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Abstract

We extend the idea of the constrained-search variational method for the construction of wave

function functionals ψ[χ] of functions χ. The search is constrained to those functions χ such

that ψ[χ] reproduces the density ρ(r) while simultaneously leading to an upper bound to the

energy. The functionals are thereby normalized, and automatically satisfy the electron-nucleus

coalescence condition. The functionals ψ[χ] are also constructed to satisfy the electron-electron

coalescence condition. The method is applied to the ground state of the helium atom to construct

functionals ψ[χ] that reproduce the density as given by the Kinoshita correlated wave function. The

expectation of single-particle operators W =
∑

i r
n
i , n = −2,−1, 1, 2,W =

∑

i δ(ri) are exact, as

must be the case. The expectations of the kinetic energy operatorW = −1
2

∑

i ∇
2
i , the two-particle

operators W =
∑

n u
n, n = −2,−1, 1, 2, where u = |ri − rj |, and the energy are accurate. We note

that the construction of such functionals ψ[χ] is an application of the Levy-Lieb constrained-

search definition of density functional theory. It is thereby possible to rigorously determine which

functional ψ[χ] is closer to the true wave function.
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I. INTRODUCTION

Variational wave functions ψ that are functionals of functions χ : ψ = ψ[χ], expand

the space of variations over those that are simply functions. A search over the functions

χ could, in principle, lead to the exact wave function. The space over which the search

for the functions χ is to be performed is large which makes the practical implementation

of such a search difficult. In our work [1–4] on the construction of such variational wave

function functionals, we have therefore restricted the search for the functions χ over a subset

of the larger space. This subspace is comprised of those functions χ such that ψ[χ] satis-

fies a constraint such as normalization or that of obtaining a physical observable exactly.

Thus, there can be experimental input to the construction of ψ[χ]. The determination of

the functions χ requires the solution of an integral equation that arises from the constraint

condition. There could be many solutions to the integral equation, and therefore many wave

function functionals, with some of them not necessarily physical [4]. In this manner it is

possible to determine functions χ such that ψ[χ] is simultaneously normalized, obtains the

exact expectation of a Hermitian single- or two-particle operator, and leads to a rigorous

upper bound to the energy which is accurate as a consequence of the variational principle.

The wave function functionals ψ[χ] are thus accurate not only in the region of space con-

tributing principally to the energy as in standard variational calculations, but also in the

region of the property of interest. What we have additionally observed is that irrespective

of whether the property of interest samples the exterior of an atom such as the diamagnetic

susceptibility, or the deep interior such the Fermi contact term, the corresponding wave

function functionals are accurate throughout space as demonstrated by the expectations of

other operators. The choice of the form of the functionals ψ[χ] is also chosen such that it

satisfies the electron-nucleus and electron-electron coalescence conditions [5]. We refer to

this framework as the constrained-search variational method. The methodology can also be

applied to excited states, and in particular without modification to the lowest excited states

of a given symmetry. The latter is the case because the variational principle for the energy

is applicable to this lowest excited state provided the choice of the wave function functional

is restricted to reflect this symmetry.

In our previous work, we had determined wave function functionals ψ[χ] for the ground

state of two-electron atomic systems: the helium atom, its positive ions, and the negative
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ion of atomic hydrogen. The Hermitian operators for which the exact expectation values

[6] are replicated were the single-particle operators W =
∑

i r
n
i , n = −2,−1, 1, 2,W =

∑

i δ(ri),W = −1
2

∑

i ∇
2
i , and the two-particle operators W =

∑

n u
n, n = −2,−1, 1, 2,

where u = |(ri − rj|. Each expectation is a single value. Hence, the functionals ψ[χ]

were constructed so as to be normalized, reproduce the single value corresponding to the

expectation of W , and to be a variational upper bound to the energy. We had concluded

our work by indicating that we were investigating how to extend this method to reproduce

exactly a function f(r) which is the expectation of a Hermitian operator while simultaneously

leading to an upper bound to the energy. This paper reports the extension of the constrained-

search variational method to determine functionals ψ[χ] that reproduce the ground state

density ρ(r) of the helium atom while simultaneously obtaining an upper bound to the

energy. The density ρ(r) is the expectation of the single-particle operatorW =
∑

i δ(ri−r).

In contrast to our previous work [4] where different ψ[χ] were constructed for each operator

W , the present functionals ψ[χ] have the advantage that they lead to the exact expectation

of all non-differential single-particle operators simultaneously. They also have the advantage

that they automatically satisfy the electron-nucleus coalescence condition. The expectations

of two-particle operators though not exact are reasonably accurate as is the satisfaction of

the virial theorem. The energy is accurate as a result of the variational principle.

The idea of constructing functionals ψ[χ] that reproduce the ground state density ρ(r) also

falls under the umbrella of density functional theory [7] within the Levy-Lieb constrained-

search framework [8]. In this constrained search, one searches over all antisymmetric func-

tions ψρ that generate the density ρ(r). The true wave function is the one that minimizes

the expectation of the sum of the kinetic and electron-interaction potential operators. The

constrained-search definition is made possible because [7] there is a bijective (one-to-one)

relationship between the ground state density and the external potential operator thereby

proving that the density is a basic variable. There exist many schemes [9] for the construc-

tion of functions ψρ. It is in this context that the present work falls within the rubric of

density functional theory. The constrained-search variational method for the construction

of ψ[χ] that reproduce the density ρ(r) is an application of the Levy-Lieb definition of den-

sity functional theory. It is thereby possible to determine which functional ψ[χ] is closer

to the true wave function. We note, however, that the rationale and ideas underlying the

construction of wave function functionals ψ[χ], as described in the opening paragraph, are
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more general.

In Sec. II we describe the general framework for the construction of the functionals ψ[χ]

that reproduce the density ρ(r) of two-electron atoms and ions. In Sec. III we apply this

framework to the ground state of the helium atom for the density [10] as obtained from the

38-parameter correlated wave function of Kinoshita [11] which leads to an energy that is

exact [6] to six decimal places. In this application, we expand the space of variations for the

functions χ beyond those of our prior work. We end with concluding remarks in Sec. IV.

II. GENERAL FRAMEWORK

The time-independent Schrödinger equation for the negative ion of atomic hydrogen, the

helium atom, and the positive ions of its isoelectronic sequence is

Ĥψ[χ] = EEψ[χ], (1)

where the Hamiltonian in atomic units (e = ~ = m = 1) is

Ĥ = −
1

2
∇2

1 −
1

2
∇2

2 −
Z

r1
−
Z

r2
+

1

|r1 − r2|
, (2)

with r1 and r2 the coordinates of the two electrons, Z the atomic number, and EE the exact

energy. We assume the ground state wave function functional ψ[χ] to be of the form

ψ[χ] = Φ(α; s)[1− f(χ; s, t, u)], (3)

where Φ(α; s) is a determinantal prefactor of the hydrogenic form:

Φ(α; s) = N0e
−αs ; N0 = α3/π, (4)

with α a parameter, and f(χ; s, t, u) a correlated correction term of the form

f(χ; s, t, u) = e−qu(1 + qu)[1− χ(q; s, t)(1 +
u

2
)] (5)

with s = r1 + r2, t = r1 − r2, u = |r1 − r2| the elliptical coordinates, and q a variational

parameter. The functions χ(q; s, t) are to be determined such that ψ[χ] generate the exact

density ρE(r). We have expanded the space of variations beyond our previous work by

searching for the functions χ over (s, t) space rather than restricting the search over only s

space.
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The electron density is the expectation

ρ(r) =

∫

ψ⋆[χ]

(

∑

i

δ(ri − r)

)

ψ[χ]dτ

= 2

∫

ψ⋆(r, r′;χ)ψ((r, r′;χ)dr′. (6)

Since [2]
∫

dr′ = 2π

∫ ∞

0

r′

r
dr′

∫ r+r′

|r−r′|

u du, (7)

the expression for the density ρ(r) on substituting for ψ[χ] of Eq. (3) is

ρ(r) = 4πN2
0

∫ ∞

0

r′

r
dr′ e−2αs{A(q; s, t)χ2(q; s, t)

−2B(q; s, t)χ(q; s, t) + C(q; s, t), (8)

where

A(q; s, t) =

∫ s

|t|

du u e−2qu(1 + qu)2
(

1 +
u

2

)2
(9)

B(q; s, t) =

∫ s

|t|

du u [e−2qu(1 + qu)− e−qu]
(

1 +
u

2

)

(1 + qu), (10)

C(q; s, t) =

∫ s

|t|

du u [1 + e−2qu(1 + qu)2 − 2e−qu(1 + qu)]. (11)

Notice that the coefficients A(q; s, t), B(q; s, t) and C(q; s, t) are symmetric in an interchange

of r and r′.

Next we assume that the exact density ρE(r) is known from an exact wave function

ψE(s, t, u) which is of the Hylleraas form

ΨE(s, t, u) = N e−Zeffs
∑

l,m,n

cl,m,ns
lt2mun, (12)

where N is the normalization constant. The corresponding expression for the density is

ρE(r) = 4πN2

∫ ∞

0

r′

r
dr′ e−2Zeffsg(s, t), (13)

where

g(s, t) =
∑

l1,m1,n1

l2,m2,n2

cl1,m1,n1
cl2,m2,n2

sl1+l2 t2(m1+m2)
sn1+n2+2 − |t|n1+n2+2

n1 + n2 + 2
. (14)

To determine the ψ[χ], we next apply the constraint that the density ρ(r) of Eq. (8)

obtained from this functional is equivalent to the exact density ρE(r) of Eq. (13):

ρ(r) = ρE(r). (15)
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With the choice α = Zeff , this equivalence reduces to the quadratic equation

A(q; s, t)χ2(q; s, t)− 2B(q; s, t)χ(q; s, t) + C ′(q; s, t) = 0, (16)

with

C ′(q; s, t) = C(q; s, t)−
N2

N2
0

g(s, t). (17)

Thus, the constrained search in the (s, t) subspace for the functions χ such that ψ[χ] repro-

duces the exact density shows that there exist two functions χ1(q; s, t) and χ2(q; s, t) and

therefore two functionals ψ[χ1] and ψ[χ2] for which this is the case. The solution to the

quadratic equation for the χ(q; s, t), and hence the expressions for the functionals ψ[χ1] and

ψ[χ2] are analytical.

The procedure for obtaining the functional ψ[χ] is the following. For each value of the

parameter q, the functional ψ[χ] is determined for a solution χ(q; s, t) of the quadratic

equation Eq. (16). The value of q is then varied till an upper bound to the energy E[ψ[χ]]

is obtained. The expression for the energy is the expectation

E[ψ[χ]] =

∫

ψ⋆[χ]Ĥψ[χ]dτ

/
∫

ψ⋆[χ]ψ[χ]dτ

=
2π2

∫

ψ⋆ψdτ

∫ ∞

0

ds

∫ s

0

du

∫ u

0

dt

{

u(s2 − t2)

×

[(

∂ψ

∂s

)2

+

(

∂ψ

∂t

)2

+

(

∂ψ

∂u

)2]

+2
∂ψ

∂u

[

s(u2 − t2)
∂ψ

∂s
+ t(s2 − u2)

∂ψ

∂t

]

−
[

4Zsu− (s2 − t2)
]

ψ2

}

. (18)

The energy thus obtained is an upper bound because although the densities are equivalent

(see Eq. (15)), the ψ[χ] 6= ψE .

We note that the functionals ψ[χ] satisfy both the electron-electron coalescence [5] con-

dition which is

ψ(r1, r2, . . . , rN) = ψ(r1, r2, . . . , rN)(1 +
u

2
)

+(r1 − r2) · C(r2, r3, . . . , rN), (19)

where C(r2, r3, . . . , rN) is an unknown vector, and the electron-nucleus coalescence condition
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[5] which is

ψ(r, r2, . . . , rN) = ψ(0, r2, . . . , rN)(1− Zr)

+r · a(r2, . . . , rN), (20)

where a(r2, . . . , rN) is unknown. The satisfaction of the latter condition is more readily seen

when written in differential form in terms of the density as [5]

lim
r→0

dρ(r)

dr
= −2Zρ(r = 0), (21)

where ρ(r) is the spherical average of ρ(r). As the ψ[χ] reproduce the exact density, its

value and slope at the nucleus are also reproduced exactly.

With the wave function functionals ψ[χ], the expectations of single-particle and two-

particle operators can then be obtained. We refer the reader to [12] for a general expression

for the expectation value of Hermitian operators W in elliptical coordinates.

Since both functionals ψ[χ1] and ψ[χ2] reproduce the density ρE(r), the value of the

external potential energy component of the total energy is the same for both functionals.

(In terms of the density ρE(r), this component term is
∫

ρE(r)v(r)dr, where v(r) = −Z/r.)

Then employing the constrained-search definition of density functional theory [8] viz. that

the exact wave function is the one which minimizes the expectation of the kinetic and

electron-interaction operators, it is possible to determine which of the two functionals is

closer to the true wave function. This way of determining which wave function functional

ψ[χ] is superior differs from that of the standard variational method. In the latter, it is

solely the value of the energy upper bound that distinguishes between the wave functions.

The Levy-Lieb constrained-search approach also employs the energy upper bound value

condition, but in addition requires the wave functions to reproduce the true density.

Finally, it is evident that with the appropriate choice for the prefactor to reflect a certain

symmetry, the above framework for the construction of wave function functionals ψ[χ] can

be applied without modification to the lowest excited state of that symmetry.

III. APPLICATION TO THE GROUND STATE OF HELIUM

We next apply the above framework to the ground state of the helium atom. For the exact

density ρE(r) we employ that obtained from the 38-parameter correlated wave function of
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Kinoshita [11] which is

ψE(s, t, u) = 1.364931021 e−1.860556s
38
∑

i=1

yi(s, t, u). (22)

A comparison with Eq. (12) shows that N = 1.364931021 and Zeff = 1.860556. The

analytical expression for the corresponding exact density ρE(r) (together with the functions

yi(s, t, u)) is given in [10]. The total energy due to this wave function is −2.903724 a.u., and

is exact to six decimal places.

On substituting this expression for ρE(r) in Eq. (15) and solving the quadratic equation

Eq. (16) for the two solutions χ1(q; s, t) and χ2(q; s, t), two wave function functionals ψ[χ1]

and ψ[χ2] are obtained for each value of the parameter q. This process is repeated for

different values of q till the total energy is minimized. Thus, each wave function functional

leads to an upper bound to the energy while simultaneously reproducing the exact density.

The 3-dimensional plots of the functions χ1(q; s, t) and χ2(q; s, t) for the energy minimized

values of q are given in Figs. 1 and 2. Note how different these functions are as are the

corresponding q values. As such the wave function functionals ψ[χ1] and ψ[χ2] are different.

Yet they both lead to the same exact density ρE(r).

To demonstrate the accuracy of the methodology, we present in Table I the exact density

ρE(r) due to the Kinoshita wave function, and the densities obtained by the wave function

functionals ψ[χ1] and ψ[χ2]. Observe that the three are identical to 14 or 15 decimal places

for any electron position. It is evident that ψ[χ1] and ψ[χ2] both satisfy the electron-nucleus

coalescence condition.

In Table II we present the expectation value of single- and two-particle operators W as

determined by the Kinoshita wave function, and the wave function functionals ψ[χ1] and

ψ[χ2], and the percentage difference of the latter. Notice in the first row, the ψ[χ1] and ψ[χ2]

are normalized as the density is obtained exactly. For the same reason, all the single-particle

expectations for both functionals are the same and exact.

The expectation of the kinetic energy and two-particle operators are, of course, not

expected to be exact. Nevertheless, these values are relatively accurate, with those due to

ψ[χ2] being generally superior to those of ψ[χ1]. The kinetic energy for ψ[χ2] differs from

the exact value by 0.1%. The corresponding expectation of two-particle operators differs

by 1% or less. The total energies of ψ[χ1] and ψ[χ2] are within 15/100 and 3/100 of the

exact value. The last row shows the satisfaction of the virial theorem. It is evident from the
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TABLE I: The electron density ρ(r) for the ground state of the helium atom as obtained from the

Kinoshita wave function and the wave function functionals ψ[χ1] and ψ[χ2].

r (a.u.) Electron density ρ(r) (a.u.)

Kinoshita ψ[χ1] ψ[χ2]

0.0 3.621087819437064 3.621087819437064 3.621087819437064

0.1 2.436381500340967 2.436381500340965 2.436381500340966

0.2 1.652615187755789 1.652615187755788 1.652615187755788

0.3 1.130666655877191 1.130666655877190 1.130666655877191

0.4 0.780305411838685 0.780305411838685 0.780305411838685

0.5 0.543063013298303 0.543063013298303 0.543063013298303

0.6 0.380966113263468 0.380966113263468 0.380966113263468

0.7 0.269224394323850 0.269224394323850 0.269224394323850

0.8 0.191536789191938 0.191536789191938 0.191536789191938

0.9 0.137092890184766 0.137092890184766 0.137092890184766

1.0 0.098657244532206 0.098657244532206 0.098657244532206

2.0 0.004466660947059 0.004466660947059 0.004466660947059

3.0 0.000241398997714 0.000241398997714 0.000241398997714

4.0 0.000013928181762 0.000013928181762 0.000013928181762

5.0 0.000000824486862 0.000000824486862 0.000000824486862

6.0 0.000000049656225 0.000000049656225 0.000000049656225

7.0 0.000000003052641 0.000000003052641 0.000000003052641

8.0 0.000000000191672 0.000000000191672 0.000000000191672

9.0 0.000000000012199 0.000000000012199 0.000000000012199

10.0 0.000000000000776 0.000000000000776 0.000000000000776

constrained-search definition of density functional theory that ψ[χ2] is closer to the exact

wave function.

The results of the various expectations demonstrate, as in our previous work, that the

construction of wave function functionals leads to functions that are accurate throughout

space. And that greater accuracy can be achieved with fewer parameters. The present

results are obtained from an essentially one-parameter variational wave function functional.

Still more accurate results for the energy and the two-particle expectations could be achieved

with a better prefactor [3] or a superior density.
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χ1 (s, t)

q = 0.4959

FIG. 1: Graph of the function χ1(q; s, t) as a function of the coordinates s and t, at the value of

the parameter q that leads to the minimum of the energy.

IV. CONCLUDING REMARKS

In this work we have extended the idea of the constrained-search variational method

for the construction of wave function functionals ψ[χ]. In the present case, the search for

the functions χ is constrained such that ψ[χ] reproduces the density ρ(r) while simultane-

ously leading to an upper bound to the energy. The functionals ψ[χ] are thus automatically
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χ2 (s, t)

q = 0.2542

FIG. 2: Graph of the function χ2(q; s, t) as a function of coordinates s and t, at the value of the

parameter q that leads to the minimum of the energy.

normalized and also satisfy the electron-nucleus coalescence condition. They are also con-

structed so as to satisfy the electron-electron coalescence condition. In our prior work, the

search was constrained to functions χ such that ψ[χ] was either normalized, or ψ[χ] was

both normalized and reproduced the exact expectation of a Hermitian operator, while also

simultaneously leading to a rigorous upper bound to the energy. The search for the functions
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TABLE II: Expectation values of operators W obtained from the Kinoshita wave function func-

tionals ψ[χ1] and ψ[χ2] that possess the same density. The percentage difference of the latter with

respect to the former is also given.

Operator W Expectation Values (a.u.) % Difference

ψ[χ1] ψ[χ1]
Kinoshita

ψ[χ2] ψ[χ2]

1.000002 0.0002
1 1.000000

1.000002 0.0002

3.621088 0
δ(r1) + δ(r2) 3.621088

3.621088 0

3.376628 0
1
r1

+ 1
r2

3.376628
3.376628 0

12.034989 0
1
r2
1

+ 1
r2
2

12.034989
12.034989 0

1.858933 0
r1 + r2 1.858933

1.858933 0

2.386808 0
r21 + r22 2.386808

2.386808 0

2.922169 0.6352
−

∇2
1

2 2.903724
2.906672 0.1015

2.526643 0.4096
|r1 − r2|

2 2.516337
2.500373 0.6344

1.430460 0.5906
|r1 − r2| 1.422062

1.419573 0.1750

0.931462 1.5182
1

|r1−r2|
0.945821

0.943714 0.2228

1.403079 4.2207
1

|r1−r2|2
1.464909

1.449604 1.0448

-2.899625 0.1412
H -2.903724

-2.902870 0.0294

1.007775 0.7775
T
−E

1.000000
1.001310 0.1310

χ in each case requires the solution of an integral equation. As noted previously, some of

these solutions can be unphysical. A key conclusion arrived at from these calculations is

that these constrained-search variational wave function functionals are accurate throughout

space. Additionally, with fewer parameters, a high degree of accuracy is achieved for the
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energy as a result of the variational principle while other physical observables are obtained

exactly [4]. In the present work, for example, a one-parameter wave function functional leads

to an energy correct to three decimal places while simultaneously the density and hence all

single-particle operator expectations are exact. Based on our results thus far, we believe the

further development of the idea of constructing wave function functionals to be an impor-

tant research path. In that vein, we are now investigating the construction of functionals

that while leading to upper bounds to the energy, also reproduce the reduced single-particle

density matrix. The latter is [10] the expectation of a complex sum of Hermitian operators

that involve the product of the density and translation operators. Finally, we reiterate, that

in addition to all the advantages of constructing wave function functionals that reproduce

the density, it is as a consequence also possible via the constrained-search definition of den-

sity functional theory to differentiate between them as to which is closer to the exact wave

function.
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