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We investigate schemes for Hamiltonian parameter estimation of a two-level system using repeated
measurements in a fixed basis. The simplest (Fourier based) schemes yield an estimate with a mean
square error (MSE) that decreases at best as a power law ∼ N−2 in the number of measurements
N . By contrast, we present numerical simulations indicating that an adaptive Bayesian algorithm,
where the time between measurements can be adjusted based on prior measurement results, yields
a MSE which appears to scale close to exp(−0.3N). That is, measurements in a single fixed basis
are sufficient to achieve exponential scaling in N .
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I. INTRODUCTION

Efficient methods for the characterization of quantum
systems to extremely high precision are important both
to reach new regimes of physics and to build robust quan-
tum technologies [1, 2]. One of the most fundamental
characterisation tasks is the estimation of the parameters
of a Hamiltonian in a two-level system. Several previ-
ous studies [3–5] used a method of repeatedly initializing
the two-level system and then performing measurements
in a fixed basis after consecutively longer intervals (dur-
ing which the system evolves under its Hamiltonian) and
then averaging many runs. By calculating the Fourier
transform of the resulting signal and identifying its peak,
it is possible to obtain an estimate for the rate of evolu-
tion, and thus the desired Hamiltonian parameter.

This approach is noticeably more efficient (faster) in
practice than quantum process tomography [6], requir-
ing only measurements in one particular basis (as state
initialization can be done via measurement). However, it
still demands a large number of measurements for mod-
erate accuracy. For example, in Ref. [3], the two pa-
rameter estimation procedure required at least 106 mea-
surements in order to reach a joint variance of 10−3 in
the parameters being estimated. Such large numbers of
measurements can pose a problem, especially in solid-
state systems where the measurement time is typically
the slowest timescale, often many orders of magnitude
longer than the period for coherent evolution. To specif-
ically address such situations, we quantify resources in
our estimation schemes as N , the number of measure-
ments used, rather than the total evolution time as is
commonly used in phase estimation schemes using optics
and assuming instantaneous measurements [7] (however
cf. [8]). We note however that our techniques could easily
be modified to take into account both the waiting time
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and the measurement time.

We emphasise that, unlike schemes based on the quan-
tum phase estimation algorithm [1, 10] such as that pro-
posed in Refs. [8, 9], we restrict our measurement to a
fixed basis and do not allow any controlling unitary dy-
namics. That is, our schemes are limited to preparing a
pure state in this fixed basis, evolving for some time un-
der the Hamiltonian, and measuring in this same basis.
The motivation for this restriction is simple: in most sit-
uations, the unitary required to change bases would be
generated by the very Hamiltonian parameter that we
are attempting to estimate.

A motivating example is provided by recent experi-
mental progress in the development of spin qubits in
semiconductor quantum dots, specifically, GaAs double
dot systems where a qubit is defined using two electron
spins in a singlet/triplet configuration [11]. With one
electron in each dot, the states ∣↑↓⟩ and ∣↓↑⟩ experience
an energy splitting proportional to the difference in the z-
component of the magnetic field, ∆Bz, resulting from the
hyperfine interaction with nearby lattice nuclear spins.
Because variations in ∆Bz are the primary source of de-
coherence in these spin qubits, there has been consid-
erable recent interest in the measurement and control of
this nuclear magnetic field by using the spin qubit as both
a probe and feedback mechanism [12–15]. In addition, a
well-known and stable value of this field can serve as a
source of coherent quantum operations (i.e., logic gates)
on the spin qubit [14, 15]. (However, one cannot use this
effect to change the measurement basis and implement a
quantum phase estimation algorithm as in [1, 8, 10] with-
out first estimating the field; thus, our requirement for
fixed basis measurements.) With the recent demonstra-
tion of single-shot projective measurements of the spin
qubit [16], parameter estimation of ∆Bz in such sys-
tems is possible [15]. The system coherently evolves on a
nanosecond timescale, whereas the measurement time is
∼10µs [14, 17, 18]. (In these systems the coherent evolu-
tion is switched off during the measurement process.) For
this estimation problem, then, we seek schemes that min-
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imize the number of measurements required for a given
accuracy.

In this paper, we consider the performance of a range
of schemes for such a parameter estimation, using numer-
ical simulations. First, we demonstrate that a Bayesian
approach outperforms the Fourier estimation techniques.
We show that, while schemes using a predetermined se-
quence of measurements yield a mean square error (MSE)
decreasing polynomially in the number of measurements,
a drastic improvement can be found by using adaptive
measurement approach [2]. The adaption is done by lo-
cal optimization [19]: the time intervals between prepara-
tion and measurement is chosen to minimize the expected
MSE, conditioned on the result of that future measure-
ment. Numerical simulations for the adaptive scheme are
consistent with exponential scaling in N for the MSE in
the estimate of the parameter, while the best nonadap-
tive algorithm found has a power law scaling in N . Our
result demonstrates that exponential scaling of the esti-
mate precision can be achieved with a single, fixed basis
of measurement, rather than requiring measurements in
arbitrary bases as in the quantum phase estimation al-
gorithm [1, 8, 10]. Finally, we show that quite good per-
formance is achievable by a locally optimal non-adaptive
scheme.

II. THE PROBLEM

We consider the problem of estimating a single un-
known parameter of a qubit Hamiltonian, of the form
H = ωσz/2. To simplify later calculations we assume that
ω is a random parameter uniformly distributed over the
interval [0, ω0], where ω0 is the largest possible value of ω.
In order to estimate ω, we probe that system with projec-
tive measurements of the x component of spin at differ-
ent times. (Note that this measurement basis is not the
energy eigenbasis of the Hamiltonian; otherwise, param-
eter estimation would not be possible.) We initialize the
state as an eigenstate ∣+⟩ of σx at t = 0; we note that this
initialization is naturally performed at each step by the
previous measurement. The Nyquist–Shannon theorem
suggests that we want to choose the time between prepa-
ration and measurement to be as small as τ ≡ π/ω0. This
minimum time interval τ (and hence maximum param-
eter range [0, ω0]) will be determined by experimental
considerations, and it is therefore reasonable to assume
that the waiting time between the kth preparation and
the kth measurement, is an integer multiple of τ . That
is, tk =mkτ . The Hamiltonian in this case generates the
time evolution

∣ψ(t)⟩ = cos (ωt/2) ∣+⟩ − i sin (ωt/2) ∣−⟩ , (1)

and the probabilities for the outcomes of the kth mea-
surement are

pk(+∣ω) = cos2 (πωmk

2ω0
) , pk(−∣ω) = sin2 (πωmk

2ω0
) . (2)

The relevant resource in our estimation procedure is the
number of measurements. The problem then becomes:
given a fixed number of measurements N , how should one
proceed in determining the waiting times mkτ , and how
does one infer ω from the results of the measurements?

This problem falls within the domain of quantum pa-
rameter estimation, wherein one seeks to identify an un-
known parameter influencing the preparation or dynam-
ics of a quantum system. The canonical example is esti-
mating the phase of a unitary operator, which is closely
related to characterizing a Hamiltonian with an unknown
magnitude, as in this paper. Quantum parameter estima-
tion techniques can allow for high-precision phase estima-
tion below the classical (shot noise limit) as well as power
algorithms for quantum computation [1, 10]. In quan-
tum parameter estimation problems, such as the one we
consider, it is necessary to carefully tailor measurements
and process their outcomes in order to make inferences
on the (unaccessible) parameter of interest. While many
techniques for quantum parameter estimation make use
of entanglement [20], it is in some situations possible to
replace entangled states with repeated application of the
unknown unitary on a single system prior to measure-
ment [7, 21, 22]. Adaptive measurements— which have
been proposed and used for quantum parameter estima-
tion [7–9, 19, 23–25], quantum tracking [26, 27], state dis-
crimination [28, 29], state estimation [30–32], and quan-
tum computing [33–35]—can play a key role in this con-
text because of the phase ambiguity inherent in estimat-
ing a parameter that appears in the problem only as the
scale of an anti-Hermitian operator (i.e. −iHt) which is
exponentiated [7, 22].

One question of interest in quantum parameter estima-
tion is how close the measurement comes to the so-called
Heisenberg limit [2]. This is the limit on the variance, or
Fisher information, of the unknown parameter, imposed
by Heisenberg’s uncertainty principle. For example, in
the case of phase estimation, this limit scales as N−2

U ,
where NU is the total number of times the unitary is ap-
plied, whether it is applied NU times to a single system,
or once each across NU systems, or anything in between
[20, 22]. Restricting to a single system (as in our pa-
per), in the asymptotic limit NU → ∞, the run-time of
any experiment that can attain the Heisenberg limit will
scale as NU . However, as noted above, in the practical
regime of interest to us, the run-time of the experiment
will be determined by N , the number of preparation and
measurement steps, not the evolution time ∼ NU between
preparation and measurement. Since there is no fixed re-
lation between NU and N (except that NU ≥ N), the
Heisenberg limit does not automatically translate into
any limit on the variance as a function of N . Rather,
we must determine how well various schemes scale with
N (in the regime of interest), and thereby determine the
best of them.
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III. SCHEMES FOR PARAMETER
ESTIMATION

In the following sections, we present techniques for
Hamiltonian parameter estimation based on Fourier
methods (A), and then those based on Bayesian methods
(B–D). The latter include simple non-adaptive Bayesian
schemes (B), our locally optimal adaptive Bayesian
scheme (C), and a locally-optimal non-adaptive Bayesian
scheme (D).

A. Fourier Estimation Techniques

A simple strategy for this problem is to measure at uni-
formly distributed times tk = kτ , i.e., to choose mk = k.
The set of measurement results constitutes a measure-
ment record, and can be loosely thought of as one re-
alization of a random process [5]. One method to es-
timate the parameter is to Fourier transform the mea-
surement record and identify the peak of the spectrum
as the best estimate for ω [3, 4]. However, this is not
the only strategy. For example, for each t = mτ we
could prepare, evolve and measure twice, with the range
m ∈ {1, . . . ,N/2}. The resulting measurement record can
be viewed as two realizations of the random process, and
averaging these two realizations will reduce the effect of
projection noise (i.e., the noise due to the indeterminacy
of the measurement outcomes). We can define a family
of schemes, wherein M different choices of waiting times
are each repeated n times, with a total of N = nM mea-
surements.

Using this technique we have considered partitions of
N where n ∈ {1,2,3, . . . ,10}. We find that n ∈ {1,2,3}
give the best MSE scaling depending on the value of N ;
see Fig. 1. In what follows, we use the partitioning that
minimizes the MSE for a given N , and call this method
the best Fourier method. The MSE in the estimate of ω
as a function of N for this method sets the benchmark to
which our more sophisticated schemes will be compared.
For a large number of measurements N , the scaling of
the MSE is found to have power-law scaling in N with
a power close to −2. Specifically, for a fit of N from
36 to 3000 with each point sampled 400 times, the 95%
confidence interval in the power is (−2.096,−2.064), R2 =
0.956.

B. Bayesian Parameter Estimation

We now consider performing a Bayesian analysis of
the same schemes described above. Here, one’s knowl-
edge about the unknown parameter ω is represented as
a probability distribution P (ω). Using the mean of this
distribution as one’s estimate gives a MSE which is equal
to the variance of this probability distribution, averaged
over all realizations. Thus we can use the variance of the

FIG. 1: The MSE in the frequency estimate for Fourier-based
schemes for some different partitionings of N . The “Best
Fourier Method” (solid line) for a particular N is given by
the best performing scheme for that N . To generate the data
for this plot each scheme was sampled 100 000 times, conse-
quently the error bars (not shown) are slightly smaller than
the markers for the data points.

posterior (i.e. post-measurement) P (ω) as the measure
of precision for Bayesian schemes.

We take the uniform prior probability distribution
P0(ω) = 1/ω0. At each measurement, the outcomes +
and − are expected with probabilities given by Eq. (2)
and so the total probability distribution can be updated
each measurement step using Bayes rule. The general
expression for conditioned probability distribution of ω
given k measurements, is

Pk(ω∣rk . . . r1) = N
k

∏
j=1

[1 + rj cos(πmjω/ω0)], (3)

where rj = 1 (rj = −1) corresponds to learning that the
jth result is + (−), mj denotes the waiting time for the
kth measurement, and N is a normalization constant.
These conditional probabilities allow for any Bayesian
parameter estimation task to be performed on a given
measurement record.

We can avoid the computationally costly practice of
discretizing the distribution in ω by using the following
technique. As Eq. (3) is an even function of ω, it can be
represented as a Fourier cosine series:

Pk(ω∣rk . . . r1) = 1
2
ck(0) +

N

∑
q=1

ck(q) cos(qπω/ω0), (4)

where N = ∑k
j=1mj . The distribution is normalized by

dividing by 1
2
ω0ck(0). Because the number of terms in

Eq. (4) is finite, the representation of the distribution is
exact. It is then possible to derive an analytic expres-
sion for ⟨ω⟩ = ∫

ω0

0 ωPk(ω∣rk . . . r1)dω (and ⟨ω2⟩) using
the Plancheral theorem, which relates the convolution
of two functions, Pk(ω∣rk . . . r1) and ω (or ω2), to the
summation of the product of their corresponding Fourier
coefficients. Performing this calculation gives an explicit
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FIG. 2: A comparison of the scaling of the variance for Fourier
and non-adaptive Bayesian methods. The stars are for the
Best Fourier method described in the text. The upward tri-
angles are for the Bayesian method where the N samples
are taken at at m = 1. The downward triangles are for the
Bayesian n = 1 method where the N samples are sequentially
taken at times m = 1,2,3...M (here M = N). The squares are
for the Bayesian n = 3 method where each point is sampled
three times, i.e., m = 1,1,1,2,2,2, . . .M/3. The circles are for
the locally optimal non-adaptive (LONA) method.

formula for the variance, V = ⟨ω2⟩ − ⟨ω⟩2, given by

V =
⎡⎢⎢⎢⎣
ω2
0

3
+

N

∑
q=1

2cqω
2
0(−1)q

c0(qπ)2
⎤⎥⎥⎥⎦

−
⎡⎢⎢⎢⎣
ω0

2
+

N

∑
q=1

cqω0[(−1)q − 1]
c0(qπ)2

⎤⎥⎥⎥⎦

2

. (5)

With this technique, we can perform a Bayesian anal-
ysis of the measurement outcomes of the predefined pa-
rameter estimation schemes discussed above. We sim-
ulated over 100 000 runs for n ∈ {1,2,3} and N up to
36 measurements to obtain the variance as a function of
N shown on Fig. 2. The simplest algorithm with n = N ,
m = 1 yields an asymptotic scaling of the variance ∼ N−1.
This is obtained by fitting the first 5000 steps (95% confi-
dence interval of power law scaling (0.9893,0.9895), with
R2 > 0.9999). By contrast, algorithms with n ∈ {1,2,3}
that uniformly distribute measurement times exhibit an
improved error scaling of the variance ∼ N−3 (for n = 1,
the first 1000 steps yield the 95% confidence interval for
the power to be (3.0376,3.0384), with R2 > 0.9999). This
latter result demonstrated a significant improvement over
the Fourier analysis using the same sequences, an im-
provement due solely to the superior data processing of
Bayesian analysis. We find that n = 3 is the most effec-
tive for smaller N (likely due to a reduction in projection
noise), whereas n = 1 has a better scaling for large N .
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FIG. 3: The plots for mean square error as a function of
the total number of measurements: (▲) the Bayesian method
where the N samples are taken at at m = 1; (▼) the Bayesian
method where the N samples are sequentially taken at times
m = 1,2,3, . . . ,M ; (◆) the locally optimal adaptive strategy.
The average MSE was computed from 10 000 simulations and
the largest possible allowed waiting time was mmax = 1000.
The shaded region on the adaptive strategy plot represents
the standard deviation of the MSE.

C. Adaptive Bayesian Scheme

We next consider an adaptive method in which the
waiting times tk are chosen based on previous results.
Specifically, we adaptively chose mk so that the condi-
tional expectation of the variance E[V ] after the mea-
surement is minimized. The conditional expectation of
the variance after the kth result for the waiting time mk

is

E[Vk ∣mk] =
ck(0∣+)Vk∣+ + ck(0∣−)Vk∣−

ck(0∣+) + ck(0∣−)
(6)

where ck(0∣r) denotes the Fourier coefficient ck(0) of
Eq. (4) given the measurement outcome r from the kth
measurement and Vk∣r is the variance conditional on this
outcome. The factors multiplying each Vr are the proba-
bilities of the outcomes. Our strategy is to, at each step,
choose the waiting time τmk in order to minimize the
expected variance of posterior distribution E[Vk ∣mk].

Fig. 3 shows the scaling of the variance as a func-
tion of N for this adaptive strategy, compared with the
above non-adaptive Bayesian schemes. Unlike the previ-
ous schemes where we could fit numerics beyond N = 200,
here we are limited up to N = 70. Fitting to the first
70 measurements, the MSE of this adaptive strategy
scales as ∼ exp(−aN) with a = 0.2990 (with 95% con-
fidence interval for exponent a of (0.2796,0.3185)) and
R2 = 0.9847. We compare this exponential fit with the
best power fit, which gives ∼ N−7 with R2 of only 0.9064.
That is, we have obtained an exponentially decreasing
MSE similar to that of Ref. [8] without the need to alter
measurement bases throughout the protocol.

While scaling in the number of steps can be exponen-
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Algorithm Steps to V = 10−3 Steps to V = 10−5

Bayesian n = N 242 ≳ 2 ⋅ 104

Fourier 33 ≳ 130

Bayesian n = 1 29 55

LONA 24 49

Adaptive 20 35

TABLE I: Comparison of schemes. Number of measurements
required to meet a desired variance of 10−3 and 10−5.

tial in N , this does not mean breaking the Heisenberg
limit on the variance, scaling as N−2

U . The reason is
that the adaptive algorithm (as well as other previously
discussed schemes) require exponentially longer waiting
times for large number of steps, so that NU varies expo-
nentially with N . As noted above, in the truly asymp-
totic regime, the evolution time will become much longer
than the measurement time. In that limit our algorithm
will scale worse than the Heisenberg limit in terms of to-
tal run-time, since it is optimized for a different problem.

D. Locally Optimal Non-Adaptive Scheme

Due to the computation required in optimally choos-
ing the waiting time at each measurement step, the com-
plexity of the adaptive scheme could present problems for
practical use. We therefore seek to identify non-adaptive
schemes with the best possible performance. Several
heuristics enable one to design such schemes; we will de-
scribe one.

In the initial step, we begin with a flat prior and de-
termine what waiting time will minimize E[V1∣m1]. For
the second measurement, we determine the optimal wait-
ing time to minimize E[V2∣m2] given that a measure-
ment was performed at m1 but the result is not known.
This process is then repeated. We can find the first
20 steps analytically — i.e., {m1,m2,m3,m4,m5,⋯} =
{1,1,2,1,3,⋯}. After that, we use a numerical search.
Because these waiting times are determined from ex-
pected rather than actual statistics, it is non-adaptive;
this string of waiting times is determined offline. We
denote this scheme the locally optimal non-adaptive
(LONA) scheme. Because of computational complexity,
it becomes intractable to determine the error scaling of
LONA for large number of steps. However this algorithm
performs well for small N (see Fig. 2), and so is appeal-
ing in situations where relatively few measurements are
necessary and adaptive methods are not feasible.

IV. DISCUSSION

We have shown that Bayesian methods can be used
for efficient Hamiltonian parameter estimation schemes.

Our adaptive Bayesian algorithm, which is locally opti-
mal, provides an exponential improvement in the scaling
of the variance with the number of measurements per-
formed, and unlike methods based on the quantum phase
estimation algorithm does not require adaptive measure-
ment bases — the measurements are in a fixed basis and
only the waiting times between them are adapted. See
Table I for a comparison of schemes.

We note that decoherence will in general affect the
performance of these schemes. Recently, considerable
progress has been made in the understanding of how to
determine asymptotic limits in parameter estimation in
the presence of decoherence [36]. While a detailed anal-
ysis of the effects of decoherence is beyond the scope of
this work, we note that simulations based on realistic
parameters for GaAs double dot spin qubits possessing
coherent evolution on the nanosecond timescale and de-
phasing times of microseconds demonstrate only a small
effect on the performance of the LONA scheme up to ∼ 30
measurements.

We emphasise that, in our analysis, we have used the
number of measurements N to represent the resource cost
of the scheme; this differs from typical phase estimation
scenarios, where N represents the total number of appli-
cations or probes (e.g., number of photons) of the Hamil-
tonian [20]. As such, the scalings of our various schemes
cannot be directly compared with other results, nor the
terminology based around the standard quantum limit
or the Heisenberg limit. For a simple comparison, it
should be noted that the waiting time in our schemes
typically becomes exponetially long for large N , and so
even the adaptive Bayesian scheme with its exponential
scaling in terms of number of measurements N will ap-
pear Heisenberg-limited when total time is used instead.
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