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We study the Ising spin chain with a Dzyaloshinskii-Moriya interaction focusing on the static and dynamic
properties of the entanglement entropy, following a quantum quench. We show that the effects of the additional
anisotropic interaction on the phase diagram and on the dynamics of the system are captured by the properties
of the entanglement entropy. In particular, the model provides a way to study the quench dynamics in a system
with an energy current. We consider quenches starting from an initial excited state of the Ising spin chain, and
we analyze the effects of different initial conditions.

I. INTRODUCTION

Recent experiments have shown that it is possible to study
unitary nonequilibrium dynamics in quantum systems on long
time scales [1]. One important result of these investigations
has been the observed lack of thermalization. The reason for
this non-thermal behaviour is attributed to the near integrabil-
ity of the system. This observation has motivated recent stud-
ies of the non-equilibrium properties of integrable quantum
model Hamiltonians [2]. The interest in this topic is also mo-
tivated by its relevance to a variety of experimental situations,
including cold atoms [3], Penning traps [4] and Josephson-
junction arrays [5].

There are many ways in which it is possible to drive a sys-
tem out of equilibrium. Quantum quenches, and coupling to
baths with different temperatures (or potentials) are the most
common protocols. While in the quench scenario the focus
is on the unitary dynamics of the full system, in the second
case one usually deals with an effective description of the dy-
namics of the subsystem only. Different out-of-equilibrium
dynamics have nevertheless similar characteristics, for exam-
ple the presence of currents (of particles, energy, or heat).

In this work, we study an Ising-like model system driven
out of equilibrium with a quantum quench in the presence of
an energy current. In the usual quench protocol the system is
prepared in the ground-state in the absence of any current, and
subsequently the dynamics drives it to some excited state. The
model Hamiltonian we consider here allows for the study of
two different new situations: a quench from the ground-state
in the presence of an energy current, and a quench from an ini-
tial excited state in the absence of an energy current. The two
scenarios are associated with different Hamiltonians which, in
a sense, are dual to each other. To characterize the system’s
behaviour we focus our attention on the Entanglement En-
tropy (EE), as measured by the Von Neumann entropy, which
is a central quantity in the characterization of nonequilibrium
quantum dynamics [6].

The structure of the paper is the following: in Sec.II we
introduce and describe the properties of the model Hamilto-
nian, in Sec.III we consider the static properties of EE for this
model, and in Sec.IV we study the dynamics of entanglement
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following a quench. Finally, we states our conclusions. In the
Appendix the reader can find more details of the calculations.

II. THE MODEL

We consider an Ising spin chain in transverse fieldHI , with
an additional Dzyaloshinskii-Moriya (DM) interactionHDM .
The total HamiltonianHI +HDM is defined as follows
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whereh is the external magnetic field, andζ is the cou-
pling parameter determining the strength of the DM interac-
tion. Such an anisotropic interaction is present in many low-
dimensional materials with the necessary crystal symmetry,
and it originates from spin-orbit coupling [7, 8]. Furthermore,
the DM interaction is of relevance in quantum information
theory, since it plays an important role in the physics of quan-
tum dots [9], and in fault-tolerant quantum computation [10].

Adding the DM term toHI does not affect the solvability
of the model [11], and interestingly enough it provides the
system with a richer phase diagram. These features have been
used in [12] to study the effective out-of-equilibrium quantum
dynamics of the model.HDM can be viewed as a current
term. The reason for this is the following. The equation of
motion for the local energy density ofHI , defined byǫj =
1
2σ

x
j σ

x
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z
j ,

ǫ̇j =
i

~
[HI , ǫj ] . (2)

One can write the time derivative of the energy current as the
divergence of the energy current

ǫ̇j = Cj − Cj+1, (3)

with

Cj ∝ σy
j
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)

. (4)

It thus follows thatHDM is precisely the sum over all sites of
the local currents

∑

j Cj . Therefore, the ground-state expec-
tation value ofHDM
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becomes an order parameter indicating the presence of an en-
ergy current. Once the total Hamiltonian has been diagonal-
ized, which can be done with the usual Jordan-Wigner and
Bogoliubov transformations

H =
∑

q

Λqb
†
qbq, (6)

the effect of the DM interaction is clearly observed at the
single-particle level. The single-particle spectrum is given by

Λq =
√

1 + h2 + 2h cos q + ζ sin q, (7)

with q ∈ [−π, π) the momentum of the quasi-particle. As
can be seen in the above expression and in Fig.1, the DM in-
teraction makes the spectrum non-symmetric with respect to
q = 0. Note that the ground state of the Hamiltonian includ-
ing the DM interaction is the same for all values ofζ in the
interval [0, 1]. In particular this means that, within this range
of values, the Ising model in a transverse fieldHI and the sys-
tem described by Eq.1 have the same ground state. Beyond
ζ = 1 (with h ≤ ζ) the Fermi sea starts to be populated by
the modes in between the zeros of the single particle spec-
trum (i.e. betweenq+ andq− in Fig.1). This implies that the
ground state is not anymore that ofHI . Furthermore, since
the DM term commutes with the rest of the Hamiltonian, at
the many-body level whenζ = 1 we must have a level cross-
ing between the ground state ofHI and some previously ex-
cited Hamiltonian eigenstates. Fig.2 shows the phase diagram
of the model [12]. There are three regions: ferromagnetic,
polarized paramagnetic, and the so-called current phase, char-
acterized byJ 6= 0. The current phase is gapless, and the
two-point correlation functions show a power-law behaviour
with an oscillatory amplitude:〈σx

l σ
x
l+n〉gs ∼ Q(h,ζ)√

n
cos(kn),

whereQ is a non-universal function andk ≡ arccos 1
ζ

[12].
In the following, we study the entanglement properties of

this model, and subsequently we analyze new quench proto-
cols for this spin system.

III. STATIC ENTANGLEMENT ENTROPY AND PHASE
DIAGRAM

In this section we show how entanglement can be used to
characterize the different phases of the model. To measure
the EE, we consider a bipartition of the spin chain into two
subsystems A and B. For this setup a good measure of EE be-
tween the two partitions is given by the von Neumann entropy
SA ≡ −TrρL ln ρL, whereρL is the ground-state reduced
density matrix of the subsystem A withL spins.

It is known that for critical one-dimensional systems the EE
scales logarithmically in the subsystem size, with a prefactor
given by the central charge of the associated Conformal Field
Theory (CFT),

SL =
c

3
lnL+ S0, (8)

wherec is the central charge andS0 is a non-universal con-
stant [13, 14]. On the other hand, in the non-critical region
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FIG. 1. (Color online) Spectrum of the Hamiltonian in Eq.1. We
show the spectrum for 4 different values ofζ, while keepingh = 0.5
fixed. See also figures in [12].
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FIG. 2. (Color online) Phase diagram in theh− ζ plane of the model
in Eq.1. The dotted line is a critical line where the model shows the
same universal properties of the quantum Ising model in transverse
field. See also figures in [12].

of the phase diagram, the entanglement entropy saturates toa
value which depends on the correlation lengthξ,

SL ∝ c

3
ln ξ. (9)

Both Eq.8 and Eq.9 characterize the ground-state properties
of EE for one-dimensional systems.

Apart from the ground state it is also of interest to investi-
gate entanglement properties of excited states. Recently,two
works have appeared on this topic. In [15] it has been shown
that there are excited states for which the logarithmic scaling
of EE can have prefactors different from the ground state, and
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FIG. 3. (Color online)SL vsL ath = 1.0 for differentζ. The scaling
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carrying phase.

that for some excited states the scaling can be extensive in
the subsystem size, instead of logarithmic. In [16] the authors
have studied the connection between EE for excited states and
properties of the associated CFT not contained in the central
charge. The EE of excited states is of interest also in the
context of quantum quenches since in this setting the system
is unitarily driven from the initial ground state to an excited
state.

The Hamiltonian in Eq.1 naturally fits in this set of prob-
lems. Following the discussion from the previous section the
model we are considering allows us to study the EE of some
excited states ofHI , simply by tuning the coupling constant
associated with the DM term. The excitations we can consider
in this way are characterized by the modes in between the ze-
ros of the single particle spectrum that get populated when
ζ > 1 andh < ζ (7). For these states the EE can be evalu-
ated analogously to the ground state ofHI (see also [17] for
related analytical study).

Let us consider in detail the entanglement properties of the
different phases shown in Fig.2. First, we compare the scal-
ing of the entanglement in the non-current-carrying critical
regions and in the region where an energy current is present.
Fig.3 shows the result of the simulations for the scaling be-
haviour of the ground-state EE withζ < 1 andh = 1. For all
values ofζ ∈ [0, 1] one observes the same scaling result. In
the non-current-carrying region critical states are present only
on theh = 1 line of the phase diagram. On this line, sepa-
rating the ferromagnetic and polarized paramagnetic phases,
the ground state of the system is the same as inHI . This im-
plies that the EE scaling is logarithmic with a prefactor ofc/3,
andc = 1/2. Note that also the entire current-carrying phase
(ζ > 1 andh < ζ) is gapless, and in this sense critical. At any
point in this phase we observe logarithmic scaling of the EE
in the subsystem size. This is consistent with the discussion
in the previous section on the algebraic decay of the two point
correlation function. Interestingly, the prefactor of theloga-
rithmic scaling of EE in the current phase is twice as large as
the prefactor in the non-current phase. This doubling reflects

the increased number of zeros in the single-particle spectrum,
consistent with the results of [17]. In fact, whenζ > 1 the
ground state of Eq.1 is the filled Fermi sea of modes in be-
tweenq− andq+ (see Fig.1). Since the ground-state in the
current phase is effectively an excited eigenstate ofHI , we
could expect a scaling of EE that is extensive in the system
size, as shown in [15] for excited states. The reason why this
is not the case is due to the nature of the single-particle spec-
trum, which at most can have two zeros (see Fig.1), and thus
does not satisfy the requirements found in [15] for an exten-
sive scaling of EE.

The DM interaction in the Hamiltonian affects also the sub-
leading term in the scaling of EESL = 1

3 lnL + S0(h, ζ).
Deriving the analytical form of the sub-leading order term
S0(h, ζ) is complicated. Nonetheless, one can investigate this
term numerically. In Fig.4 we see thatS0 is constant on the
critical lineh = 1 with ζ ≤ 1. As soon asζ > 1 andh < ζ,
S0 increases, but becomes almost constant for largeζ. Also
S0 is maximum ath = 0, andS0 is minimum at the critical
pointh = ζ. From the behaviour ofS0 we can conclude that
a given block has the highest entanglement when all the neg-
ative modes (q ∈ [−π, 0)) in the Fermi sea are filled. Conse-
quently EE increases with higher values of the energy current.

We now consider the differences between the critical lines
shown in the phase diagram (Fig.2), separating different
phases. The only second-order quantum phase transition is
found along at theh = 1 line (with ζ ≤ 1), which corresponds
to the Ising quantum phase transition (see Fig. 5). On the
hand the boundaries of the current-carrying phase with both
the paramagnetic and the ferromagnetic phases are character-
ized by a level crossing. This translates into a sudden jump in
EE (see Fig.5 and Fig.6). The value of EE is always higher
in the current carrying phase because of the presence of long-
range correlations that decay algebraically. The plots in Fig.5
and Fig.6 show that controlling the DM term can be used as
an entanglement switch. The amount of entanglement can be
driven by the DM coupling term or the magnetic field, which
are controllable parameters in optical lattices [18].

IV. ENTANGLEMENT DYNAMICS FOLLOWING A
QUENCH

In this section, we focus on the quench dynamics of the
EE. Quenching provides a way to excite a system, initially
prepared in the ground state, and to subsequently study the
non-equilibrium dynamics of the model (in the following, we
denote with a subscript0 the value of the parameters describ-
ing the initial Hamiltonian). As stated previously, the model
in Eq.1 is of interest because it combines two different mech-
anisms typically used to drive a system out of equilibrium:
quantum quenching, and the coupling to a field originating
a current in the system. Furthermore the inclusion of the DM
term allows us to study a model Hamiltonian where the energy
current can be controlled and used in the quench protocol.

In our setup, the quench can either involve the magnetic
field h, the DM couplingζ or a combination of the two. Since
the DM term commutes with the Hamiltonian, a quench inζ
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FIG. 4. (Color online) Non-universal nature ofS0. (upper panel)S0

vs. ζ at differenth; (lower panel)S0 vs.h at differentζ.
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FIG. 5. (Color online)SL vs. h at L = 60 for different ζ. (up-
per panel) Static entanglement along the transition between the or-
dered ferromagnetic and the disordered paramagnetic phase. The
peak signals the presence of long-range correlations at thecritical
point, which is a signature of a second-order quantum phase transi-
tion. (lower panel) Static entanglement along the transition between
the disordered paramagnetic and the current-carrying phase. The
sudden change in entanglement followed by the absence of a peak
at the critical point is a signature of the first-order quantum phase
transition.

leaves the system in one of its eigenstates, providing a trivial
evolution of the EE. On the other hand, quenches in the mag-
netic field give more interesting behaviours. If the quench is
done with the initial state prepared in a region with no current
the results are similar to those found in [6], where quenches
for theHI were considered. This is due to the fact that, in
the absence of a current, the ground-state wave function ini-
tially is identical to that ofHI , and the time evolution is not
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FIG. 6. (Color online)SL vs. ζ atL = 60 for differenth. The plots
for h = 0.5 corresponds to the static entanglement along the tran-
sition between the ordered ferromagnetic and the current-carrying
phase. This is a first order quantum phase transition which occurs at
ζ = 1 (analogously forh = 1). The plots forh = 2 andh = 3 cor-
respond to the static entanglement along the transition between the
disordered and the current-carrying phase. This is a first order QPT
which occurs atζ = h.

affected by the presence of the DM term (see the derivation of
Eq.25 in the Appendix for a proof of this). More interestingly,
if the quench involves an initial state inside the current phase,
new non-trivial behaviours can be expected, since the ground
state now is radically different. It is important to notice that
the DM coupling enters only in the specification of the ini-
tial state, whereas the evolution can be effectively described
by the Hamiltonian without the DM term. The calculations
showing that this is in fact the case can be found in the Ap-
pendix.

We first compare the evolution of the EE for different
quenches inside the current-carrying phase. Fixing the cou-
pling constant of the DM term, and quenching only the exter-
nal magnetic field we obtain the results shown in Fig.7. One
always has an initial ballistic evolution of the EE, which grows
linearly in time (measured in units where the speed of the ele-
mentary excitation is unity) and saturates at some point. Quite
interestingly, the saturation time (hence also the rate at which
entanglement is initially building up) depends on the particu-
lar evolving Hamiltonian. This way we can control the time
needed to generate the maximal asymptotic amount of entan-
glement. This property is relevant also from a computational
point of view. In fact, DMRG-like schemes, used for the sim-
ulation of the time evolution of quantum systems, can take
advantage of the lower rate at which entanglement is gener-
ated. Knowing the regions in the phase diagram where such
rates are lower can provide more efficient time simulations.
As far as we know this is a new feature that is not present in
other quench protocols considered so far in the literature.The
other aspect that is important to notice in Fig.7 is the special
role played by the lineh = 1 in the phase diagram, which
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FIG. 7. (Color online) Quenches from the current carrying phase.
SL(t) vs. the time steps, withL = 60, h0 = 4.0, ζ0 = ζ = 5.0 for
differenth. Note that the extent of the initial linear regime depends
on the particular evolving Hamiltonian.

turns out to provide the maximum asymptotic EE for different
quench parameters. This can be understood by mapping the
quench forHI +HDM to a quench protocol forHI only. As
stated in the previous section, the entanglement evolutionwith
respect toH(h, ζ) is identical to the evolution with respect
to H(h, 0). Furthermore, the ground state ofH(h0, ζ0), the
initial Hamiltonian in the quench protocol is also an excited
eigenstate ofH(h0, 0), because of the commutativity of the
DM term with the total Hamiltonian. From this dual perspec-
tive the effect of the current is that of effectively quenching
an excited eigenstate without the current term. For the Ising
model, a quench fromh0 6= 1 yields the maximum value of
SL(∞) when quenched toh = 1, because the energy gap
closes ath = 1, and hence a large number of zero energy ex-
citations can be produced. While the asymptotic value of EE
depends on the particular excited state at the beginning of the
quench.

Fig.8 shows results of simulations for quenches with in-
creasing values of the DM field in the current-carrying phase.
The asymptotic value of the EE decreases with increasingζ.
This is consistent with the phenomenological picture provided
in [6], and with the fact that if the system starts in an excited
state, the available number of unoccupied modes that can be
occupied after the quench is smaller than in the case of having
the ground state as an initial state. Furthermore, Fig.8 shows
that the time at which the EE saturates does not depend on
ζ, and consequently does not depend on the particular initial
Hamiltonian eigenstates (as long as it is not an eigenstate of
the evolving Hamiltonian). The line withζ = 100 in Fig.8
shows that very deep into the current phase quenching does
not create entanglement. In fact, whenζ ≫ h0 quenching the
magnetic field is just a small perturbation to the Hamiltonian,
which then approximately stays in the ground state.

Finally, we verify that the presence of an energy current
does not affect the extensive nature of the asymptotic value
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FIG. 8. (Color online) Quenches from the current carrying-phase
with different values of the current driving fieldζ. SL(t) vs. the
time steps withL = 60, h0 = 3.0 to h = 1 for differentζ0 = ζ.
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FIG. 9. (Color online)SL(t) vs. the time steps inside the current-
carrying phase for different block sizesL. Quenching is done from
h0 = 2.0 to h = 1.0 with ζ0 = ζ = 3.0.

of EE (Fig.9), and its proportionality with the quench size
(Fig.10).

V. CONCLUSIONS

We have studied the static and dynamic properties of the
entanglement entropy in the Ising spin chain with a transverse
field and a Dzyaloshinskii-Moriya interaction. The model is
characterized by the presence of an energy current for certain
regions of the phase diagram.

Concerning the static properties we have analyzed the tran-
sitions between phases with no energy current and the phase
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where an energy current is present. The transition is captured
by a discontinuity of EE as a function of the parameters, and
by a distinguishable scaling behaviour in the current-carrying
and non-current-carrying regions. In particular, the leading
logarithmic term of the EE scaling with respect to the system
size has a prefactor in the current-carrying region which is
twice as large compared to the second order Ising critical line.

Concerning the behaviour of the entanglement evolution
following a quench, the model in Eq.1 allows us to study new

quench protocols. The usual schemes consider quenches from
an initial ground state. This scenario, for the model in Eq. 1,
effectively corresponds to a quench from an initially excited
state of the Ising spin chain in transverse field (without DM
interaction). The main result of this analysis shows that the
ballistic picture presented in [6] is still valid, althoughwith a
significantly different aspect. In particular the entanglement
saturation time in the current-carrying phase depends on the
details of the evolving Hamiltonian. This is an indication of
the role played by the evolving Hamiltonian on the propaga-
tion of excitations. This result is of relevance in tuning the
dynamics of the system in regions with a different rate for the
propagation of entanglement. Furthermore it also providesa
characterization of the regions in the phase diagram that can
be simulated more efficiently with DMRG-like techniques.

From a general point of view, the model in Eq. 1 also sug-
gests a simple way to study the quench dynamics of initial
excited states in integrable systems. The addition of a com-
muting term in the Hamiltonian causes a reshuffling of the
spectrum that, without changing the integrability of the model,
allows us to obtain non-trivial results about the excitations in
the original model. The same trick can be applied to other
systems of interest.
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Appendix. In this Appendix we give a detailed descrip-
tion of the steps involved in first evaluating the entangle-
ment entropy of the Hamiltonian in Eq.1, and then calcu-
lating its time evolution. After the standard sequence of
Jordan-Wigner and Bogoliubov transformations the Hamil-
tonian is in the diagonal formH =

∑π
k=−π Λkb

†
kbk, with

Λk = 1
2 (
√
1 + h2 + 2h cosk + ζ sin k).

The density matrix of the subsystem od size L, embedded in



7

a system of size N, can be obtained tracing out the rest of the
system

ρL = TrN−L(ρ) = A0e
−H, (10)

whereA0 is a normalization constant andH is a quadratic
hermitian operator

H =

L
∑

i,j=1

c†iVi,jcj +
1

2
(c†iWi,jc

†
j − ciWi,jcj). (11)

H can be diagonalized via a generalized Bogoliubov transfor-
mation. The reduced density matrix has the form

ρL = A0 exp[−
L
∑

q=1

εqd
†
qdq] (12)

UsingTr(ρL) = 1, we getA0 = ΠL
q=1

1
1+exp(−εq)

. This gives
the final form of the density matrix as

ρL = ΠL
q=1

exp(−εqd
†
qdq)

1 + exp(−εq)
. (13)

Definingνq ≡ 1−exp(−εq)
1+exp(−εq)

, we can write

ρq ≡
( 1+νq

2 0

0
1−νq

2

)

, (14)

and also

ρL = ΠL
q=1

1 + νq
2

exp[− ln(
1 + νq
1− νq

)d†qdq]

= ΠL
q=1(

1 + νq
2

− νqd
†
qdq)

=

L
⊗

q=1

ρq. (15)

Using the fact thatexp(d†qdq ln λ) = 1+(1−λ)d†qdq, one has
for the entanglement entropy

SL = −Tr(ρL ln(ρL))

=

L
∑

q=1

[ln(1 + exp(−εq)) +
εq

1 + exp(εq)
]

= −
L
∑

q=1

(
1 + νq

2
ln

1 + νq
2

+
1− νq

2
ln

1− νq
2

). (16)

We have to calculateνq, from which we can obtain the block
entropy.νq is given by the expectation value ofd†qdq anddqd†q

〈d†qdq〉 = Tr(ρLd
†
qdq) =

exp(−εq)

1 + exp(−εq)
=

1− νq
2

〈dqd†q〉 = Tr(ρLdqd
†
q) =

1

1 + exp(−εq)
=

1 + νq
2

. (17)

We define four2L × 1 column vector: D ≡
(

d
d†

)

,

C ≡
(

c
c†

)

, D̄ ≡
(

d†

d

)

and C̄ ≡
(

c†

c

)

, where

d = (d1, . . . , dL)
t, and similarly forc. The previous Bogoli-

ubov transformations can be expressed in a compact matrix
notation as

D =

(

g h
h g

)

C, (18)

and

D̄t = C̄t

(

gt ht

ht gt

)

, (19)

whereg andh are L×L matrices. In terms of expectation
values we have

〈DD̄t〉 =
(

g h
h g

)

〈CC̄t〉
(

gt ht

ht gt

)

. (20)

Let us now consider a quantum quench protocol. Initially
the system is prepared in the ground state of an Hamiltonian
H ′, and suddenly one of the parameters is changed, and the
new Hamiltonian is denoted byH . The quasi-particle operator
vectorB′

k ≡ (b′k, b
′†
−k)

t is associated withH ′, and the vector

Bk ≡ (bk, b†−k)
t is associated withH . Similarly for Ck,

which is associated with bare vacuum fermions. Define also
the matrixRµ(α) ≡ cos(α2 )I + iσµ sin(

α
2 ), whereσµ are the

Pauli matrices, andµ = x, y, z. It can be easily seen that
Ck = Rx(θk)Bk, andCk = Rx(θ

′
k)B

′
k, with θk a parameter

of the Bogoliubov transformation [19] . From which we can
writeBk = Rx(θ

′
k − θk)B

′
k.

When a quench takes place, the time evolution of the
fermion operators is given byBk(t) = e−iHtBke

iHt. We
can writeBk(t) = Sz(−2Λkt)Bk, where

Sz(−2Λkt) =

(

e−iΛkt 0
0 e−iΛ

−kt

)

.

Notice that the energy spectrum of the Hamiltonian in Eq.1 is
not symmetric, which means that in generalΛ−k 6= Λk. In
order to evaluate the two-point correlation functions we con-
sider different cases. When the initial state of the system is in
the non-current-carrying region we have

〈B′
kB

′
k
†〉 =

(

1 0
0 0

)

. (21)

If the initial state of the system is in the current-carryingphase
andk ∈ (k1, k2), wherek1 andk2 are the zeros of the spec-
trum then

〈B′
kB

′
k
†〉 =

(

0 0
0 0

)

. (22)

Fork lying between−k1 and−k2 we have

〈B′
kB

′
k
†〉 =

(

1 0
0 1

)

. (23)
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A compact way of expressing Eq.21, Eq.22, and Eq.23 is
given by

〈B′
kB

′
k
†〉 =

(

1
2 (1 +

|Λk|
Λk

) 0

0 1
2 (1−

|Λ
−k|

Λ
−k

)

)

. (24)

Finally we can write

〈Ck(t)C
†
k(t)〉 = Rx(θk)〈Bk(t)B

†
k(t)〉R†

x(θk)

= Rx(θk)Sz(−2Λkt)〈BkB
†
k〉S†

z(−2Λkt)R
†
x(θk)

= Rx(θk)Sz(−2Λkt)Rx(θ
′
k − θk)〈B′

kB
′
k
†〉

×R†
x(θ

′
k − θk)S

†
z(−2Λkt)R

†
x(θk). (25)

Notice that the above expression is the same if we consider
Sz(−2Λkt), withΛk the single particle spectrum of Eq.1, or if

we considerSz(−2Λkt), with Λk the single particle spectrum
of the Ising Hamiltonian without the DM term. This can be
seen with a direct calculation. For example, one entry of the
above correlation matrix is given by

2〈c†−k(t)c−k(t)〉 =
E1 + E2 + (E2 − E1) cos θk cos (θ

′
k − θk)

+ (E1 − E2) cos [t (Λk + Λ−k)] sin θk sin (θ
′
k − θk) , (26)

whereE1 ≡ 1
2 (1 +

|Λk|
Λk

) andE2 ≡ 1
2 (1 −

|Λ
−k|

Λ
−k

). The argu-
ment ofSz appears only in the argument of the trigonometric
function in such a way that the DM contribution is irrelevant
(see Eq.7). This proves that the time evolution of the cor-
relation matrix in Eq.25, with respect to the ground-state of
Eq.1, is the same as the time evolution of the correlation ma-
trix with respect to the Ising Hamiltonian in transverse field,
with respect to an excited state of the Ising Hamiltonian.


