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We study the quantum phases of a three-color Hubbard model that arises in the dynamics of the
p-band orbitals of spinless fermions in an optical lattice. Strong, color-dependent interactions are
induced by an optical Feshbach resonance. Starting from the microscopic scattering properties of
ultracold atoms, we derive the orbital exchange constants at 1/3 filling on the cubic optical lattice.
Using this, we compute the phase diagram in a Gutzwiller ansatz. We find novel phases with ‘axial
orbital order’ in which p. and p, + ip, (or p» — ipy) orbitals alternate.

PACS numbers: 03.75.Ss,05.30.Fk,67.85.-d,71.10.Fd

Orbital physics of electrons plays an important role
in strongly-correlated solid-state systems, e.g., transition
metal oxides (see, e.g., [1, 2] and references therein). In
particular, intriguing quantum phases emerge due to the
coupling of the orbital degree of freedom to the charge,
spin or lattice degrees of freedom [3, 4]. Such coupling,
while leading to interesting effects, also complicates the
theoretical treatment. It is, therefore, desirable to study
simpler systems with the orbital degree of freedom de-
coupled from all others. Ultracold atoms in higher bands
of optical lattices provide an ideal tool to study orbital
dynamics in a well controlled environment, including
orbital-only models of single-species (spinless) fermions.

Several groups have now achieved loading and manip-
ulating ultracold atoms in higher (such as p-) bands of
optical lattices [5-9]. Techniques such as lattice ramp-
ing or radio frequency pulses have been used to transfer
atoms from the s- to higher bands, where they can stay
in a metastable state for a sufficiently long time. For
spinless fermionic atoms, the p-band can also be simply
populated by first completely filling the s-band, requir-
ing larger particle numbers, but less experimental con-
trol. To avoid undesired collisions between ground and
excited-band atoms, the s-band atoms may be removed
afterwards using laser pulses [10].

The interaction between fermionic atoms is usually
weak at low temperatures because the Pauli exclusion
principle only allows scattering in high partial wave chan-
nels (p, f, etc.). One way to increase the p-wave elastic
scattering cross section is to employ a Feshbach resonance
(FR) [11]. Typically, this is done by coupling channels in
the electronic ground state through magnetic fields. For
the case of p-waves, however, this method usually leads
to significant atom losses through three-body inelastic
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collisions because the scattering state is well localized by
the angular momentum barrier, and has good Franck-
Condon overlap with more deeply bound molecules [12].
To circumvent this problem, recently Ref. [13] considered
enhanced p-wave interactions via an optical FR (OFR)
between a scattering state and an electronically excited
“purely-long-range” molecule. Such molecules have inner
turning points at very large distances (e.g., > 50ag in
171YD), well beyond the chemical binding region, and
thus three-body recombination should be highly sup-
pressed. This approach not only allows to study strongly-
correlated phases, but also provides for a high degree of
control. In particular, the interaction strength among
different p-orbitals can be tuned differently.

Motivated by these developments, we investigate in
this article the phase diagram of spinless fermions on
a cubic lattice near an OFR described by the following
Hubbard-like model,

H=— Z t#,,,(cLic#,iJrey + h.c.) + Z [Vlnzymyﬂ-

TN T
+Vao(ng,ing s +nyins ;) + (ngcl’icy,inm + h.c.)}. (1)

The operator ¢, ; destroys a fermion in the orbital p,, at
site 4, and n, ; is the corresponding number operator.
The lattice spacing is set to 1, e, is the unit vector in
direction v, and u, v = x,y, z. The nearest-neighbor hop-
ping amplitude ¢, , describes hopping of fermions in or-
bital p,, along the direction e,. Due to the anisotropy of
the p-orbital Wannier wave functions, it is direction and
orbital dependent [14-16], ¢, = t6,,, +11 (1 —0d,.).
The interactions Vj 23 are induced by an OFR laser
[13] which couples the electronic ground state of the
atom to an excited state. The interaction can be
expressed in terms of the (p-wave) pseudo-potential
V' for two particles with mass M and relative an-
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The real part of the p-wave scattering volume, R =
Re[(a;}”)B], can be tuned by the detuning and the in-




tensity of the OFR laser. Expanding field opera-
tors in the Wannier basis, ¢ (r) = >2; , w, (r — %) ¢,
the interaction term [ d®ry [ d®roe)T(ry)yt (r2) V" (11 —
r2)p(r1)Y(ry) leads to the onsite, inter-orbital inter-
action Hine = >,V 71,#/,,,/CL,’iclT,,’icm,-c,,’i, where re-
peated indices are summed over. (We neglect all off-
site interactions.) The matrix element V,, ./, =
Yo S By [ Prowy (11 — i) wy (12 —3) V™ (11— 72)
wy, (r1 — ) w, (rg —4) can now be computed by sepa-
rating the relative and center-of-mass coordinates. For
deep lattices, the p-orbital Wannier functions are well
approximated by the first excited states of harmonic os-
cillators (with the oscillator length ¢ controlled by the
lattice depth). The only non-zero interaction terms are
the ones given in Eq. (1), with V; = %(Ul +U_1),
Vo =1 (Up +U_y +2Uy), and V3 = § (U_y — Uy). Here,
Un = 3V2R/(v/T(° M) defines the interaction strength
in the scattering channel with angular momentum m =
1,0, —1. A Zeemann splitting, which may be introduced
by a magnetic field, leads to different detuning of the
OFR laser for the three scattering channels. This makes
the scattering length a;" dependent on m, and conse-
quently the U,,’s can be different in magnitude and even
in sign. Thus, the relative strengths and signs of V; 23
can be varied by changing the strength of the Zeemann
splitting together with the detuning of the OFR laser. By
contrast, in a standard magnetic FR, U_; = U4;. In our
case, breaking the symmetry between U_; and U, leads
to the orbital-changing term V5. Physically, it allows (p,
or py) particles to move on the two dimensional plane,
instead of along a chain only. Since it explicitly breaks
time-reversal symmetry (TRS), we can expect it to lead
to novel phases reflecting that intriguing property.

Hamiltonian (1) generalizes the models of Refs. [17-
22]. For Vi = Vo, and V5 = 0, it reduces to the SU(3)
Hubbard model. One can visualize p-band fermions as
particles carrying a color index representing the p;, py,
and p, orbital state. Then, Hamiltonian (1) describes
a three-color fermion model with color-dependent inter-
action, a novel color-changing term V3, and spatially
anisotropic and color-dependent tunneling. We will show
below that this model has a rich phase diagram with novel
phases. Here, we focus on the strong-coupling limit for
p-band filling 1/3, and determine the orbital order using
a Gutzwiller mean-field ansatz.

In the strong-coupling limit,

Gl < Vi, fty| < Va=Va, and  |t)| < Va4V, (2)
double occupancy of the same site is suppressed. At 1/3
filling of the p-band, there is on average one p-band par-
ticle per site, and density fluctuations are frozen. Virtual
hopping induces exchange interactions between nearest-
neighbor orbitals (see Fig. 1). The situation bears some
resemblance to the emergence of magnetic models, such
as the Heisenberg model, in the strong-coupling limit of
the Hubbard model. The difference here is that three
orbital (instead of two spin) states are involved. Since
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Figure 1: (Color online) Sketch of the virtual hopping pro-
cesses leading to the effective Hamiltonian (3). Neglecting
t,, these — plus the ones obtained by interchanging = and y
— are the only ones. Note in particular the orbital-changing
process Js. Gray ovals denote sites, the blue ¢ tunneling pro-
cesses, and the green fractions denote interactions. Orbitals
pu are abbreviated by pu.

[t.] < |t”|, perpendicular tunneling ¢, can safely be
neglected [19], and, for brevity, we write ¢ = t|. Treat-
ing the tunneling ¢ in (1) as a perturbation and following
standard second-order perturbation theory, we obtain the
effective Hamiltonian for 1/3 filling

Heff = — Z [ Z Z Jﬂn#’i (1 - n,u,i+5)

i p=ry.zd—te,

+ Z Z (Jo = J1) npinzive

n=z,y 6=*e,

_ Z Jg(iC;icy’inZ«yi‘FJ—‘rh.C.) s (3)
d=+e.

where we have used the constraint ng ; +ny; +n.; =1,
and defined J; = t2/Vy, Jo = 2Vo/(VE = V3), J3 =
t2V3/(VE = V), and J, = J, = Ji, J, = Jo. For V3 =0,
Vi = Va, Eq. (3) reduces to J,n, i1, i+s, a hallmark of
the quantum 3-state Potts-like model [23].

To see which orbital order is favored, we first discuss
the simple case of J3 = 0. The first term of Eq. (3)
always favors configurations where the orbitals at neigh-
boring sites differ. (A) For J; > max (J2,0), both the
first and second terms favor an alternating pattern be-
tween py- and py-particles in the zy-plane. (B) For
Jo > max (J1,0), the favored configuration is an alter-
nating pattern between p, and not-p,. (C) For (the un-
stable case) Jp, J2 < 0, the best configuration is a homo-
geneously filled lattice.

Certain aspects of Hamiltonian (3) become clearer
when we rewrite it in terms of the generators of the
SU(3) group. In terms of the Gell-Mann matrices A\(*)

and the so-called F-spin operators ¥ = %CL)\LS,LCU and
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where we neglected constant terms. In the basis
(P2, py:p=), Y and T®) are diagonal, which means
that terms like Y;Yj, YiT;?’), or Ti(?’)TJ@ are Ising-
like. The orbital-changing term Vi leads to T(®) =
% (T(+) - T(’)), where T are ladder operators of the
T-spin. T4 and T do not commute, but both com-
mute with Y. This means that one can replace Y by
its eigenvalues —2 (for |p.)) and 3 (for |p,) and |p,)),
which gives some insight into the physics of Hamiltonian
(4). Assuming that the ground state is bipartite with re-
spect to the eigenvalue of Y [24], there are three different
cases: (A) at all sites the eigenvalue of Y is %, (B) the
eigenvalues —2 and % alternate, and (C) all sites have
eigenvalue f%. In the last case, there is one |p,)-particle
per site, whence there is no virtual tunneling, and the
Hamiltonian vanishes. In the sectors A and B, it reads
(neglecting constant terms)

a _ 4 3) _(3) .
H = 32 Z oo s (5a)
i d=e.,ey
oY = 2553 o b
eff - 3 Ui . (5 )
1€Q)

Here, o denotes the usual Pauli-matrices, which act on
the subspace spanned by |p,) and |p,). Sector A is re-
duced to the Ising model on decoupled xy-planes, which
favors an antiferromagnetic ground state. This is just the
model found in the 2D-case treated in [19, 20]. In sec-
tor B, € denotes the partition where Y has eigenvalue %
On these sites, J3 acts as a magnetic field in y-direction,
lifting the degeneracy between |p,) and |p,) and leading
to the ground state (|p.) £ i[py,)) /v2 (for J3 = 0).

Having obtained a qualitative picture of the expected
phases, we now analyze the phase diagram of Hamilto-
nian (4) quantitatively. To this, we assume that cor-
relations between sites are small so that the ground
state can be approximated by a product over sites.
To find the ground state of Hamiltonian (4), we em-
ploy the Gutzwiller variational wave function |¥) =
&), (cos b |pg),; +sinbcos @ |py), +sinfsin¢ p.),;), which
is a product over sites 4, and minimize the energy of a
cube with side length L (up to L = 8) under periodic
boundary conditions. Note, however, that close to phase
transitions, where fluctuations become important, such a
mean-field ansatz is not valid.
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Figure 2: (Color) Left: The phase diagram of Hes [Eq. (3)]
at 1/3 filling shows four phases: (A) antiferro-orbital order
(empty region), (B4) axial orbital order (red region, J3 > 0)
and similarly (B_) (orange region, J3 < 0), and finally (C)
with tunneling completely frozen (blue region). The gray
wedge indicates the region satisfying the strong-coupling con-
ditions (2), 0 < Ji12 < 1, J3s < J2. Right: sketch of phase
By, in which |p.) and |pz)+i |py) orbitals alternate, and phase
A. Phase B_ can be visualized from phase B} by replacing
pa) + i |py) with [pz) —i[py).

The energy per site for even L is smaller than for odd
L, showing that the ground state periodicity is indeed 2
[25]. In agreement with the qualitative picture above, we
find three classes of ground states with different orbital
order (summarized in Fig. 2): (A) For J; > Jy + |J3] /2
and J; > 0 we find an ‘antiferromagnetic phase’ similar
to, e.g., the 2D-model of Ref. [19]: in each xy-plane, sites
with pg- and p,-orbitals alternate (similar to the antifer-
romagnetic Néel state). Since p,- and p,-particles do not
tunnel in z-direction, the xy-planes are decoupled, and
within our approximation (e.g., neglecting ¢, ), there is
no long-range order in z-direction. It is possible, how-
ever, that long-range order among the planes develops at
low temperature for finite ¢, . (B) For J; < Jy + |J5] /2
and Jo > —|J3| /2 the ground state shows azial orbital
order. The state is bipartite with |p.) on one sublattice
and (|p;) £ |p,)) /V2 (for J3 = 0, respectively) on the
other sublattice (right panel of Fig. 2). The degeneracy
between |p,) and |py) is lifted by a finite J3. The state
(Ipz) £ |py)) /V/2 has finite angular momentum, whence
this novel phase breaks TRS [26]. (C) For J; < 0 and
Jo < —|J3| /2 Pauli exclusion prohibits all tunneling ¢
(by filling aS-planes (a8 = xy,xz,yz) uniformly with
Pa or pg). This state is unstable, however, because it
cannot fulfill the strong-coupling requirements (2). In-
terestingly, phases A and C preserve TRS, although V3
in Hamiltonian (1) breaks it explicitly.

Experimentally, the different phases can, e.g.,
be distinguished by measuring the density distri-
bution after a time of flight tiof. This relates to
the in-trap momentum distribution via (n(r)), =~ =
[M/(htior)]* 3, , wh (k) w, (K) (], (k) ¢, (K)),  with
w, (k) the Fourier transform of the Wannier orbital
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Figure 3: (Color online) Predicted time-of-flight (TOF) den-
sity distributions, allowing to distinguish phases A and B in
experiment. Lower (upper) row: (n (r)) t,.; integrated along z
(z) in arbitrary scale. For example, when viewed along the z-
direction, phase A displays a doughnut form (lower left panel)
because of an incoherent addition of p,- and p,-Wannier en-
velopes. In phase B, the sites occupied by (|p.) £1i|py)) /V2
give a similar doughnut structure, but the hole at k, =k, =0
is filled by the other half of the sites with p.-particles. Sim-
ilarly, viewing along the z-direction reveals the existence of
p.-particles in phase B, contrary to phase A (upper row).

wy (1), cu(k) =3, eik'icuﬂ-/LS/Q, and k = M 7/(htior)-
k is k modulo reciprocal lattice vectors. Features in the
density distribution appear because of its non-trivial
p-orbital Wannier envelope. This allows to distinguish
phases A and B by their column density (i.e., the density
integrated along one spatial direction), see Fig. 3.
Observation of these novel phases requires that we si-
multaneously achieve strong interactions, V' > ¢ and low
temperatures kT < t2/V, for the characteristic tunnel-
ing rate ¢ and interaction energy V. At experimentally
feasible temperatures, this requires a significant enhance-
ment of the real part of the p-wave scattering volume via
the OFR. In practice, however, this is limited by sponta-
neous emission, which broadens the resonance and also
leads to recoil heating. For the example considered in [13]
based on the 'Sy — 3P; intercombination line in 71Yb,

the atomic linewidth is ~180 kHz, which limits the useful
OFR p-wave enhancement. Other species such as 87Sr,
where the same transition has a linewidth of ~7.5 kHz,
should result in a substantial OFR, with a reasonable
linewidth. Experimental studies of OFRs in related iso-
topes are currently underway [27].

In summary, we investigated the orbital order of spin-
less fermions in the p-band of a cubic lattice with inter-
action controlled by an OFR. The system can be realized
with current technology. The model Hamiltonian can
be expressed elegantly by Gell-Mann matrices. We ana-
lyzed the orbital order in the strong-coupling limit at p-
band filling 1/3 using a Gutzwiller-type ansatz. Besides
a phase where all tunneling is blocked and an antiferro-
orbital phase where p,- and p,-orbitals alternate, we
found a novel phase with axial orbital order which not
only breaks translational symmetry but also has macro-
scopic orbital angular momentum. We expect our results
to stimulate future work on this subject. For example, it
is interesting to investigate how quantum fluctuations af-
fect the phase diagram: they might distort it [22] or even
lead to disordered ‘orbital liquid’ states. Fluctuations
are also expected to lift the degeneracy between p,- and
py orbitals at J3 = 0, and possibly lead to spontaneous
TRS breaking. Moreover, phase By may have interest-
ing topological properties. For example, at an interface
of two domains with p, + ip, and p, — ip, order, chi-
ral zero mode fermions may arise. Finally, other lattices
and the limit of small interactions, where related models
show non-trivial color-superfluidity [17, 18, 21|, are also
interesting.
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