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In the absence of quantum channels, local operations on subsystems and classical communica-
tion between parties (LOCC) constitute the most general protocols available on spatially separated
quantum systems. Every LOCC protocol implements a separable quantum measurement, but it
is known that there exist separable measurements that cannot be implemented by LOCC. A long-
standing problem in quantum information theory is to understand the difference between LOCC and
the full set of separable measurements. Toward this end, we show in this paper how to construct
an LOCC protocol to implement an arbitrary separable measurement whenever such a protocol
exists. In addition, given a measurement which cannot be implemented by LOCC within some fixed
maximum number of rounds, the method shows explicitly that this is the case.

PACS numbers: 03.67.Ac

I. INTRODUCTION

Left to their own devices, quantum systems undergo unitary evolution. They may interact with other
quantum systems, but considering all these systems together as a single entity, its state at any given time is
related to that at any other time by a unitary transformation. We as scientists, however, often wish to know
something about the systems we are studying, so we perform measurements to extract information with the
aim of understanding the behavior of these systems. In order to draw conclusions, we must understand the
measurements that we make, and perhaps more importantly, we will want to optimize our measurements to
maximize the information we can extract given the constraints with which we either choose, or are forced
by circumstances, to work. Of course, if we find a measurement that is optimal for one set of circumstances,
it may well be that this measurement cannot be performed under other constraints. It is therefore crucial
that we have a way to determine when a measurement is possible, and when it is not.
If the system under consideration resides in a single laboratory, then it is purely an experimental question

whether or not a given measurement is possible — do we have the tools and skills, or don’t we? If, on the
other hand, the system consists of two or more spatially separated subsystems, then it will often be the
case that a given measurement simply cannot, in principle, be implemented. This question of the “local
implementation” of a measurement is of fundamental interest for our understanding of quantum theory
itself, and it also arises naturally in numerous applications considered in the quantum information sciences.
Examples of such applications include distributed quantum computing [1], one-way quantum computing [2],
entanglement distillation [3] and manipulation [4], local distinguishability of quantum states [5], local cloning
[6], and various quantum cryptographic protocols, such as secret sharing [7].
It is not too difficult to describe in words the most general protocol possible for implementing a local

measurement. Let us assume there are two subsystems, one (denote it as A) located in Alice’s laboratory
and the other (B) in Bob’s. One of the parties, say Alice, starts by locally (on A) performing a generalized
measurement [8] with outcomes corresponding to Kraus operators Ai1 . If the initial state of the system
was |Ψ0〉 and Alice obtained outcome i1, the state will now be (Ai1 ⊗ IB)|Ψ0〉, which is generally no longer
normalized, and IB (IA) is the identity operator on system B (A). Alice calls Bob on the telephone and
informs him her outcome was i1, after which he performs a measurement on B, conditioned on Alice’s

outcome i1 and described by Kraus operators B
(i1)
i2

. He then informs Alice that his outcome was i2, after

which she performs a measurement with outcomes A
(i1,i2)
i3

, and they may continue in this way for an arbitrary
number of rounds. From the fact that the probabilities of outcomes obtained at each stage must always sum
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to unity, one has that for each and every n,

IA =
∑

in

A
(Sn)†
in

A
(Sn)
in

IB =
∑

in

B
(Sn)†
in

B
(Sn)
in

, (1)

where Sn is a collection of indices {i1, i2, · · · , in−1} indicating all outcomes obtained in earlier measurements.
The final (unnormalized) state of the system is given in terms of these Kraus operators as

|Ψf 〉 =
[
(· · ·A

(i1,i2)
i3

Ai1)⊗ (· · ·B
(i1,i2,i3)
i4

B
(i1)
i2

)
]
|Ψ0〉 =

[
Â(Ŝ ) ⊗ B̂(Ŝ )

]
|Ψ0〉, (2)

and Ŝ denotes the full set of local outcomes (leading to this particular overall final outcome) in the entire
process just described.
This process, known as LOCC (for local operations and classical communication), is quite complicated and

difficult to analyze in detail. However, we see that the final outcomes are always in terms of product Kraus

operators, Â(Ŝ ) ⊗ B̂(Ŝ ), so we have what is known as a separable measurement [9]. Then, if one chooses to
focus only on the final outcomes and not on how one actually gets to those outcomes by local measurements,
the description is greatly simplified and more easily understood. For this reason, it is quite common to study
separable measurements in the hope of gaining a better understanding of LOCC [6, 10–12]. It is known,
however, that there exist separable measurements that cannot be implemented by LOCC [13–16].
Therefore before we can truly understand LOCC, we will need to know more about the difference between

LOCC and the full set of separable measurements, something about which very little has been known up to
the present time. In this paper, we provide an important step toward this goal by showing how to construct
an LOCC protocol from an arbitrary separable measurement whenever this is possible. To be precise, by a

separable measurement we will mean a fixed collection {Âj ⊗ B̂j} of distinct product Kraus operators for
which there exists a set of positive coefficients, {r̂j} [21], such that

IA ⊗ IB =
∑

j

r̂jÂj ⊗ B̂j , (3)

where Âj = Â†
jÂj and B̂j = B̂†

j B̂j (this definition of a measurement should not be confused with a separable

operation, which is more general [17]). We emphasize that our definition of a measurement is in terms of

the set of Kraus operators, and not just the positive operators {Âj ⊗ B̂j}, and that there may be more than
one set of coefficients, r̂j , such that (3) is satisfied. Our goal in this paper is then to determine whether or
not there exists an LOCC protocol for any one such set of coefficients.
In the next section, we describe a construction that accomplishes this goal, and then provide a detailed

algorithm for this construction. In section III, several examples are discussed with the aim of giving the
reader a better understanding of how the construction works. Then, in section IV, a summary of the results
is given. In appendix A, we give a proof that the construction does what we have claimed it does, using two
important lemmas, proved in appendices B and C. Appendix D discusses the complexity of the construction.

II. MAIN RESULT

Our main result is stated below.

Main Theorem Suppose Alice and Bob have a separable measurement they wish to perform. Assuming
they restrict themselves to some maximum number of rounds, then the construction described below will allow
them to determine whether or not the measurement they have designed can be locally implemented, and if it
can, will provide them with the LOCC protocol that does so. Note that this claim applies to an extremely
general situation, as it does not matter what task is accomplished by the given measurement.

In the next subsection, we describe the construction and explain why it accomplishes what we have just
claimed. A detailed algorithm is presented in the subsequent subsection, and a proof of the main theorem
can be found in appendix A1.
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A. The construction

First note that any LOCC protocol can be represented as a tree consisting of nodes into each of which a
single branch enters from another node on its left. Time progresses to the right, and each node at “level”

n is associated with a local Kraus operator, A
(Sn)
in

or B
(Sn)
in

. The subset of nodes at level n that are all
attached via a branch to the same node on their left correspond to a complete measurement, the associated
Kraus operators satisfying one or the other of Eqs. (1). Each node may be associated with the local Kraus
operator that is performed at that point in the protocol, or equally well with the ordered product of local
Kraus operators that have been performed by that party up to that point. We will find it useful, however,
to instead associate to each node the positive operator formed from the latter product by multiplying it on
its left by its Hermitian conjugate. That is, to each (A) node Sn+1 = {Sn, in}, we will associate the operator

A
(Sn)
in

= A†
i1
A

(i1,i2)†
i3

· · ·A
(Sn−2)†
in−2

A
(Sn)†
in

A
(Sn)
in

A
(Sn−2)
in−2

· · ·A
(i1,i2)
i3

Ai1 . (4)

Then, by (1), we have

∑

in

A
(Sn)
in

= A
(Sn−2)
in−2

. (5)

As simple as this equation is to obtain, it is nonetheless extremely powerful, as it must be satisfied at each
and every node in an LOCC tree. What this means is that if we know later parts of an LOCC protocol, we
can construct the earlier parts that lead to those later ones. In particular, if we know the final outcomes,
we can work backward to attempt to construct a full LOCC protocol. If starting from those final outcomes,
we can build every tree that is compatible with (5), we can then check whether or not one of those trees
corresponds to a complete LOCC protocol.

Thus, if we sum the positive operators A
(Sn)
in

associated with the collection of nodes emerging on the right

directly from node B
(Sn−1)
in−1

, we obtain the positive operator associated with the unique node A
(Sn−2)
in−2

from

which that B
(Sn−1)
in−1

node emerges. Furthermore, we have the very important observation that this sum is

independent of the index in−1. This will serve as a useful constraint as there can be many such B-nodes

emerging from the node A
(Sn−2)
in−2

, and the sums in (5) for all of these B-nodes must be the same,

∑

in

A
(Sn)
in

=
∑

i′
n

A
(S′

n
)

i′
n

(6)

whenever Sn and S ′
n differ only in their last entry, the index in−1; see Fig. 1. Obviously, there are analogous

sums that must be satisfied by the B
(Sn)
in

.
These ideas will now be used to construct a complete LOCC protocol whenever this is possible. Consider

first the simplest case where each Âj ⊗ B̂j appears once and only once in the final set of outcomes of the
protocol (the leaves of the tree), the entire collection satisfying (3) with r̂j = 1. As illustrated in Fig. 2,

start with two-node trees having the operators Âj on the right and the B̂j on the left. Find all maximal

subsets of the B̂j that are equal to each other and merge the corresponding nodes into a single node with
multiple branches emerging to the corresponding A-nodes. Attach a new A-node to the left of each individual

(merged) B-node, and label these new nodes by the positive operator that is the sum of the Âj that emerge
from the given B-node (even if there is only a single term in that sum), as shown at the right in Fig. 2,
which will insure that (5) is always satisfied. By merging multiple nodes into single ones only when all those
nodes are equal to each other, we will also insure that the equality is satisfied in (6).
This procedure is then iterated: Consider the newest nodes that have just been created at the previous

stage, merge subsets of these whose labels are all equal to each other, attach new nodes to the left of these
merged nodes, and label each of these newest nodes with a sum of the positive operators that label the nodes
that emerge from the corresponding node that was just merged. By induction, all labels will be sums of

the Âj or B̂j [18]. If at some stage all these (sub-)trees merge into a single connected tree, then an LOCC
protocol has been identified (readers may find it helpful to study the examples given in section III).
If the tree doesn’t close, this attempt has failed, but one cannot yet conclude that no LOCC protocol

exists for this set of final outcomes. This is because we must first exhaust all possible ways of merging the
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FIG. 1: Illustration of Eq. (6). The sums, A
(Sn)
1 +A

(Sn)
2 +A

(Sn)
3 and A

(S′

n
)

1 +A
(S′

n
)

2 must be equal to each other and

also equal to A
(Sn−2)

in−2
.
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r
B̂1

@
@

@@

�
�

��
b

Â1
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FIG. 2: Method of construction of an LOCC tree from a set of product operators, Âj ⊗ B̂j . When B̂1 = B̂2 = B̂3,
the three B-nodes corresponding to these operators can be merged into a single node, after which we attach a new

node to its left, labeled by the sum, Â1 + Â2 + Â3.

nodes. For example, if there are three of the B̂1 = B̂2 = B̂3 that are equal to each other, then instead of

merging all three into a single node, it may work better to merge only B̂1 and B̂2, keeping B̂3 aside for later
use (see Example 4 of section III).
Of course, Alice and Bob may also be able to accomplish their task with a protocol that ends with

multiple appearances of each of the Âj ⊗ B̂j; allowing such replications introduces additional possible ways
of constructing trees. In this case, we must multiply each copy (indexed by k) by a positive real factor r̂jk to
ensure completeness of the measurement [see (3)]. However, since we will be using (6) to compare sums of

Âj ’s and B̂j’s separately, it will be useful to instead write q̂jkÂj ⊗ p̂jkB̂j on the final nodes (see Example 5
in section III for more details of why this is useful). That is, by following the above procedure, all B-nodes

will be labeled by sums of the p̂jkB̂j , and two such nodes can be merged when

∑

j∈J

∑

k

p̂jkB̂j =
∑

j′∈J ′

∑

k′

p̂j′k′ B̂j′ , (7)

where J and J ′ indicate which B̂j appear in the sums labeling the two separate nodes in question, and the

k (k′) sum is determined by which copies of each B̂j are present.
If the positive quantities q̂jk, p̂jk were known, we could simply follow the previous procedure. However,

since (a) these factors are unknown, and (b) we do not know how many copies of each Âj ⊗B̂j to start with,
we are presented with a challenge. Nonetheless, by using the q̂jk, p̂jk as free variables to be determined later
by constraints of the form (7), we will see how to construct an LOCC tree whenever possible, and to thereby
determine whether or not an LOCC protocol exists.
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Any positive operator may be thought of as a vector pointing into the “positive orthant”, and positive
linear combinations of a set of these vectors lie in the (convex) cone generated by the set. Then, a relationship

such as (7) represents a (non-trivial [19]) intersection of the convex cone generated by the B̂j for j ∈ J with
that for j ∈ J ′. Any two or more nodes can be identified as satisfying (7) by looking for a common
intersection of their cones [20], and only if their cones intersect can the two nodes be merged. We thus have
a way to identify all sets of nodes that can possibly be merged.
One way to construct all possible trees [22] is as follows: imagine a toolbox initially filled with “tools” that

are two-node trees, q̂j1Âj ⊗ p̂j1B̂j, as represented at the left of Fig. 2. Identify all intersections of the cones

generated by vectors B̂j ; these cones are one-dimensional at this first step. For each intersection, follow the
procedure described above of merging nodes (any given tool can be used an arbitrary number of times),

adding a new node to the left, and labeling this new node by sums of the associated q̂jkÂj (a different k for

each use of Âj ⊗ B̂j). Add each of these new trees to the toolbox, while keeping all trees that were already
there. For multiple cones that share a common intersection, create all possible new trees, in the same way

as was described above for the case that B̂1 = B̂2 = B̂3: one tree for every mutually intersecting subset. In
addition, to each new tree in the toolbox, associate a set of constraints of the form (7), which will be needed
at the end to determine the values of the p̂jk and q̂jk. Once this step is completed, we proceed to the next
step by looking at all trees presently in the toolbox to identify all intersections of convex cones associated
with the left-most (now A-)nodes of each of these trees, merge nodes in all possible allowed ways to create
new trees, add these to the toolbox, and combine the sets of constraints associated with the merged trees
along with the new constraints from the newly merged nodes to obtain a larger set of constraints.
This procedure is then iterated, creating all [22] possible (connected) trees at each step that are consistent

with (5) and (6). Continue until one of these trees includes each of the Âj ⊗ B̂j at least once (we will refer
to these as “complete” trees), there is nothing further one can do, or one has already used the maximum
allowed number of rounds (it is necessary to impose a maximum number of rounds because otherwise it
appears possible that the procedure could continue indefinitely even when no LOCC exists). If a complete
tree is found, we must consider the full set of (linear) constraints that has been associated with that tree,
checking that we can find a set of all the q̂jk, p̂jk ≥ 0 that are consistent with these constraints. Note that
since in the actual protocol Alice and Bob begin by having done nothing, represented by operators IA or IB ,
the tree must close to a “double-root” with each root labeled by one or the other identity operator, giving
two additional constraints. If such a solution can be found, then an LOCC protocol exists. If not, continue
the construction to see if another complete tree can be found. Once one has run out of rounds or come to a
point that nothing further can be done, then since we know our construction produces a closed tree whenever
an LOCC protocol exists, we may conclude that no LOCC protocol exists for this separable measurement
in the given maximum number of rounds. For a more detailed proof of this statement, see appendix A.

B. Detailed algorithm

We now give a detailed step-by-step algorithm for the construction just described. At various steps along
the way in this algorithm, we create multiple copies of certain trees that had previously been constructed.
The point of this is to be sure we merge these trees to other ones in all ways it is possible for that tree to be
merged. That is, one copy of a given tree is created for each possible way that tree can be merged to other
trees, a different copy of that particular tree being used for each different merging.

1. Start with one two-node tree for each of the Âj ⊗ B̂j , j = 1, . . . , N0, each with its B-node on the
left (the choice of B-nodes rather than A-nodes is arbitrary, as will become clear below), and include

positive factors q̂j1(p̂j1) with each Âj(B̂j); partition all left-most nodes into equivalence classes, within
each of which all nodes are proportional to each other (note that these equivalence classes are entirely
unrelated to classes C and D, which are introduced in appendix A). Set l = 0, which will serve as a
counter for the depth of the trees (this depth is equal to l+ 2).

2. WHILE l < L

3. Increment l. For each equivalence class and for each subset in that class that contains at least one
member: (a) CREATE one copy of each tree in the given subset; (b) MERGE left-most nodes of all
trees within the subset into a single node and relabel the coefficients q̂jk, p̂jk with a unique value of
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the k index for every different appearance of Âj ⊗B̂j at the leaves within the combined tree, adjusting
those k indices throughout the rest of the tree to be consistent [according to (5)] with its leaf labels;
(c) EXTEND the tree by attaching a new node to the left, and label that new node to obey (5) (note

that this must also be done for each one-tree subset, as is illustrated for Â4 ⊗ B̂4 at the bottom right
of Figure 2 — this is why it does not matter that we chose to start with all the B-nodes on the left,
since we will next do the same thing with all the A-nodes on the left); (d) RECORD all constraints

that the merged nodes must be equal (at the first step, these will be of the form p̂ikB̂i = p̂jk′ B̂j when

node B̂i is merged with node B̂j and are constraints on the p̂’s). Number the new trees sequentially
from Nl−1 + 1 to Nl, where Nl is the total number of trees at this stage (including trees of all depths
constructed so far), which does not exceed 2Nl−1 − 1. [Note that we can ignore each equivalence class
that is identical to one that was previously present at an earlier pass through this algorithm, as all
trees that can be constructed from that equivalence class have already been constructed.]

4. FOR m = Nl−1 + 1 to Nl

5. IF the mth tree includes each of the Âj ⊗ B̂j at least once, then: For the collection of all constraints
recorded in (multiple passes through) step 3 for the mth tree, check to see if there exists a solution
for the p̂jk, q̂jk, including constraints that the two left-most nodes in the tree under consideration are
labeled by IA and IB (we start this FOR loop at Nl−1 +1 since all the earlier trees have already been

examined; for l = 1, we know that the first N0 of the trees have only a single Âj ⊗ B̂j , so cannot
include each of them at least once). If such a solution exists, we are done, having identified an LOCC
protocol, so exit and END this algorithm.

6. END FOR (m)

7. We now have an expanded set of trees all having the same ‘type’ (A or B) of nodes on the left, labeled

by sums of q̂jkÂj or p̂jkB̂j. Consider the convex cones generated by the sets {Âj} or {B̂j} appearing
in each such sum for the left-most nodes, and identify an equivalence class for each subset of these
nodes such that the associated convex cones are mutually intersecting (a given tree will generally be
included in multiple equivalence classes). Each such intersection implies that the associated trees can
be merged, which we will do next, so go back to step 2 and repeat. However, we only need to look for
new equivalence classes, involving newly constructed trees (along with all previous ones), since we’ve
already constructed all trees that derive from the other equivalence classes. If there are no new classes
then no new trees can be constructed, which means since no previously constructed tree has been found
to be LOCC, then no LOCC protocol exists for this measurement, no matter how many rounds are
allowed. Therefore, exit and END this algorithm.

8. END WHILE (l)

Note that as we loop through the WHILE loop, we keep all trees for the next round, including not just those
constructed in the present round, but also those from all previous rounds (we also keep all constraints). This
makes it possible for multiple trees of differing size and structure and such that several of them each include

the same Âj ⊗B̂j (or even several Âj ⊗B̂j that are repeated in this way), to be merged together into a single
tree. Example 4 of the next section illustrates in a detailed way how the algorithm works.

III. EXAMPLES

Here we provide a few additional illustrative examples to make more concrete our method of construction
of an LOCC protocol from a set of product operators, as presented in the previous section.

Example 1 Let us begin with a simple example, for which it will be easy to see that no LOCC protocol
exists. Suppose we have a separable measurement with a corresponding set of positive operators,

Âj ⊗ B̂j, for which no two of the Âj (and no two of the B̂j) are equal to each other (technically, we
should require that no two are proportional to each other, as we can always remove a positive factor

from an Âj and place it on the B̂j without changing Âj ⊗ B̂j, but we can assume that the Âj are

all normalized). Since no two of the Âj are equal, there is no possibility that any two (or more) of
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the B̂j can emerge from the same A-node, and vice-versa. Hence, it is not possible to merge any of
the original two-node trees that we start out with, and which represent the outcomes of our desired
measurement, implying that there is no way to even begin to construct an LOCC tree.

Example 2 Here is another simple example, this time one for which an LOCC does exist, where Alice and

Bob each do complete projective measurements on their local systems. Write Âj1 ⊗ B̂j2 = [j1]A[j2]B ,
where [j1]A = |j1〉A〈j1| and similarly for [j2]B . For each projector [j2]B , (j2 = 0, · · · , dB − 1), onto

one of Bob’s standard basis states, j1 runs through all values 0, · · · , dA − 1, so {Âj1 ⊗ B̂j2} is a set of
projectors onto a complete basis of Alice and Bob’s full Hilbert space. Then, at the first step in our
construction and for each value of j1, connect the A-nodes of all the two-node trees that are labeled
by this [j1]A. Then, the B-nodes that emerge to the right of each of these merged A-nodes sum to
the identity operator. The new B-nodes that we attach to the left of the merged A-nodes will then
all be labeled by IB. Since these new B-nodes all have labels that are equal to each other, they can
all be merged into a single node from which emerge (to their right) nodes that constitute a complete
set of projectors, [j1]A, which add to IA. Hence, the new A-node that we now attach to the left of the
merged IB-node will be labeled by this sum, that is, by IA, so we have a double-rooted tree with the
two roots each labeled by one of the identity operators, as required for an LOCC protocol.

Note that precisely this same construction continues to work if we replace [j2]B by [φ
(j1)
j2

] =

|φ
(j1)
j2

〉B〈φ
(j1)
j2

|, with each set {|φ
(j1)
j2

〉B} being a complete orthonormal basis, so that Bob does a differ-
ent projective measurement for each of the outcomes j1 of Alice’s measurement. The reader may find
it useful to work this example out by drawing the pictures and explicitly constructing the tree, say for
the case that both parties hold qubits and Bob measures either in the σz or σx basis depending on
Alice’s outcome.

Example 3 Now a more involved example, where I demonstrate for a 3 × 3 system that the separable
measurement consisting of projectors onto the 9 states of [16] cannot be implemented by LOCC. These
states were the first example of what has been called “nonlocality without entanglement”, and the
projectors onto them are given by

Â1 ⊗ B̂1 = [1]A[1]B,

Â2 ⊗ B̂2 = [0]A[0 + 1]B,

Â3 ⊗ B̂3 = [0]A[0− 1]B,

Â4 ⊗ B̂4 = [2]A[1 + 2]B,

Â5 ⊗ B̂5 = [2]A[1− 2]B,

Â6 ⊗ B̂6 = [1 + 2]A[0]B,

Â7 ⊗ B̂7 = [1− 2]A[0]B,

Â8 ⊗ B̂8 = [0 + 1]A[2]B,

Â9 ⊗ B̂9 = [0− 1]A[2]B, (8)

where, for example, [0 + 1] = (|0〉 + |1〉)(〈0| + 〈1|)/2. These are the positive operators which we will
use to label the initial two-node trees at the beginning of our construction.

Starting with Bob’s nodes, we see that B̂6 = B̂7 and B̂8 = B̂9, so we may merge each of these pairs of

B-nodes (and no others) into single nodes. Then, since Â6+Â7 = [1]A+[2]A and Â8+Â9 = [0]A+[1]A,
we have the new three-level trees shown in Fig. 3. We next look at these new A-nodes together with all
the original ones for j = 1, . . . , 9, and notice that again there are only two pairs that can be merged,

Â2 = Â3 and Â4 = Â5. Merging these looks very similar to what was just done in Fig. 3. Following
this, we return to the B-nodes to discover that no two labels are equal to each other, as is also the case
for the A-nodes. There is nothing more that can be done from this point, and since this is the only
way to begin building a tree, we see that no four-level trees can be constructed for the operators of (8)

(other than by trivially adding new nodes to the left of the existing trees, as is illustrated for Â4 ⊗ B̂4

at the bottom right of Figure 2, but without additional merging of any trees together). Therefore,
there is no LOCC tree compatible with this set of measurement operators, and by the argument in the
previous section that every LOCC protocol corresponds to an LOCC tree, we may thus conclude that
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Â7

=⇒(
B̂6 = B̂7

) b

([1]A + [2]A)
r

[0]B

@
@

@@

�
�

��
b

[1+2]A

b

[1−2]A

r
B̂8

b
Â8
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FIG. 3: First step of our attempt at constructing an LOCC tree from projectors onto the states of [16], see Eq. (8).

Merging of the two pairs of B-nodes, B̂6 = B̂7 = [0]B and B̂8 = B̂9 = [2]B , is shown.

no LOCC protocol exists for this separable measurement. In fact, it is clear that even if we allow each

of the local projectors in this measurement to be varied slightly (that is, by replacing each Âj ⊗ B̂j

by another operator that differs from it by a small amount), there will still be nothing one can do
after these two steps of merging nodes (that is, if one can even still do those two steps). Hence, this
separable measurement cannot even be closely approximated by LOCC. Note also that this conclusion

holds no matter what the Kraus operators Âj ⊗ B̂j happen to be, so long as they correspond to the
positive operators of (8), generalizing the discussion around Eqs. (59)-(61) in section VII of [16].

Example 4 Let us now give an example to illustrate how the algorithm of section II B works. First, we will
describe in general terms the example and how to construct an LOCC protocol, and then we will go
back and show how to do this by using the algorithm directly.

Consider a set of five product operators {Âj ⊗ B̂j} satisfying the constraints

B̂1 = B̂2 = B̂3

B̂5 = B̂1 + B̂4

IB = B̂3 + B̂5

Â4 = Â1 + Â2

IA = Â3 = Â4 + Â5, (9)

and finally that there are no other linear constraints satisfied by these operators. Since no two of the

Âj ’s are proportional to each other, we cannot merge any of the A-nodes to begin the construction. We

can, on the other hand, merge the three nodes B̂1, B̂2, and B̂3 as was done in Fig. 2. If we start with
this step, however, a bit of thought will lead one to conclude that this leaves a situation where there is
nothing else that can be done. No LOCC protocol can be generated by starting the construction this
way.

Nonetheless, there is an LOCC protocol for this measurement, as can be seen if we start the construction

by merging only the nodes B̂1 and B̂2 and labeling this merged node by B̂1. Then, to the left of this

merged node, add a new A-node labeled by Â1 + Â2 = Â4, and then merge this new node with node
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FIG. 4: The tree constructed for the example of Eq. (9). In (a), the nodes are labeled by the desired measurement

operators, Âj and B̂j ; while in (b) the nodes are labeled by A
(Sn)
in

and B
(Sn)
in

, the quantities appearing in Eqs. (5)
and (6). By comparing these two trees, the latter quantities can be identified in terms of the former.

Â4. Add a new B-node labeled as B̂1 + B̂4 = B̂5 to the left of this and merge it with node B̂5. Finally,

add a new A-node labeled as Â4 + Â5 to the left of this and merge it with node Â3. The reader
may wish to verify that this construction leads to the tree shown in the upper part (a) of Fig. 4. In

the lower part (b) of this figure, we have the same tree but now labeled by the quantities A
(Sn)
in

and

B
(Sn)
in

introduced in the preceding section. By comparing these two trees, the latter quantities can be

identified as sums of the Âj and B̂j, respectively, after which it is easy to see that Eqs. (5) and (6) are
satisfied (as is guaranteed by our construction).

To illustrate directly how our algorithm works, let us reconsider this example. We start with five

two-level trees, B-nodes on the left as shown in part (a) of figure 5, one for each of the Âj⊗B̂j. In step

1 of the algorithm, identify three equivalence classes, E1 = {B̂1, B̂2, B̂3}, E2 = {B̂4}, and E3 = {B̂5}.
For step 3(a), since E2 and E3 have only a single subset each, creating a copy really means simply

keeping that tree; however, for E1 we have seven distinct subsets: s11 = {B̂1}, s12 = {B̂2}, s13 = {B̂3},

s14 = {B̂1, B̂2}, s15 = {B̂1, B̂3}, s16 = {B̂2, B̂3}, s17 = {B̂1, B̂2, B̂3}. The first three subsets give back
the original trees for those B-nodes, and then we create additional copies of each of these for each
appearance in one of the other subsets. Then for each of those latter subsets we: [step 3(b)] merge the
corresponding B-nodes, [step 3(c)] extend by adding an additional A-node, and label the latter by a

sum of the q̂jkÂj that appear in that tree, and [step 3(d)] record the constraints (which will be similar
to the first line of (9), but with added factors p̂jk). The result is shown in part (b) of figure 5 (though
the q̂jk, p̂jk have been omitted to avoid too much clutter in the figure).

For steps 4 to 6 we look through these trees that were just constructed and see that none of them

contains each of the Âj ⊗B̂j at least once. Therefore, we continue to step 7 to identify new equivalence

classes from intersections of convex cones associated with the sums of Âj labeling the left-most nodes
in the trees in part (b) of figure 5. The only such equivalence class that contains more than one A-node

in it is E4 = {q̂4kÂ4, q̂1kÂ1+ q̂2kÂ2}, and the only new tree that is constructed from this class is shown
in part (c) of figure 5. The remainder of the construction proceeds in the same way, eventually yielding
the LOCC tree shown in figure 4.

Example 5 {Why the q̂jk, p̂jk are useful} Since we want to allow for each Âj⊗B̂j to appear on multiple
different leaves, it is necessary to introduce positive factors r̂jk multiplying these operators, with k

labeling the different appearances of Âj ⊗ B̂j, in order that the sum over all leaves will equal IA ⊗ IB ,



10

r b
B̂1 Â1
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Â2

(b)

r
B̂1 + B̂4

b
Â4
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FIG. 5: The trees constructed by the first two passes through our algorithm for the example of Eq. (9): (a) the five

two-level trees representing the five Âj ⊗B̂j , which are the input to the algorithm; (b) after the first pass through the
algorithm, we keep all the original two-level trees, now with one additional node added to turn them into three-level
trees, and add four more trees corresponding to the four different ways to merge the three proportional B-nodes,

B̂1, B̂2, B̂3; (c) after the second pass through the algorithm we still have all three-level trees that are shown in (b), but
with another added node (these trees are not shown here), along with one additional tree constructed from merging

two trees from (b), the one that had Â4 as its left-most node and the one that had Â1 + Â2 as its left-most node.
[The reader should mentally insert the factors q̂jk, p̂jk, which have been omitted for clarity, to avoid cluttering up
the figure.]

the required completeness condition on the overall measurement. That is, with r̂j =
∑

k r̂jk,

IA ⊗ IB =
∑

j

r̂jÂj ⊗ B̂j, (10)

which is (3). However, since the conditions (5) and (6) are conditions on the Âj or B̂j separately,

it will be useful to write r̂jk = q̂jk p̂jk and consider product operators q̂jkÂj ⊗ p̂jkB̂j instead of just

r̂jkÂj ⊗ B̂j . Let us illustrate why this is useful, and then we will give a complete example.

Consider three of the operators, Âj ⊗ B̂j , j = 1, 2, 3, and suppose B̂1 6= B̂2 but r̂11B̂1 = r̂21B̂2 for

some positive constants r̂11 and r̂21. Then, we cannot merge Â1 ⊗ B̂1 and Â2 ⊗ B̂2, but can merge

r̂11Â1⊗B̂1 with r̂21Â2⊗B̂2 at the B-nodes, labeling this merged node as r̂11B̂1. Following our method
of construction, after merging these two B-nodes, we introduce a new node to the left and label it by

the sum of the A-nodes that emerge to the right of these two merged B-nodes; that is, by Â1 + Â2.

Now, it may be that this sum is not equal to Â3, so the Â3 node cannot be merged into the tree we’ve

just constructed. However, if q̂31Â3 = q̂11Â1+ q̂21Â2 for some positive constants q̂11, q̂21, and q̂31, then

we should include a tree that has q̂31Â3 ⊗ p̂31B̂3 merged at the A-node with a tree created by merging

q̂11Â1 ⊗ p̂11B̂1 with q̂21Â2 ⊗ p̂21B̂2 at the B-node. This can be done by using q̂jk and p̂jk instead of
the single coefficient r̂jk, leading to the two constraints,

p̂11B̂1 = p̂21B̂2

q̂31Â3 = q̂11Â1 + q̂21Â2, (11)
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and along with all other constraints, these will determine the set of coefficients q̂jk, p̂jk.

Now, the complete example to demonstrate these ideas. This example will, in addition, show how one

of the Âj ⊗ B̂j is used more than once, and we will also explicitly write down the constraints obtained
as we merge nodes together.

Consider a measurement having seven product operators, for which the local positive operators satisfy
the following conditions.

B̂1 = 2B̂2 = 3B̂3

B̂6 = B̂1 + B̂4

B̂7 = B̂1 + 2B̂5

IB = B̂6 + B̂7

2Â4 = Â1 + Â2

3Â5 = Â1 + Â3

IA = Â6 + 2Â4 = Â7 + 3Â5. (12)

It is not necessary for us to have discovered these conditions ahead of time, only that we know the
operators themselves and are able to check for when positive linear combinations of some of them can
be equal to positive linear combinations of others (intersections of convex cones); in the following we
will assume that these conditions are not yet known.

Begin by checking for sets of the B̂j that are proportional to each other. We find that the only such

cases are for B̂1, B̂2, B̂3, which are all proportional. We could merge all three together or any of the
three pairs, and in general we will want to check all these possibilities, but because of (12) we will see
below that only the pairs j = 1, 2 and j = 1, 3 are needed. As we are using j = 1 twice, multiply each

use of Â1 and B̂1 by different coefficients q̂11, p̂11 for the first use and q̂12, p̂12 for the second one. Then,
merging these pairs of B-nodes leads to the constraints,

p̂11B̂1 = p̂2B̂2

p̂12B̂1 = p̂3B̂3 (13)

(one could replace p2 by p21 and similarly for p3, but since we will end up using only one copy of
each of these operators in building a tree, there will be no need for the extra index in this particular
example). Attach a new node to the left of each of these merged trees, one of which will be labeled by

q̂11Â1 + q̂2Â2 and the other by q̂12Â1 + q̂3Â3.

We next check the A-nodes to see which ones can be merged. By (12), we will find that Â4 lies within

the convex cone formed by Â1 and Â2, while Â5 lies within the convex cone formed by Â1 and Â3,

so we can merge the Â4 node and the Â5 node into the appropriate one of the trees created at the
previous step where B-nodes were merged to start things off. Doing this and attaching new nodes on
the left leaves us with part (a) of Figure 6. The constraints obtained for these mergings are

q̂4Â4 = q̂11Â1 + q̂2Â2

q̂5Â5 = q̂12Â1 + q̂3Â3. (14)

The left-most nodes of the two trees we’ve constructed so far will next be labeled by p̂11B̂1+ p̂4B̂4 and

p̂12B̂1 + p̂5B̂5, respectively. The next step of our construction is to now check again for which B-nodes

can be merged, and we will find (according to (12)) that B̂6 lies in the cone of B̂1 and B̂4 while B̂7 lies

within that of B̂1 and B̂5. Hence with the constraints,

p̂6B̂6 = p̂11B̂1 + p̂4B̂4

p̂7B̂7 = p̂12B̂1 + p̂5B̂5, (15)

we can merge q̂6Â6 ⊗ p̂6B̂6 and q̂7Â7 ⊗ p̂7B̂7, one to each of the left-most B-nodes in part (a) of the
figure, and those two B-nodes can then be relabeled in agreement with how they are labeled in part
(b).
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FIG. 6: The tree constructed for Example 5: (a) mid-way through the construction; (b) the final tree.

Next, attach new A-nodes to the left of each of these trees and label them as q̂4Â4 + q̂6Â6 and

q̂5Â5 + q̂7Â7, respectively. When next checking for intersections of convex cones for A-nodes, we will
find that these two nodes do indeed share an intersection. Therefore, merge them into one node, labeled

by either of these sums, and attach a new B-node to the left, with label p̂6B̂6 + p̂7B̂7. We obtain one
additional constraint,

q̂4Â4 + q̂6Â6 = q̂5Â5 + q̂7Â7. (16)

We now have a single tree in which every Âj⊗B̂j appears at least once, so we can include two additional
constraints that the two roots of this tree are IA, IB,

IA = q̂4Â4 + q̂6Â6

IB = p̂6B̂6 + p̂7B̂7. (17)

Thus, we have constructed a closed, double-rooted tree for this set of measurement outcomes. Equations
(13) through (17) constitute the complete set of constraints that must be solved to determine if this
tree represents a valid LOCC protocol. One solution to these constraints is indicated by (12), which
does indeed yield such a protocol. Notice that even though there are only seven outcomes defining the
measurement, there are actually eight final outcomes of the protocol, an obvious consequence of the

fact that Â1 ⊗ B̂1 appears twice.

IV. CONCLUSIONS

To summarize, we have seen that every LOCC protocol corresponds to a tree graph with nodes labeled
in a way that must satisfy (5) and (6), which constrain the way that any such tree may be constructed
from a separable measurement. Given a separable measurement, then, we know how to construct an LOCC
protocol if one exists. Furthermore, we see that by constructing all [22] possible trees of depth L working
backward from the leaves, we will then also determine when no LOCC consisting of L or fewer rounds exists
for this measurement. We note, finally, that it is not difficult to generalize the construction to the case of
more than two parties.
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Appendix A: Proof of main theorem

Here, we will see that the construction described in the main text produces an LOCC protocol for a

given separable measurement corresponding to positive operators {Âj ⊗ B̂j}, whenever one exists. Every
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LOCC protocol can be described as a sequence of complete local measurements, each conditioned on previous
outcomes. Each local measurement is a branching of possibilities to one of the outcomes of this measurement,
and the collection of those outcomes that follow any given outcome of the previous measurement satisfies a
completeness relation, as expressed by (1). This branching lends itself directly to representation as a tree
graph (without closed loops), which we have illustrated in various figures. As has been described in the
main text, the nodes of the tree can be labeled by the positive operators corresponding to the product of
Kraus operators implemented by that party up to that point in the protocol, and we have shown that these
positive operators must satisfy (5) and (6) at each and every node of the tree [(6) is a direct consequence
of (5), along with the branching structure of the tree]. Hence, if we can construct all trees (if any) that

(i) are compatible with these two equations at every node; (ii) end with one of the Âj ⊗ B̂j on each of the

leaves; and (iii) have each Âj⊗B̂j appearing on at least one of the leaves; then we will have found all LOCC
protocols for this separable measurement. Since every LOCC protocol corresponds to a tree, if there is no
such tree, then there is no LOCC protocol.
We will not be able to construct all LOCC trees, however. The first reason is that we do not presently

have an argument that our construction will always terminate on its own, so it is possible the algorithm of
section II B could continue indefinitely. We therefore impose an upper limit L, which is in principle arbitrary,
on the number of levels (depth) of the trees we construct, equivalent to restricting the number of rounds in
the LOCC protocols that are considered.
To understand the second reason we will not construct all LOCC trees, even those of restricted depth,

divide the entire collection of trees of depth no greater than L into two classes. Class C (for congruent)
contains all such trees that include at least one node from which emerges (to the right) two or more sub-
trees that are congruent, by which we mean they are identical to each other apart from differing coefficients
q̂jk, p̂jk (that is, differing k-indices) multiplying the operators on their leaves (see Fig. 7 in appendix C for
an example). Since any number of such congruent sub-trees can emerge from any given node, and since
this number can be changed without altering the fact that the complete tree is a valid LOCC (again, see
appendix C), the number of trees in this class is infinite. Constructing all trees in this class is therefore a
difficult, perhaps intractable, problem. The second class of trees is finite, and is the complement of the first
within the entire set of LOCC trees of depth not exceeding L. This latter class, denoted D (for distinct),
contains all trees in which every node has only distinct sub-trees emerging from it to the right, no two of
which are congruent.
We will construct all trees in D, and then we will show in appendix C that if no LOCC tree can be

constructed in D, then there are no LOCC trees within C, either. Therefore, if our construction fails, then
no LOCC protocol with L or fewer rounds exists for this separable measurement.
We will next give a proof of our main theorem, that the construction will yield an LOCC protocol whenever

one exists in L or fewer rounds.

1. The construction yields an LOCC tree whenever one exists

We here give a restatement of our main theorem.
Main Theorem (restatement) The construction given in algorithmic form in section II B, when restricted

to L rounds, builds an LOCC tree for a given set of product operators {Âj⊗B̂j} whenever an LOCC protocol
in L rounds exists for this separable measurement (L is a finite, but otherwise arbitrary, integer).
The main idea of the proof is to imagine that an (arbitrary) LOCC protocol is provided to us and then to

show that the algorithm will construct an LOCC protocol for the same measurement. Since the algorithm

starts from a known set of {Âj ⊗ B̂j}, we identify these operators by examining the leaves of the tree
associated with the given protocol. Then, from this measurement and the known structure of its LOCC
tree, the proof proceeds to show how the algorithm constructs that tree. Since the tree we started with was
arbitrary, this proves that the algorithm will construct an LOCC protocol whenever one exists.
Proof : Suppose an LOCC protocol exists, and consists of L rounds; then there is an LOCC tree associated
with that protocol. If this tree includes direct merging of congruent sub-trees, then according to lemma 2
(proved below in appendix C), there is also an LOCC tree for this measurement that has no such direct
merging. By lemma 1 of appendix B, the latter tree yields an LOCC protocol. Therefore, we need only show
that the construction builds the latter tree, the one without any direct merging of congruent sub-trees, so
consider the latter (from here on referred to as the ‘original’ tree) in the following. We may always assume
that every branch has the same number of nodes along it by extending shorter ones with additional nodes
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along a single line (no further branching), each such node representing a round where that party did nothing
(performed the identity operator). For the same reason, we can (arbitrarily) choose to have every leaf be an
A-node emerging from a B-node on its left.
Imagine cutting all the edges joining the latter B-nodes to the A-nodes on their left (not to the leaf

A-nodes, which are on their right). This separates all those B-nodes from each other, leaving multiple
‘two-level’ trees each with a single B-node and one or more (leaf) A-nodes attached to it. No two of those

A-nodes emerging from a single, given B-node will be the same Âj , as this would entail a direct merging

of congruent sub-trees: two Âj ⊗ B̂j with the same j will not be merged directly to each other in this tree.

Each of these individual trees is a merging of several different Âj ⊗ B̂j together at the B-node, where those
B-nodes must all be proportional to each other. That is,

B
(SL−1)
iL−1

= pjkB̂j = pj′k′ B̂j′ = · · · , (A1)

where B
(SL−1)
iL−1

is the label on that particular B-node in the original tree. [Note that we have drawn a

distinction between the coefficients qjk, pjk from the original tree, which are known (by assumption the
original tree is given in advance, so is fully known), and the q̂jk, p̂jk to be used in our construction, which

are as yet unknown.] Since B̂j , B̂j′ , · · · are all proportional to each other, then at the first pass through step
3 of the algorithm our construction will build each of the two-level trees that result from this cutting of the
original tree, introducing unknown coefficients q̂jk, p̂jk on the A and B nodes. The algorithm also adds a

new A node on the left to each of these, and labels them with sums of those q̂jkÂj . [The cut we made in the
original tree may have produced multiple copies of a given (sub-)tree. To this point in the construction, we
will only have built a single copy because we will not yet have (fore)seen the need for more than one, but the
additional copies will arise later. As discussed above, the multiple copies will not be directly merged to each
other in the original tree, so they must merge to other sub-trees before the resulting composite sub-trees
merge to each other, where those other sub-trees differ from one copy of this sub-tree to another. When
multiple trees that can be merged with a given (fixed) one are present at some stage in our construction,
then the algorithm makes the necessary multiple copies of the fixed one so that it can be merged with each
of those others. This is done by identifying multiple classes and/or multiple subsets of those classes within
which that fixed tree is included. Even at this first stage, this will generally already have occurred, if any

single Âj ⊗ B̂j appears more than once on the leaves of the original tree.]
Returning to the entire tree, cut edges one level further into the tree from the leaves, isolating some number

of three-level trees (rather than the two-level ones obtained by the cut made in the previous paragraph),
all having A-nodes on their left with one or more B-nodes emerging to the right. The left-most A-node

in each of these trees must satisfy (5), which says that it is equal to a sum of the qjkÂj that label all the
leaf A-nodes that emerge from any one of the B-nodes emerging from that left-most A-node. If there are

multiple such B-nodes emerging, then the multiple sums of those individual sets of qjkÂj necessarily satisfy
(6), since by assumption the original tree is a valid LOCC. But satisfying (6) implies that the convex cones

generated by those sets of Âj are mutually intersecting, and by the previous paragraph, those same sets of

Âj appear in the sums labeling the new nodes that have just been added in our construction. Therefore
in our construction, a tree will appear that merges those same A-nodes as are merged at this level in the
original tree (with q̂jk, p̂jk in place of the original qjk, pjk). Therefore, our construction will build all these
three-level trees from the two-level ones previously obtained.
Now we can use an inductive argument. Assume that our construction builds all l-level trees that appear

in the original tree and labels them with the Âj , B̂j in exactly the same way as they are labeled in that tree,
apart from replacing qjk → q̂jk and pjk → p̂jk. We have just shown this holds for l = 2, 3, so assuming it
holds for all levels up to l, if we can show that it then also holds for l+ 1, the proof will be complete. Since

all the l-level trees are labeled by sums involving the same set of Âj , B̂j as in the original tree, we know that
when we look for intersections of convex cones generated by these sets, we will always find intersections that
will lead us to merge these l-level trees to create every one of the (l + 1)-level trees that appear from that
cut of the original tree (the cut that produces (l + 1)-level trees). The reason is that these intersections are
simply solutions to equations of the form (6), and we know from the original tree that at least one solution
will always exist, since q̂jk = qjk, p̂jk = pjk is such a solution, and this completes the proof. �

Note that for a given set of {Âj ⊗B̂j}, if an LOCC protocol exists in any finite number L′ of rounds, then
by setting L = L′ in the above arguments, we have the immediate corollary that our construction will build
an LOCC protocol whenever one exists in any finite number of rounds.
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Let us illustrate the procedure of the proof by an example. Consider the first cut isolating two-level trees

that lie at the leaf end of the original tree, nodes labeled by A
(SL)
iL

and B
(SL−1)
iL−1

, respectively. Suppose node

B
(SL−1)
1 branches to three A

(SL)
iL

(SL = {SL−1, 1}) with iL = 1, 2, 3. Since this LOCC implements the {Âj⊗B̂j},
it must be that (for some ordering of the latter and for some set of coefficients qj1, pj1),

B
(SL−1)
1 = p11B̂1 = p21B̂2 = p31B̂3, (A2)

and

A
(SL)
1 = q11Â1

A
(SL)
2 = q21Â2

A
(SL)
3 = q31Â3. (A3)

What this means is that B̂1, B̂2, B̂3 are all proportional to each other (each generates a one-dimensional
convex cone and all three of these cones share a mutual intersection as they are identical to each other),

from which it immediately follows that the three two-node trees, q̂j1Âj ⊗ p̂j1B̂j , j = 1, 2, 3, will be merged
at the B-nodes in our construction forming a tree having the exact same structure as the two-level tree in

which B
(SL−1)
1 branches to the three nodes A

(SL)
iL

, iL = 1, 2, 3, in the original tree. Not only is the structure
exactly the same, but in fact the two trees are identical in every way except that the one obtained from
our construction has coefficients that are as yet unknown. Although this is a specific example of a B-node
branching to three A-nodes, it should be clear that the ideas are completely general, and for each and every

final two-level sub-tree arising from this cut — B
(S′

L−1)

iL−1
with (possibly) multiple edges emerging to A-nodes

A
(S′

L
)

iL
on the leaves — a tree will be formed in our construction that is identical to it apart from the unknown

coefficients.
The next thing is to consider the cut done one level further into the tree from the leaves, isolating sets of

three-level sub-trees. In our example, if node B
(SL−1)
1 emerges from node A

(SL−2)
1 , then according to (5), it

must be that

A
(SL−2)
1 = A

(SL)
1 +A

(SL)
2 +A

(SL)
3 = q11Â1 + q21Â2 + q31Â3. (A4)

Recall that in our construction, an A-node is attached at the left of any merged B-node. In the specific

example we are here discussing, B̂1, B̂2, B̂3 are all merged into a single node, and the newly attached A-node

will be labeled in our construction as q̂11Â1 + q̂21Â2 + q̂31Â3 (for the choice q̂j1 = qj1, this is indeed equal

to A
(SL−2)
1 , demonstrating that at least to this point in the construction, there exists a solution for the

coefficients).

Suppose node B
(SL−1)
2 also emerges from node A

(SL−2)
1 and emerging from that B

(SL−1)
2 node are two

A
(S′

L
)

iL
, iL = 1, 2 with S ′

L = {SL−1, 2}. Then, again by (5), it must be that A
(S′

L
)

1 + A
(S′

L
)

2 = A
(SL−2)
1 .

By the same argument as was used above, we will have

B
(SL−1)
2 = p41B̂4 = p51B̂5, (A5)

and

A
(S′

L
)

1 = q41Â4

A
(S′

L
)

2 = q51Â5 (A6)

so that

A
(SL−2)
1 = q11Â1 + q21Â2 + q31Â3 = q41Â4 + q51Â5, (A7)

and I have assumed for illustration purposes that j = 1, 2, 3 are not repeated in the latter set of two Âj ⊗B̂j,

though that could certainly also occur. This demonstrates that the two convex cones generated by Â1, Â2, Â3

and by Â4, Â5 intersect with each other (and furthermore, A
(SL−2)
1 lies within that intersection). Therefore,
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at the second step of our construction, a tree will be created including all these nodes and having the same
structure as the corresponding sub-tree within the original tree: an A-node branching to these two B-nodes,
one of which branches to three A-nodes and the other to two. Again we can see that even though this is only
a specific example the ideas can be applied quite generally, and every sub-tree within the original tree having

a depth of three nodes will also be created in our construction. Furthermore, just as A
(SL−2)
1 lies within that

intersection of the two convex cones mentioned above, all trees created in our construction to this level will

have left-most nodes labeled in a way that the corresponding A
(SL−2)
iL−2

will lie in the convex cone generated

by the sum of the Âj that labels the node in that tree we’ve created.
This sort of analysis can be continued back to the roots of the tree, and by similar arguments one will

find that one of the trees created by our construction has a structure identical to the entire original tree.

In addition, all nodes of this tree are labeled by positive linear combinations of the Âj (or B̂j), and the

A
(Sn)
in

(or B
(Sm)
im

) on a given node of that original tree will always lie within the convex cone generated by

the Âj (or B̂j) labeling the corresponding node in this tree, precisely as was found above for the final few
levels of the tree. Therefore, there will always be at least one solution to the constraints on the q̂jk, p̂jk, that
solution being q̂jk = qjk and p̂jk = pjk, which yields precisely the original LOCC tree. Thus, we see that

given any set {Âj ⊗ B̂j} for which there exists an LOCC protocol, our construction always builds an LOCC
tree, providing an associated LOCC protocol.

Appendix B: LOCC trees and LOCC protocols

In this section, we show that there is an equivalence between LOCC trees and LOCC protocols, which
will be useful in that it tells us that not only does every LOCC protocol correspond to such a tree, but also
that if we can construct a tree of this type, then we can also construct an LOCC protocol.

Lemma 1. A double-rooted tree represents an LOCC protocol if its roots are labeled by IA, IB and every one
of its nodes (i) has a single edge entering it from the left (excepting the left-most root); and (ii) satisfies (5)
for every branch emerging from it toward the right.

The reverse implication, that every LOCC protocol corresponds to such a tree was shown in the main
text. Therefore, this lemma completes the demonstration of an equivalence between these trees and LOCC
protocols.
Proof : We will construct an LOCC protocol from any tree satisfying the conditions of the lemma. Each

(non-root) node of the tree is labeled by A
(Sn)
in

or B
(Sn)
in

, which satisfy (5), reproduced here for convenience,

∑

in

A
(Sn)
in

= A
(Sn−2)
in−2

, (B1)

and similarly for Bob’s operators. The phrase ‘for every branch emerging from it toward the right’ in (ii) of
the statement of the lemma should be understood in (B1) to mean ‘for every in−1’, as each of those branches
from node (Sn−2, in−2) are labeled by one of the integers, in−1.
Suppose the first nodes to the right of the roots are A-nodes (the arguments are the same if they are

B-nodes). Define Kraus operators

Ai1 =
√

Ai1 , (B2)

and choose the unique positive square root. Then, we have that

∑

i1

A†
i1
Ai1 =

∑

i1

Ai1 = IA, (B3)

which follows from (B1) with n = 1 along with the fact that the node that is two steps to the left of the n = 1
nodes is the left-most root, equal to IA. Therefore, this set of Kraus operators is a complete measurement,
and we choose it as Alice’s first one. By the same argument the Kraus operators

B
(i1)
i2

=

√
B
(i1)
i2

(B4)
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for each fixed i1, are a complete first measurement for Bob, conditioned on the outcome of Alice’s first
measurement.
Let us now show how to choose each of Alice’s subsequent measurements; Bob’s can be chosen by the

same approach. For Alice’s second measurement, choose

A
(S3)
i3

= U
(S3)
i3

√
A

(S3)
i3

A−1
i1

, (B5)

where S3 = (i1, i2), we choose unitary U
(S3)
i3

for the convenience of having A
(S3)
i3

be a positive operator (we

will mean ‘positive semidefinite’ whenever we write ‘positive’), and A−1
i1

should be understood to be the

inverse on its support. Then A−1
i1

Ai1 = Pi1 , where Pi1 is the projector onto the support of Ai1 and is also

equal to Ai1A
−1
i1

since Ai1 is a positive operator. Include one additional Kraus operator equal to IA − Pi1 .
Now,

∑

i1

A
(S3)†
i3

A
(S3)
i3

=
∑

i3

(
A†

i1

)−1

A
(S3)
i3

A−1
i1

=
(√

Ai1

)−1

Ai1

(√
Ai1

)−1

= Pi1 , (B6)

where the second equality follows from (B1). Adding in that last Kraus operator shows this is a complete
measurement. The overall Kraus operator (product of Kraus operators implemented by Alice up to any
given point in the protocol) corresponding to this added one is (IA − Pi1 )Ai1 = 0, which is why it need not
appear as a node in our tree. [If one wishes, an additional branch and node can be added for this ‘outcome’
of the measurement, with no further nodes emerging from it. Since it vanishes identically, this is really
unnecessary.]
Assume we have managed to construct a complete set of (positive) Kraus operators for each of Alice’s

local measurements up to level m. If we can then construct a complete set of Kraus operators for her next
measurement (m+ 2), we will have shown by induction that the tree yields an LOCC protocol, completing

the proof. Thus by assumption, we have positive A
(Sm)
im

such that

∑

im

A
(Sm)†
im

A
(Sm)
im

=
∑

im

A
(Sm)
im

= IA, (B7)

where we have included an extra Kraus operator like the one introduced in the previous paragraph. Define

A
(Sm+2)
im+2

= U
(Sm+2)
im+2

√
A

(Sm+2)
im+2

(
A

(Sm)
im

)−1

, (B8)

choosing U
(Sm+2)
im+2

so that each of these is positive. Then,

∑

im+2

A
(Sm+2)†
im+2

A
(Sm+2)
im+2

=
∑

im+2

(
A

(Sm)†
im

)−1

A
(Sm+2)
im+2

(
A

(Sm)
im

)−1

=
(
A

(Sm)†
im

)−1

A
(Sm)
im

(
A

(Sm)
im

)−1

= P
(Sm)
im

, (B9)

and after including that one additional Kraus operator equal to IA−P
(Sm)
im

with P
(Sm)
im

= A
(Sm)
im

(
A

(Sm)
im

)−1

=
(
A

(Sm)
im

)−1

A
(Sm)
im

, we see that this is a complete set for Alice’s next measurement. Note once again that

(IA − P
(Sm)
im

)A
(Sm)
im

= 0, so this extra Kraus operator has zero probability of occcurring in the protocol,
completing the proof. �

If one wishes to obtain a specific set of Kraus operators at the end of the protocol (levels m = L− 1, L),

and if these Kraus operators are compatible with the positive operators A
(Sm)
im

,B
(Sm)
im

(for those same values

of m), this can always be done by adjusting the U
(Sm)
im

at these levels.

Appendix C: Merging congruent sub-trees directly to one another

In this section, we provide the final piece of the puzzle by proving the following result which was assumed
in the proof of theorem A1.
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Lemma 2. If an LOCC tree exists for a given set of product operators {Âj⊗B̂j} and includes direct merging
of congruent sub-trees, then there also exists an LOCC tree for the same set of operators that does not include
any such direct merging.

The reason it is not necessary to consider trees with congruent sub-trees merged directly to one another is
that those congruent sub-trees can easily be combined into a single sub-tree. Note that being congruent,
every node in each of these sub-trees has a counterpart in the other sub-trees, where all these counterparts
are labeled by linear combinations of the exact same set of operators, the only difference being that the
coefficients, q̂jk, p̂jk, are different. This follows from (5) and the fact that the sub-trees are congruent, which
implies that the set of final outcomes (and the number of copies of each) at the leaves of these sub-trees are
the same.
Before proceeding to the proof of lemma 2, let us first illustrate how, from a tree that has several congruent

sub-trees that are merged directly, we can construct a tree that has only one of those sub-trees. The node
at which they are merged corresponds to one of the parties, say A. Keep everything in the original tree
unchanged except for these congruent sub-trees. Then,

1. Erase all but one of those congruent sub-trees in their entirety;

2. Leave all the A-node labels unchanged in the remaining sub-tree (because it is an A-node where the
congruent sub-trees are merged);

3. Replace each B-node label in the remaining sub-tree by a sum — over all counterpart nodes for that
particular node, including the one in the sub-tree that remains — of the linear combination of operators
that label those counterparts (this sums the p̂jk’s appearing on all those counterpart nodes, for each
fixed j).

This is illustrated in Fig. 7. If the original tree is valid for LOCC, then so is the new one. The reason this
works is that the left-most nodes (one A and one B) are the same in the two sub-trees (a) and (b) in the
figure, so whatever else sub-tree (a) connects to can just as well be connected to (b). If (a) is connected
to other sub-trees at the 3B′ node (note that this node is not part of the congruent sub-trees), then those
other sub-trees can also be connected to the left-most 3B′ node in (b). Everything else in the entire tree will
remain unchanged. If, on the other hand, other sub-trees are connected to the A′ node in (a), they can also
be connected to the A′ node in (b), though then the label 3B′ on the left-most node in both (a) and (b)
would need to be altered, but this alteration will be the same in (b) as it is in (a). It should be noted that,
while the new tree yields a valid LOCC protocol if the original one did, the new tree may correspond to a
different set of weights r̂j =

∑
k q̂jk p̂jk as opposed to those in the original tree. This may be important to

Alice and Bob depending on the context in which they wish to use the LOCC protocol. We leave for future
work the question of when it will be possible to construct a larger tree from a smaller one by introducing
direct merging of congruent nodes, with the aim of obtaining a specified set of weights.
Now we turn to the proof of the lemma.

Proof of lemma 2: If we can combine two congruent sub-trees into one, then we can combine any number of
congruent sub-trees into one simply by combining them two at a time. Therefore, consider that sub-trees T1

and T2 are combined to become T̂ according to the prescription described above: erase T2 and in T1 leave the
A-nodes unchanged and replace each B-node by the sum of that node with its counterpart from T2. Since

the A-nodes are unchanged throughout the entire tree, then the sums in (5) and (6) for the A
(Sm)
im

are also
unchanged, so these required conditions will still be satisfied, assuming they were satisfied in the original
tree. Thus, we need only demonstrate that these conditions will also still be satisfied for the B-nodes.

Label each B-node in T1 as B
(Sm)
im

, the corresponding node in T2 as B
(S′

m
)

im
, and that in T̂ as B̂

(Sm)
im

. The

indices denoting position in T1 and in T̂ are exactly the same (Sm, im) because these two sub-trees have the
exact same structure and lie in the same position within their respective overall trees. The indices denoting
position within T2 are not quite the same as those, differing only at the node where T1 and T2 are merged
to each other, so that S ′

m differs from Sm only in the index corresponding to the different branch the two
follow from that particular node. By the procedure described above, we have

B̂
(Sm)
im

= B
(Sm)
im

+ B
(S′

m
)

im
(C1)
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FIG. 7: Illustrating why it is not necessary to consider merging multiple copies of congruent sub-trees. To simplify
the notation in the figure, all coefficients (q̂jk, p̂jk) have been taken to be integers for illustration purposes. We have

that A′ = Â1 + Â4 and B
′ = B̂1 + B̂2 + B̂3 = B̂4 + B̂5. Any valid LOCC tree in which sub-tree (a) on the left appears

can be replaced by a valid LOCC tree that has this sub-tree replaced by the simpler one (b) on the right. The reason
is that the left-most nodes (one A and one B) are the same in these two sub-trees, so whatever else (a) connects to
can just as well be connected to (b).

for each m that labels a node in T1 (and therefore, also in T2), and by (5), we know that

B
(Sm)
im

=
∑

im+2

B
(Sm+2)
im+2

,

B
(S′

m
)

im
=

∑

im+2

B
(S′

m+2)

im+2
. (C2)

Adding the last two equations together, we obtain

B̂
(Sm)
im

=
∑

im+2

(
B
(Sm+2)
im+2

+ B
(S′

m+2)

im+2

)
=

∑

im+2

B̂
(Sm+2)
im+2

, (C3)

showing that within T̂ , (5) is satisfied at every B-node.

The rest of the original tree outside T̂ has been unaltered by this procedure for merging T1 with T2. We

need to check that (5) will continue to be satisfied at every B-node outside of T̂ in the newly formed tree.

Suppose the A-node at which T1 and T2 were merged is A
(SM+1)
iM+1

. By (5), the B-node B
(SM)
iM

from which
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A
(SM+1)
iM+1

emerges is, in the original tree, equal to

B
(SM)
iM

=
∑

iM+2

(
B
(SM+2)
iM+2

+ B
(S′

M+2)

iM+2

)
+∆, (C4)

where the terms in the sum are from T1 and T2, respectively. Quantity ∆ includes everything that contributes

from outside T1 and T2, and is unchanged in the new tree, in which B
(SM)
iM

has also not changed from what

it was in the original tree (it is to the left of A
(SM+1)
iM+1

and therefore not a part of T1, T2). Therefore, B
(SM)
iM

remains equal to (C4), whereas by (5), it should be equal to

B
(SM)
iM

=
∑

iM+2

B̂
(SM+2)
iM+2

+∆, (C5)

in the new tree, which it clearly is.

We now argue that all other B-nodes in the new tree also satisfy (5). Those B
(Sm)
im

that are not in T̂ and
not downstream (to the left) of it, are unchanged from the original tree, as are their upstream B-neighbors

B
(Sm+2)
im+2

, so it holds for these nodes. Those nodes downstream from T̂ are B
(SM)
iM

and those downstream

from it, such as B
(SM−2)
iM−2

, B
(SM−4)
iM−4

, etc. The latter are each, by (5), equal to sums of the B-nodes that lie

immediately to the right in the original tree, and those B-nodes to the right are the same in the new tree as
they were in the original one, so they still satisfy (5), which is therefore seen to be satisfied at every node
in the new tree. Since the roots are also unchanged in the new tree, they remain equal to IA, IB (even if

these roots are the previously mentioned nodes A
(SM+1)
iM+1

and B
(SM)
iM

). Thus, by lemma 1, this tree is LOCC

and yields a valid LOCC protocol, completing the proof. �

Appendix D: Complexity of the construction

As indicated in the algorithm presented above for our construction of LOCC trees, the maximum number
of trees generated at the lth pass through the algorithm is Nl = 2Nl−1 − 1, where Nl−1 is the maximum
number of trees that could have been created at the previous pass through. Therefore, the complexity of this
method of searching for an LOCC tree could be enormous, apparently as much as “multiply-exponential”,
the space required to store all the trees as one proceeds being O

(
2NL

)
for L rounds. Nonetheless, this is

a finite upper bound on the number of trees that can be generated in constructing a protocol having no
more than L rounds. It should also be pointed out that this complexity is very much a ‘worst-case scenario’,
and is likely to be a rather loose upper bound. We believe, though have no proof, that almost all cases
(and perhaps even all cases) will require much less in the way of computational resources than this bound
represents.
The total number of final outcomes (leaves) in any protocol constructed in this way is finite, but potentially

quite large. For example, one might generate Nl different trees after l passes through the algorithm, and each
of these large number of trees will generally have a large number of leaves on it. Then one could imagine at
the next pass it might be possible to combine all these trees into a single tree, so that all the leaves of those
trees become leaves of this one combined tree. Clearly, the total number of final outcomes would then be
enormous. There is nonetheless a finite upper bound, and one can always devise a protocol that has more
final outcomes than that bound. Does this then mean that there exist measurements for which an LOCC
protocol exists, but for which our construction fails to find one? The answer is no for the reason that if
one allows direct merging of congruent sub-trees (see the following section), then one can end up with any
number of final outcomes in such a tree. Our construction will not build this tree, but by lemma 2, it will still
yield an LOCC protocol for the same measurement, just one that has a smaller number of final outcomes.
The direct implication is that in order for a protocol to have a number of final outcomes exceeding that
finite upper bound, the corresponding tree must include direct merging of congruent sub-trees.
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†
j ⊗ B̂

†
j ), the choice of Kraus operators is

not uniquely determined.
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