∑

mp

(

26s
∑

7s

[...] +

70s
∑

27s

[...]

)

.

Each mp term is given by

26
∑

n=7

AT
〈6s‖D‖mpj〉〈mpj‖D‖ns〉〈ns‖T ‖6s〉

(Emp − E6s) (Ens − E6s)
, (11)

where AT is an angular factor. Our final value for this term is 2T final = 3.838(22)× 10−4 for 199Hg+. Combining
these contributions, we obtain for 199Hg+

2T final + CDF +Rfinal = 8.712(30)× 10−3 a.u. (12)

The F-dependent factor (see Eq. (9))

A(F ) =
gIµn

3I

√

(2I)(2I + 1)(2I + 2)

×

{

jv I F
I jv 1

}

(−1)F+I+jv
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is equal to -0.4130535 for F = 0 and 0.1376845 for F = 1 in the case of 199Hg+ isotope and is equal to 0.2541232 for
F = 1 and -0.1524739 for F = 2 in the case of 201Hg+ isotope. Using these values and the result from Eq. (12), we
obtain for two isotopes

199α
(3)
F=1(0)− α

(3)
F=0(0) = 4.798(16)× 10−4 a.u.

201α
(3)
F=2(0)− α

(3)
F=1(0) = −3.452(12)× 10−4 a.u.

The Stark shift coefficient k defined as ∆ν = kE2 is k = − 1
2

[

α
(3)
F=1(0)− α

(3)
F=0(0)

]

for 199Hg + and k =

− 1
2

[

α
(3)
F=2(0)− α

(3)
F=1(0)

]

for 201Hg+. Converting from atomic units, we obtain

199k(SD) = −2.399(8)× 10−4a.u=-5.969(20)× 10−12 Hz/(V/m)
2
.

201k(SD) = 1.726(6)× 10−4a.u=4.295(15)× 10−12 Hz/(V/m)2

In the DHF approximation (Eq. (10)), we find k(DF)= -10.147×10−12Hz/(V/m)2 in the case of 199Hg+ isotope.
The relative blackbody radiative shift β is defined as

β = −
2

15

1

νhf
(απ)

3
T 4αhf(6s1/2) (13)

where νhf is the 199Hg+ hyperfine (F = 1 and F = 0) splitting equal to 40507.347997 MHz [4] and the 201Hg+

hyperfine (F = 2 and F = 1) splitting equal to 29920 MHz [3]. T is a temperature that we take to be 300 K. Using
those factors, we can rewrite Eq. (13) as

199β = −2.1258× 10−13α199
hf (6s1/2) (14)

201β = 2.8781× 10−13α201
hf (6s1/2) (15)

Using the final value for α199
hf (6s1/2) = 4.798(16)×10−4 a.u. and α201

hf (6s1/2) = -3.452(12)×10−4 a.u, we obtain finally

199β(final) = −1.020(3)× 10−16 (16)
201β(final) = −0.994(3)× 10−16 (17)

Our result for 199Hg+ isotope is in an excellent agreement with result -1.02(5)×10−16 from Ref. [64]. Such an
excellent agreement between results obtained by different methods is very important when correlation contributions
are so large.

VIII. CONCLUSION

In summary, a systematic all-order study of the properties of the ns1/2, npj , ndj , n
′fj , and n′gj , (n ≤ 10, n′ ≤ 9)

states in singly ionized mercury is presented. The energy values are in excellent agreement with existing experimental
data. Reduced matrix elements, oscillator strengths, and transition rates for electric-dipole transitions including the
6s − 11s, 6p − 10p, 6d − 10d, 5f − 9f , and 5g − 9g states are calculated. Lifetime values are determined for all
above mentioned states, and electric-dipole (6s1/2 − npj , n = 6–12) matrix elements are calculated to obtain the
ground state E1 polarizability. We evaluate the uncertainties of our calculations for most of the values listed in this
work. Hyperfine A- and B-values for the for 199Hg+ and 201Hg+ ions are presented for the first low-lying levels up
to n=7. The quadratic Stark shifts of the ground-state hyperfine intervals in 199Hg+ and 201Hg+ and corresponding
values of the BBR shifts are also evaluated. These calculations provide a theoretical benchmark for comparison with
experiment and theory.
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TABLE I: The total all-order ESD
tot and third-order E

(3)
tot Hg+ energies (E

(3)
tot = E(0) +E(2) +E(3) +B(2), ESD

tot = E(0) + ESD +

E
(3)
extra + B(2)) for Hg+ are compared with experimental energies ENIST [40], δE = Etot - ENIST. E(n) is zeroth-order (DF),

second-, and third-order Coulomb correlation energies, ESD is single-double all-order Coulomb energies, and E
(3)
extra is the third

order energies missing from ESD. Lastly, B(2) is the second-order Coulomb-Breit corrections. All units are in cm−1.

nlj E(0) E(2) E(3) B(2) ELS) E
(3)
tot ESD E

(3)
extra ESD

tot ENIST δE(3) δESD

6s1/2 -136333.2 -18387.3 5622.5 -756.0 78.9 -149775 -15827.1 1665.4 -151172 -151284 1509 112
6p1/2 -89541.3 -11017.7 2811.1 -375.1 -1.7 -98125 -10548.2 877.7 -99589 -99798 1674 210
6p3/2 -81958.6 -8889.9 2201.0 -272.0 0.5 -88919 -8861.0 740.0 -90351 -90676 1757 325
6d3/2 -44301.7 -1985.3 410.4 -57.7 0.0 -45934 -2094.2 183.1 -46271 -46300 366 30
6d5/2 -43867.1 -1870.6 367.7 -59.6 0.0 -45430 -1967.6 168.0 -45726 -45740 311 14
7s1/2 -52800.2 -3313.7 1009.3 -129.1 7.2 -55226 -2901.0 343.3 -55480 -55570 344 90
7p1/2 -40851.3 -2479.4 624.4 -90.3 -0.3 -42797 -2327.9 210.6 -43059 -42986 189 -73
7p3/2 -38711.5 -2208.4 527.8 -74.5 0.0 -40467 -2092.3 189.0 -40689 -39313 -1154 1376
5f5/2 -27610.6 -574.8 117.5 -2.8 0.0 -28071 -605.3 62.8 -28156 -27873 -198 -283
5f7/2 -27625.6 -574.9 115.2 -2.8 0.0 -28088 -619.3 61.9 -28186 -28131 43 -55
7d3/2 -25170.4 -781.9 150.6 -27.1 0.0 -25829 -808.3 67.4 -25938 -25959 130 20
7d5/2 -24966.3 -744.5 117.5 -27.9 0.0 -25621 -761.6 62.1 -25694 -25705 84 11
8s1/2 -28828.4 -1241.1 381.1 -49.7 1.7 -29736 -1077.0 130.7 -29823 -29868 131 45
8p1/2 -23776.2 -1020.2 253.7 -38.2 -0.1 -24581 -986.0 88.0 -24713 -24343 -238 -370
8p3/2 -22834.5 -934.5 216.0 -32.5 0.0 -23586 -1017.1 80.6 -23804 -23489 -97 -315
9s1/2 -18208.7 -605.9 186.4 -24.6 0.6 -18652 -526.6 64.2 -18695 -18724 72 29
6f5/2 -17700.8 -334.4 64.6 -2.3 0.0 -17973 -370.9 34.1 -18040 -18015 42 -25
6f7/2 -17712.3 -334.2 62.7 -2.4 0.0 -17986 -371.1 33.3 -18052 -18001 14 -52
5g7/2 -17559.1 -75.0 16.5 0.0 0.0 -17618 -74.8 9.7 -17624 -17630 12 5
5g9/2 -17559.2 -75.0 16.5 0.0 0.0 -17618 -74.8 9.7 -17624 -17629 12 5
8d3/2 -16309.7 -399.1 71.2 -14.6 0.0 -16652 -413.4 33.5 -16704 -16722 69 17
8d5/2 -16199.6 -383.7 36.3 -15.0 0.0 -16562 -372.2 31.1 -16559 -16585 23 26
9p1/2 -15595.9 -526.2 129.5 -19.9 -0.1 -16013 -525.2 45.7 -16095
9p3/2 -15095.8 -489.1 110.2 -17.2 0.0 -15492 -576.9 42.3 -15648 -15474 -18 -174
10s1/2 -12550.8 -342.4 105.4 -14.0 0.3 -12801 -298.5 36.4 -12827 -12850 48 23
7f5/2 -12293.6 -205.7 38.2 -1.6 0.0 -12463 -233.8 20.2 -12509 -12489 26 -20
7f7/2 -12301.5 -205.5 36.8 -1.7 0.0 -12472 -233.5 19.7 -12517 -12471 -1 -46
6g7/2 -12194.3 -48.6 10.7 0.0 0.0 -12232 -48.6 6.2 -12237 -12240 8 3
6g9/2 -12194.3 -48.6 10.6 0.0 0.0 -12232 -48.6 6.2 -12237 -12240 8 3
9d3/2 -11441.2 -232.8 38.6 -8.7 0.0 -11644 -241.8 19.3 -11672 -11657 13 -15
9d5/2 -11375.4 -225.8 1.6 -9.0 0.0 -11609 -238.9 17.9 -11605 -11596 -13 -9
10p1/2 -11025.0 -308.5 75.5 -11.7 0.0 -11270 -286.0 26.9 -11296
10p3/2 -10727.4 -289.1 64.3 -10.3 0.0 -10962 -296.9 25.1 -11010
8f5/2 -9028.5 -134.1 24.5 -1.2 0.0 -9139 -155.2 12.9 -9172 -9156 17 -16
8f7/2 -9033.9 -133.8 23.4 -1.2 0.0 -9146 -154.7 12.5 -9177 -9150 5 -27
7g7/2 -8959.2 -32.6 7.2 0.0 0.0 -8985 -32.6 4.1 -8988 -8990 5 2
7g9/2 -8959.2 -32.6 7.2 0.0 0.0 -8985 -32.6 4.1 -8988 -8990 5 2
10d3/2 -8472.9 -147.9 23.0 -5.6 0.0 -8603 -155.0 12.2 -8621 -8624 21 3
10d5/2 -8430.5 -144.7 -11.6 -5.8 0.0 -8593 -147.8 11.3 -8573 -8572 -20 -1
9f5/2 -6908.8 -91.9 14.4 -0.8 0.0 -6987 -107.6 8.7 -7009
9f7/2 -6912.7 -91.7 13.4 -0.8 0.0 -6992 -107.1 8.4 -7012
8g7/2 -6859.4 -22.7 6.1 0.0 0.0 -6876 -22.8 2.8 -6879 -6881 5 2
8g9/2 -6859.4 -22.7 6.1 0.0 0.0 -6876 -22.8 2.8 -6879 -6881 4 1
9g7/2 -5419.8 -17.7 4.6 0.0 0.0 -5433 -16.4 2.0 -5434 -5435 2 1
9g9/2 -5419.8 -17.7 4.6 0.0 0.0 -5433 -16.4 2.0 -5434 -5435 2 1
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TABLE II: Recommended values of the reduced electric-dipole matrix elements in atomic units. The first-order, second-order,
third-order MBPT, and all-order SD and SDpT values are listed; the label “sc” indicates the scaled values. Final recommended
values are given in the Zfinal column. Absolute values are given. The last column gives relative uncertainties of the final values
in %. These are estimated uncertainties associated with the present all-order approach. These uncertainties do not account for
the mixing of the one-particle and one-hole-two-particle configurations.

Transition ZDF Z(DF+2) Z(DF+2+3) ZSD Z
(SD)
sc ZSDpT ZSDpT

sc Zfinal Unc. (%)
6s1/2 6p1/2 2.2892 1.8185 1.6883 1.6600 1.6646 1.6651 1.6627 1.6646 0.28
6s1/2 6p3/2 3.1845 2.5661 2.4026 2.3510 2.3586 2.3585 2.3563 2.3586 0.32
7s1/2 6p1/2 1.7106 1.7093 1.5335 1.5187 1.5214 1.5234 1.5163 1.5214 0.34
7s1/2 6p3/2 3.1029 3.0528 2.7920 2.7348 2.7292 2.7444 2.7258 2.7292 0.56
7s1/2 7p1/2 5.2298 5.0803 4.8460 4.8600 4.8615 4.8759 4.8610 4.8600 0.42
8s1/2 6p1/2 0.4843 0.4802 0.4668 0.4664 0.4665 0.4678 0.4676 0.4665 0.28
8s1/2 6p3/2 0.7328 0.7027 0.6979 0.6956 0.6964 0.6983 0.6993 0.6964 0.41
9s1/2 6p1/2 0.2673 0.2634 0.2627 0.2668 0.2668 0.2682 0.2681 0.2668 0.52
9s1/2 6p3/2 0.3912 0.3696 0.3759 0.3787 0.3791 0.3806 0.3811 0.3791 0.53
9s1/2 7p1/2 0.9608 0.9740 0.9386 0.9381 0.9379 0.9400 0.9402 0.9379 0.24
9s1/2 8p3/2 11.7655 11.7758 11.2408 11.0845 11.1985 11.2353 11.2498 11.1985 0.46
9s1/2 9p3/2 18.5382 18.5035 18.0569 18.2017 18.1870 18.1752 18.1364 18.1870 0.28
6d3/2 6p1/2 3.6118 3.2841 2.9607 2.9225 2.9246 2.9326 2.9205 2.9225 0.39
6d3/2 6p3/2 1.8788 1.7262 1.5778 1.5532 1.5524 1.5591 1.5504 1.5532 0.61
6d3/2 7p1/2 6.5612 6.4793 6.2220 6.2073 6.2074 6.2307 6.2054 6.2074 0.38
6d5/2 6p3/2 5.5647 5.1199 4.6680 4.5908 4.5881 4.6089 4.5818 4.5908 0.64
6d5/2 5f7/2 11.8444 11.5388 10.9887 10.9418 10.9462 10.9814 10.9398 10.9462 0.32
7d3/2 8p3/2 5.5199 5.5125 5.4149 5.4037 5.3877 5.3868 5.3692 5.3877 0.34
7d5/2 8p3/2 16.9078 16.8812 16.6001 16.5812 16.5415 16.5280 16.4879 16.5415 0.32
8d3/2 7p1/2 2.0426 1.9983 1.9201 1.9112 1.9133 1.9150 1.9164 1.9133 0.16
8d3/2 8p3/2 4.9838 4.9721 4.6360 4.6499 4.7154 4.7208 4.7396 4.7154 0.51
8d3/2 9p3/2 8.9750 8.9714 8.8663 8.8284 8.8088 8.8202 8.7900 8.8088 0.21
8d5/2 8p3/2 16.9078 16.8812 16.6001 13.4127 13.6648 13.6913 13.7342 13.6648 0.51
8d5/2 9p3/2 27.4180 27.4046 27.0938 27.1020 26.9877 26.9981 26.9261 26.9877 0.23
9d3/2 7p1/2 1.1405 1.1049 1.0801 1.0664 1.0669 1.0714 1.0694 1.0669 0.42
9d3/2 8p3/2 1.4304 1.4199 1.3886 1.3785 1.3779 1.3828 1.3829 1.3779 0.37
9d3/2 7f5/2 31.9963 32.0084 31.6460 31.4671 31.6525 31.4337 31.6650 31.6525 0.69
9d5/2 8p3/2 4.3106 4.2820 4.1738 4.1927 4.1893 4.2179 4.2177 4.1893 0.68
9d5/2 7f5/2 8.4295 8.4330 8.3313 8.2170 8.2833 8.2275 8.2749 8.2833 0.67
5g7/2 5f7/2 3.0937 3.0702 2.9425 2.9253 2.9531 2.9369 2.9527 2.9531 0.55
5g7/2 6f5/2 21.0220 21.0198 21.1035 21.2291 21.1740 21.2137 21.1694 21.1740 0.19
5g7/2 6f7/2 4.0488 4.0483 4.0650 4.0895 4.0723 4.0868 4.0714 4.0723 0.36
5g9/2 5f7/2 18.3030 18.1639 17.4095 17.3067 17.4711 17.3751 17.4688 17.4711 0.55
5g9/2 6f7/2 23.9522 23.9495 24.0485 24.1931 24.0917 24.1773 24.0865 24.0917 0.36
6g7/2 5f7/2 0.9450 0.9282 0.9419 0.9406 0.9361 0.9399 0.9363 0.9406 0.67
6g7/2 7f5/2 37.5965 37.5946 37.7237 37.8647 37.7895 37.8491 37.7820 37.7895 0.16
6g7/2 7f7/2 7.2404 7.2401 7.2656 7.2937 7.2657 7.2912 7.2643 7.2657 0.35
6g9/2 5f7/2 5.5904 5.4912 5.5732 5.5646 5.5384 5.5605 5.5393 5.5646 0.67
6g9/2 7f7/2 42.8340 42.8317 42.9827 43.1490 42.9843 43.1344 42.9758 42.9843 0.35
7g7/2 6f5/2 7.2143 7.1742 7.0891 7.0408 7.0576 7.0528 7.0600 7.0576 0.07
7g7/2 6f7/2 1.3877 1.3800 1.3632 1.3541 1.3590 1.3564 1.3594 1.3590 0.20
7g7/2 8f5/2 56.3033 56.3019 56.4640 56.5957 56.5101 56.5833 56.5000 56.5101 0.13
7g7/2 8f7/2 10.8421 10.8418 10.8735 10.9004 10.8749 10.8987 10.8729 10.8749 0.22
7g9/2 6f7/2 8.2100 8.1644 8.0652 8.0114 8.0403 8.0245 8.0427 8.0403 0.20
7g9/2 8f7/2 64.1414 64.1396 64.3272 64.4861 64.3369 64.4764 64.3251 64.3369 0.22
8g7/2 6f5/2 3.9919 3.9578 4.0045 3.9875 3.9777 3.9868 3.9791 3.9875 0.35
8g7/2 6f7/2 0.7688 0.7623 0.7709 0.7678 0.7649 0.7677 0.7651 0.7678 0.53
8g7/2 7f5/2 9.3593 9.3397 9.0473 8.9485 9.0165 8.9789 9.0211 9.0165 0.42
8g9/2 6f7/2 4.5483 4.5095 4.5610 4.5425 4.5263 4.5420 4.5275 4.5425 0.51
9g7/2 6f5/2 2.6491 2.6201 2.6860 2.6788 2.6656 2.6756 2.6664 2.6656 0.50
9g7/2 7f5/2 5.3193 5.3014 5.2597 5.2166 5.2282 5.2247 5.2308 5.2282 0.07
9g7/2 7f7/2 1.0234 1.0199 1.0114 1.0033 1.0073 1.0048 1.0077 1.0073 0.24
9g7/2 8f5/2 11.5547 11.5443 11.0136 10.8574 10.9924 10.9075 10.9993 10.9924 0.77
9g9/2 7f7/2 6.0544 6.0341 5.9838 5.9360 5.9592 5.9447 5.9618 5.9592 0.24
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TABLE III: Transition rates (Ar in 1/s) for transitions in Hg+ calculated in lowest- (DF approximation) A
(1)
r , second- A

(2)
r

and third-order A
(3)
r RMBPT are compared with recommended NIST values A

(NIST)
r [40].

nlj − n′l′j′ λ(NIST) A(NIST) A
(1)
r A

(2)
r A

(3)
r nlj − n′l′j′ λ(NIST) A(NIST) A

(1)
r A

(2)
r A

(3)
r

6s1/2 6p1/2 1942.3 7.5[8] 7.25[8] 4.57[8] 3.94[8] 6p3/2 6d3/2 2253.5 1.2[8] 1.56[8] 1.32[8] 1.10[8]
6s1/2 6p3/2 1649.9 1.2[9] 1.14[9] 7.43[8] 6.51[8] 6p3/2 6d5/2 2225.4 7.5[8] 9.49[8] 8.03[8] 6.68[8]
6p1/2 6d3/2 1869.2 1.0[9] 1.01[9] 8.37[8] 6.80[8] 6p1/2 7d3/2 1354.3 2.1[8] 2.84[8] 1.96[8] 1.85[8]
6d3/2 6f5/2 3535.4 3.0[7] 3.25[7] 2.76[7] 2.73[7] 6p3/2 7d5/2 1539.1 1.8[8] 2.27[8] 1.58[8] 1.57[8]
6d5/2 6f7/2 3604.9 3.0[7] 3.00[7] 2.53[7] 2.49[7] 7s1/2 7p1/2 7946.7 4.3[7] 5.52[7] 5.21[7] 4.74[7]
6d5/2 6f5/2 3606.8 2.0[6] 2.02[6] 1.71[6] 1.67[6] 6s1/2 8p3/2 782.5 1.0[7] 3.32[7] 9.44[6] 1.11[7]
6p1/2 7s1/2 2261.0 3.0[8] 2.57[8] 2.56[8] 2.06[8] 6p1/2 8d3/2 1203.7 9.0[7] 1.28[8] 7.91[7] 7.91[7]
6p3/2 7d3/2 1545.2 3.0[7] 3.56[7] 2.44[7] 2.42[7] 6p1/2 10d3/2 1096.8 2.1[7] 4.28[7] 2.35[7] 2.46[7]
6d3/2 7f5/2 2957.6 9.5[6] 1.05[7] 7.95[6] 7.95[6] 7s1/2 8p3/2 3117.1 8.8[6] 1.15[7] 8.87[6] 7.46[6]
6d5/2 7f7/2 3005.7 9.5[6] 9.02[6] 6.72[6] 6.59[6] 7s1/2 9p3/2 2499.5 2.4[6] 4.00[6] 2.56[6] 2.09[6]
6d5/2 7f5/2 3007.4 6.3[5] 6.14[5] 4.59[5] 4.49[5] 7p1/2 10d3/2 2910.2 9.0[6] 1.21[7] 1.12[7] 1.09[7]
6d5/2 5f7/2 5678.7 1.8[8] 1.94[8] 1.84[8] 1.67[8] 5f5/2 6g7/2 6396.7 1.8[7] 2.33[7] 2.25[7] 2.32[7]
7d3/2 7f5/2 7423.9 1.1[7] 1.16[7] 1.11[7] 1.09[7]
7d5/2 7f7/2 7556.2 1.1[7] 1.11[7] 1.07[7] 1.04[7] 6p3/2 7s1/2 2848.5 3.0[8] 4.22[8] 4.09[8] 3.42[8]
6p1/2 8s1/2 1430.0 8.5[7] 8.13[7] 7.99[7] 7.55[7] 7p3/2 7d5/2 7348.5 5.3[7] 7.84[7] 7.68[7] 6.54[7]
6p3/2 8s1/2 1644.5 1.1[8] 1.22[8] 1.13[8] 1.11[8] 6s1/2 8p1/2 787.8 3.1[7] 1.15[6] 2.03[7] 3.31[7]
6p3/2 8d3/2 1352.2 1.5[7] 1.50[7] 8.95[6] 9.48[6] 7p1/2 9d3/2 3191.9 1.5[7] 2.03[7] 1.90[7] 1.82[7]
6p3/2 8d5/2 1349.7 8.8[7] 9.71[7] 5.96[7] 6.36[7] 8s1/2 9p3/2 6990.0 2.2[6] 3.13[6] 2.93[6] 2.58[6]
6d3/2 8p3/2 4383.8 8.5[4] 8.13[4] 7.02[4] 3.19[4] 6d3/2 5f5/2 5426.8 1.4[8] 2.00[8] 1.90[8] 1.71[8]
6d3/2 8f5/2 2692.2 3.8[6] 4.57[6] 3.13[6] 3.11[6]
6d5/2 8f7/2 2733.0 3.8[6] 3.71[6] 2.45[6] 2.36[6] 6s1/2 7p1/2 923.4 6.5[8] 1.24[7] 1.08[7] 1.65[7]
6p1/2 9s1/2 1233.4 4.6[7] 3.86[7] 3.74[7] 3.73[7] 6s1/2 7p3/2 893.1 5.8[7] 1.11[8] 5.21[6] 2.70[6]
6p3/2 9d5/2 1264.5 4.3[7] 5.19[7] 2.94[7] 3.27[7] 6d5/2 8p3/2 4494.1 7.5[5] 4.17[5] 3.37[5] 8.05[4]
6p3/2 10s1/2 1284.9 3.4[7] 3.23[7] 2.83[7] 3.00[7] 6p3/2 9s1/2 1389.8 7.0[7] 5.78[7] 5.16[7] 5.33[7]
7p1/2 7d3/2 5872.9 1.0[8] 9.40[7] 9.24[7] 7.72[7] 6p1/2 11s1/2 1105.9 3.8[7] 1.33[7] 1.27[7] 1.32[7]
7p1/2 8s1/2 7622.9 4.0[7] 3.58[7] 3.63[7] 3.14[7] 7s1/2 7p3/2 6151.2 6.2[7] 1.09[8] 1.04[8] 9.48[7]
7p1/2 8d3/2 3807.4 3.2[7] 3.83[7] 3.67[7] 3.38[7] 7p3/2 7d3/2 7488.4 8.5[6] 1.29[7] 1.27[7] 1.09[7]
7d3/2 8f5/2 5951.3 4.5[6] 4.99[6] 4.66[6] 4.64[6] 7s1/2 8p1/2 3202.3 1.0[7] 1.98[6] 9.36[5] 5.37[5]
7d5/2 8f7/2 6040.6 4.5[6] 4.58[6] 4.27[6] 4.22[6] 7p3/2 8d3/2 4426.5 1.3[6] 5.02[6] 4.74[6] 4.55[6]
7p1/2 9s1/2 4121.6 1.2[7] 1.34[7] 1.37[7] 1.28[7] 7p3/2 8d5/2 4399.9 9.0[6] 3.13[7] 2.97[7] 2.84[7]
8p1/2 9d3/2 7883.2 9.5[6] 9.82[6] 9.73[6] 8.97[6] 7p3/2 9s1/2 4856.9 2.2[6] 1.63[7] 1.64[7] 1.56[7]
8p3/2 9d5/2 8408.4 9.8[6] 1.06[7] 1.04[7] 9.90[6] 7p3/2 9d3/2 3615.9 8.5[5] 2.57[6] 2.36[6] 2.36[6]
8p1/2 10d3/2 6362.0 4.8[6] 5.79[6] 5.71[6] 5.42[6] 7p3/2 9d5/2 3607.9 5.7[6] 1.63[7] 1.51[7] 1.50[7]
8p3/2 10d5/2 6703.9 5.3[6] 5.95[6] 5.82[6] 5.72[6] 7p1/2 10s1/2 3318.2 5.5[6] 7.04[6] 7.29[6] 6.91[6]
5f7/2 5g9/2 9522.8 7.2[7] 7.86[7] 7.74[7] 7.11[7] 7p3/2 10s1/2 3778.8 2.7[6] 8.84[6] 8.88[6] 8.65[6]
5f7/2 6g9/2 6293.0 2.6[7] 2.54[7] 2.45[7] 2.53[7] 7p1/2 10s1/2 3318.2 5.5[6] 7.04[6] 7.29[6] 6.91[6]
5f7/2 7g9/2 5224.4 1.3[7] 1.21[7] 1.15[7] 1.24[7] 7p3/2 10d5/2 3253.0 2.5[6] 9.68[6] 8.80[6] 8.91[6]
5f7/2 8g9/2 4705.9 6.7[6] 6.86[6] 6.43[6] 7.12[6] 7p1/2 11s1/2 2974.9 8.0[6] 4.23[6] 4.40[6] 4.21[6]
5f7/2 9g9/2 4406.1 4.5[6] 4.33[6] 4.02[6] 4.53[6] 7p3/2 11s1/2 3339.9 2.6[4] 5.40[6] 5.41[6] 5.33[6]

6d5/2 5f5/2 5596.8 8.8[6] 1.35[7] 1.28[7] 1.16[7]
5f5/2 5g7/2 9762.3 5.1[7] 7.06[7] 6.95[7] 6.38[7]
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TABLE IV: Wavelengths λ (Å), transition rates A (s−1) and oscillator strengths (f) for transitions in Hg+ calculated using our
recommended values of reduced electric-dipole matrix elements Zfinal and their uncertainties. The relative uncertainties in the
values of transition rates and oscillator strengths are the same, listed in column “Unc.” in %. These are estimated uncertainties
associated with the present all-order approach. These uncertainties do not account for the mixing of the one-particle and one-
hole-two-particle configurations. Numbers in brackets represent powers of 10.

Transition λ A f Unc.(%) Transition λ A f Unc.(%)
6s1/2 6p1/2 1942.3 3.83[8] 2.17[-1] 0.56 6d3/2 5f5/2 5426.8 1.68[8] 1.11[ 0] 1.80
6s1/2 6p3/2 1649.9 6.27[8] 5.12[-1] 0.64 6d5/2 5f5/2 5596.8 1.14[7] 5.36[-2] 1.58
6s1/2 7p1/2 923.4 3.50[7] 4.47[-3] 2.00 6d5/2 5f7/2 5678.7 1.66[8] 1.07[ 0] 0.64
6s1/2 7p3/2 893.1 1.73[5] 4.14[-5] 2.00 6d3/2 7f5/2 2957.6 7.74[6] 1.52[-2] 2.00
8s1/2 8p1/2 18098.8 1.36[7] 6.66[-1] 2.00 6d5/2 7f5/2 3007.4 4.30[5] 5.82[-4] 2.00
8s1/2 8p3/2 15676.8 1.84[7] 1.35[ 0] 0.72 6d5/2 7f7/2 3005.7 6.32[6] 1.14[-2] 2.00
9s1/2 9p1/2 36908.7 3.82[6] 7.80[-1] 0.50 6d3/2 8f5/2 2692.2 3.01[6] 4.91[-3] 2.00
9s1/2 9p3/2 30769.4 5.75[6] 1.63[ 0] 0.56 6d5/2 8f5/2 2733.4 1.53[5] 1.71[-4] 2.00

6d5/2 8f7/2 2733.0 2.22[6] 3.32[-3] 2.00
6p1/2 7s1/2 2261.0 2.03[8] 1.55[-1] 0.68 7d3/2 6f5/2 12588.1 3.59[7] 1.28[ 0] 1.74
6p3/2 7s1/2 2848.5 3.26[8] 1.99[-1] 1.12 7d5/2 6f5/2 13004.1 2.47[6] 6.27[-2] 1.46
6p1/2 8s1/2 1430.0 7.54[7] 2.31[-2] 0.56 7d5/2 6f7/2 12980.0 3.72[7] 1.25[ 0] 2.18
6p3/2 8s1/2 1644.5 1.10[8] 2.24[-2] 0.82 8d3/2 7f5/2 23625.4 1.14[7] 1.43[ 0] 2.80
6p1/2 9s1/2 1233.4 3.84[7] 8.76[-3] 1.04 8d5/2 7f5/2 24413.3 7.93[5] 7.08[-2] 2.42
6p3/2 9s1/2 1389.8 5.42[7] 7.85[-3] 1.06 8d5/2 7f7/2 24305.7 1.19[7] 1.41[ 0] 3.98
6p1/2 10s1/2 1150.1 2.30[7] 4.56[-3] 1.82 8d3/2 8f5/2 13217.7 4.51[6] 1.77[-1] 1.74
6p3/2 10s1/2 1284.9 3.12[7] 3.86[-3] 1.18 8d5/2 8f5/2 13460.7 2.95[5] 8.00[-3] 2.06
8p1/2 10s1/2 8701.1 3.63[6] 4.13[-2] 0.60 8d5/2 8f7/2 13450.5 4.45[6] 1.61[-1] 3.20
8p3/2 10s1/2 9399.2 5.51[6] 3.65[-2] 0.48 9d3/2 8f5/2 39977.0 4.47[6] 1.60[ 0] 2.28
9p1/2 10s1/2 31598.1 3.29[6] 4.93[-1] 2.92 9d5/2 8f5/2 40980.7 3.16[5] 7.95[-2] 1.64
9p3/2 10s1/2 38107.3 5.41[6] 5.89[-1] 1.44 9d5/2 8f7/2 40885.7 4.75[6] 1.59[ 0] 2.82

6p1/2 6d3/2 1869.2 6.62[8] 6.94[-1] 0.78 6f5/2 8d3/2 77319.5 4.49[5] 2.68[-1] 1.70
6p3/2 6d3/2 2253.5 1.07[8] 8.13[-2] 1.22 6f5/2 8d5/2 69932.8 2.80[4] 2.05[-2] 1.78
6p3/2 6d5/2 2225.4 6.46[8] 7.19[-1] 1.28 6f7/2 8d5/2 70638.9 5.46[5] 3.06[-1] 2.78
6p1/2 7d3/2 1354.3 1.66[8] 9.12[-2] 2.00
6p3/2 7d3/2 1545.2 2.22[7] 7.94[-3] 2.00 6f5/2 9g7/2 7949.3 3.58[6] 4.53[-2] 1.00
6p3/2 7d5/2 1539.1 1.43[8] 7.64[-2] 2.00 6f7/2 9g7/2 7958.3 1.32[5] 1.25[-3] 1.54
6p1/2 8d3/2 1203.7 6.69[7] 2.91[-2] 2.00 6f7/2 9g9/2 7958.1 3.69[6] 4.38[-2] 1.48
6p3/2 8d3/2 1352.2 8.46[6] 2.32[-3] 2.00 6f5/2 8g7/2 8981.5 5.56[6] 8.96[-2] 0.70
6p3/2 8d5/2 1349.7 5.75[7] 2.36[-2] 2.00 6f7/2 8g7/2 8993.1 2.05[5] 2.49[-3] 1.06
6p1/2 9d3/2 1134.5 3.32[7] 1.28[-2] 2.00 6f7/2 8g9/2 8992.8 5.75[6] 8.71[-2] 1.02
6p3/2 9d3/2 1265.5 4.13[6] 9.91[-4] 2.00 6f5/2 7g7/2 11080.0 9.27[6] 2.28[-1] 0.14
6p3/2 9d5/2 1264.5 3.55[7] 1.28[-2] 2.00 6f7/2 7g7/2 11097.6 3.42[5] 6.32[-3] 0.40
6p1/2 10d3/2 1096.8 1.86[7] 6.70[-3] 2.00 6f7/2 7g9/2 11097.5 9.58[6] 2.21[-1] 0.40
6p3/2 10d3/2 1218.7 2.33[6] 5.18[-4] 2.00 7f5/2 9g7/2 14176.9 2.43[6] 9.76[-2] 0.14
6p3/2 10d5/2 1218.0 1.78[7] 5.94[-3] 2.00 7f7/2 9g7/2 14213.5 8.95[4] 2.71[-3] 0.48
8p1/2 10d3/2 6362.0 5.32[6] 6.45[-2] 0.44 7f7/2 9g9/2 14212.8 2.51[6] 9.49[-2] 0.48
8p3/2 10d3/2 6727.3 8.83[5] 5.99[-3] 1.40 7f5/2 8g7/2 17831.9 3.63[6] 2.31[-1] 0.84
8p3/2 10d5/2 6703.9 7.27[6] 7.34[-2] 2.62 7f7/2 8g7/2 17889.8 1.34[5] 6.44[-3] 2.02
9p1/2 9d3/2 22951.0 6.04[6] 9.54[-1] 5.76 7f7/2 8g9/2 17888.6 3.76[6] 2.25[-1] 1.98
9p3/2 9d3/2 26201.8 1.23[6] 1.26[-1] 1.60 8f5/2 9g7/2 26875.8 1.58[6] 2.28[-1] 1.54
9p3/2 9d5/2 25787.9 7.04[6] 1.05[ 0] 2.08 8f7/2 9g7/2 26916.8 5.84[4] 6.35[-3] 2.72
9p1/2 10d3/2 13531.2 3.49[6] 1.91[-1] 2.14 8f7/2 9g9/2 26914.4 1.64[6] 2.22[-1] 2.64
9p3/2 10d3/2 14599.1 6.29[5] 2.01[-2] 0.76 6f5/2 5g7/2 259501.0 6.50[3] 8.75[-2] 0.38
9p3/2 10d5/2 14489.2 5.16[6] 2.43[-1] 2.68 6f7/2 5g7/2 269498.3 2.15[2] 2.34[-3] 0.72

6f7/2 5g9/2 269469.7 6.01[3] 8.18[-2] 0.72
8d3/2 9p1/2 141425.5 1.52[5] 2.27[-1] 0.84 7f5/2 6g7/2 401690.2 5.58[3] 1.80[-1] 0.32
8d3/2 9p3/2 80149.1 7.63[4] 7.35[-2] 0.42 7f7/2 6g7/2 433260.4 1.64[2] 4.63[-3] 0.70
8d5/2 9p3/2 90003.9 5.06[5] 4.10[-1] 0.46 7f7/2 6g9/2 433259.8 4.60[3] 1.62[-1] 0.70

8f5/2 7g7/2 601311.0 3.72[3] 2.69[-1] 0.26
8f7/2 7g7/2 622543.7 1.24[2] 7.21[-3] 0.44
8f7/2 7g9/2 622387.1 3.48[3] 2.53[-1] 0.44
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TABLE V: Comparison of our final values for the oscillator strengths with theoretical values given by Glowacki and Migdalek
[29], Migdalek and Garmulewicz [26], and by Migdalek [22]. Uncertainties associated with the present all-order approach
are given in parenthesis. These uncertainties do not account for the mixing of the one-particle and one-hole-two-particle
configurations. References are given in square brackets.

Transitions Present Other
6s1/2 6p1/2 0.217(1) 0.200[29]
6s1/2 6p3/2 0.512(3) 0.493[29]
6p1/2 7s1/2 0.155(1) 0.164 [26]
6p3/2 7s1/2 0.199(2) 0.208 [26]
6p1/2 8s1/2 0.0231(1) 0.0212 [22]
6p3/2 8s1/2 0.0224(2) 0.0229 [22]
6p1/2 6d3/2 0.694(5) 0.684 [26]
6p3/2 6d3/2 0.081(1) 0.0791 [26]
6p3/2 6d5/2 0.719(9) 0.706 [26]
6p1/2 7d3/2 0.091(2) 0.137 [22]
6p3/2 7d3/2 0.0079(2) 0.0118 [22]
6p3/2 7d5/2 0.0764(15) 0.112 [22]
6p1/2 8d3/2 0.0291(6) 0.0498 [22]
6p3/2 8d3/2 0.0023(0) 0.00389 [22]
6p3/2 8d5/2 0.0236(5) 0.0379 [22]
7s1/2 7p1/2 0.451(4) 0.446 [22]
7s1/2 7p3/2 1.08(12) 1.063 [22]
7p1/2 8s1/2 0.275(5) 0.268 [22]
7p3/2 8s1/2 0.36(8) 0.361 [22]
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TABLE VI: Comparison of the Hg+ lifetimes (in nsec) with experiment. Uncertainties associated with the present all-order
approach are given in parenthesis. These uncertainties do not account for the mixing of the one-particle and one-hole-two
particle configurations. References are given in square brackets. Only decay channels via the one-particle states are considered.
We note that some of the experimental values give the lifetimes due to only a single decay channel.

Level Present Expt.
7s1/2 1.889(14) 1.99(10)[19]
8s1/2 3.85(14)
9s1/2 7.10(12) 7.5(4)[1]
10s1/2 11.62(24) 3.8(4)[1]

6p1/2 2.610(15) 2.91(11)[19]
6p3/2 1.594(10) 1.80(8)[19]
7p1/2 11.89(11) 18.8(12)[1]
7p3/2 9.56(96) 3.1(2)[1]
8p1/2 63.9(6.0)
8p3/2 32.8(2.9)
9p1/2 134(63)
9p3/2 92.0(2.7)

6d3/2 1.300(9) 1.15(10)[19]
6d5/2 1.548(20) 1.56(10)[19]
7d3/2 3.535(58) 5.0(6)[1]
7d5/2 4.44(18) 6.7(5)[1]
8d3/2 7.44(15) 10.6(6)[1]
8d5/2 9.52(17) 10.7(5)[1]
9d3/2 13.31(17) 11.3(6)[1]
9d5/2 14.55(62)
10d3/2 23.17(40) 18.9(17)[1]
10d5/2 24.5(1.6)

5f5/2 5.58(9) 3.2(2)[1]
5f7/2 6.04(4) 8.6(9)[1]
6f5/2 14.96(36)
6f7/2 16.27(69)
7f5/2 30.79(43)
7f7/2 34.02(87)
8f5/2 54.6(1.2)
8f7/2 61.2(2.2)

5g7/2 14.37(71)
5g9/2 13.96(15)
6g7/2 23.32(35) 26.8(20)[1]
6g9/2 23.99(69)
7g7/2 38.0(1.7)
7g9/2 36.43(65) 40.7(24)[1]
8g7/2 55.6(2.7)
8g9/2 53.49(90)
9g7/2 84.8(4.6) 90(7)[1]
9g9/2 81.5(1.3)
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TABLE VII: Contributions to multipole polarizabilities of the 6s state of Hg+ in a3
0. Uncertainties associated with the present

all-order approach are given in parenthesis. These uncertainties do not account for the mixing of the one-particle and one-hole-
two-particle configurations. The final results are compared with other theory [61].

Contr. αE1

6p1/2 3.937(22)
6p3/2 6.715(43)
(7 − 26)pj 0.938(0)
Tail 0.004
Core 7.37(37)
vc -0.040
Total 18.93(37)

αE1
th [61] 19.49

Contr. αE2

6d3/2 16.89(6)
(7 − 12)d3/2 3.59(2)
(13 − 26)d3/2 0.23(0)
6d5/2 23.84(9)
(7 − 12)d5/2 5.07(4)
(13 − 26)d5/2 6.61(0)
Tail 2.6(0.8)
Core 37.1(1.9)
vc -5.1(3)
Total 90.8(2.1)

Contr. αE3

5f5/2 116.0(7.5)
6f5/2 44.8(0.4)
7f5/2 20.9(0.1)
8f5/2 11.6(0)
(9 − 12)f5/2 17.3
(13 − 18)f5/2 7.4
(19 − 26)f5/2 73.3
5f7/2 159.6(2.5)
6f7/2 56.6(0.7)
7f7/2 25.7 (0.2)
8f7/2 13.8 (0)
(9 − 12)f7/2 19.8
(13 − 18)f7/2 8.1
(19 − 26)f7/2 39.2
Tail 13.7(4.1)
Core 171.5(8.6)
vc 0
Total 799(12)
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TABLE VIII: Hyperfine constants A (in MHz) in Hg+. The SD and SDpT (single-double all-order method including partial
triple excitations) data are compared with experimental results. The data are compared with theoretical and experimental
results from Ref. [3] - (a).

Level A(DF) A(SD) A(SDpT) A(theor) A(expt)

Hg+, I=1/2, µ=0.5058852 [65]
6s1/2 34002 41909 41477 42366a 40460a

7s1/2 6470 7506 7422 6730a

6p1/2 5482 7063 6984 7116a 6970a

6p3/2 454 651 642 659a

6d3/2 55.0 96.2 94.4 92.2a

6d5/2 22.4 36.8 36.2 45.3a

7p1/2 1433 1578 1562
7p3/2 132 196 195
7d3/2 25.8 42.3 41.7
7d5/2 10.5 16.8 16.6

201Hg+, I=3/2, µ=-0.560225 [65]
6s1/2 -12551 -15470 -15311 -15527a -14960a

7s1/2 -2388 -2771 -2740 -2466a

6p1/2 -2023 -2607 -2578 -2608a -2610a

6p3/2 -167 -240 -237 -241a

6d3/2 -20.3 -35.5 -34.8 -33.8a

6d5/2 -8.27 -13.60 -13.35 -16.6a

7p1/2 -529 -582 -577
7p3/2 -48.9 -72.3 -71.9
7d3/2 -9.54 -15.60 -15.38
7d5/2 -3.87 -6.21 -6.13
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TABLE IX: Hyperfine constants B (in MHz) in 201Hg+. Nuclear quadrupole moment Q is taken to be 0.455b in barns
(1 b=10−24cm2)[3]. The SD and SDpT (single-double all-order method including partial triple excitations) data are compared
with other theoretical results [3].

Level B(DF)

Q
B(SD)

Q
B(SDpT)

Q
B(DF) B(SD) B(SDpT) B(th)

6p 2P3/2 927 1451 1434 422 660 652 659
7p 2P3/2 270 357 355 123 163 161
6d 2D3/2 38.0 127 126 17.3 57.9 57.1 28.7
7d 2D3/2 17.9 50.3 49.8 8.14 22.9 22.7
6d 2D5/2 46.6 165 163 21.2 75.1 74.1 34.1
7d 2D5/2 21.8 65.3 64.7 9.92 29.7 29.5


