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Classical theory of cylindrical nonlinear optics: Sum and difference frequency generation

Hao Xiong,∗ Liu-Gang Si,† Chun-Ling Ding, Xiaoxue Yang, and Ying Wu
Wuhan National Laboratory for Optoelectronics and School of Physics,

Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

The process of two input electromagnetic waves at different frequencies overlap in a nonlinear medium is
a typical phenomenon of nonlinear optics. The traditional method of dealing with such problem is utilizing
coupled wave equations. In this paper, sum and difference frequency generation of cylindrical electromagnetic
waves in a nonlinear medium has been investigated in a new way. We use exact solutions of Maxwell equations
to describe the propagation of cylindrical electromagnetic waves in a nonlinear medium and show that sum
and difference frequency generation comes out quite naturally fromsuch exact solutions. For comparison, the
traditional method of utilizing coupled wave equations is also discussed, and we find that the results obtained
from two different approaches are consistent with each other.

PACS numbers: 42.65.Ky, 03.50.De, 41.20.Jb

I. INTRODUCTION

Sum frequency generation (SFG) and difference frequency
generation (DFG) are second-order nonlinear optical pro-
cesses in which two input electromagnetic waves with differ-
ent frequencies overlap in a nonlinear medium and generate
an output wave at the sum or difference frequency of those
of the applied fields[1–4]. As typical phenomena in nonlin-
ear optics, SFG and DFG in a nonlinear medium have been
widely studied and used in various fields. For example, the
generation of tunable optical radiation typically relies on non-
linear frequency conversion in nonlinear medium [5–7], and
as a noninvasive and noncontact probe of the electronic and
structural properties, SFG has been frequently used in chem-
istry [8, 9], biochemistry [10, 11] and biophysical [12, 13].
On the subject of SFG and DFG, plane waves are always con-
sidered in most works. Features of SFG and DFG with cylin-
drical or spherical waves, however, remain poorly studied.In
this paper, we will investigate SFG and DFG of cylindrical
electromagnetic waves in a nonlinear medium.

Our motivations are twofold. Firstly, the previous study
[14] on cylindrical nonlinear optics shows that the exact solu-
tion obtained in reference [15] can be used to describe second-
harmonic generation well, while we want to go one step fur-
ther here by extending the method to deal with other phenom-
ena like SFG and DFG. Similarly to second-harmonic gener-
ation, SFG and DFG also come from the secondary nonlinear
polarization of a nonlinear medium. Secondly, previous stud-
ies [14–17] of the exact solution usually focus on single elec-
tromagnetic wave propagation in a nonlinear medium. How-
ever, for the case of two or more waves existing in the nonlin-
ear medium simultaneously, there are few effective methods to
deal with it. Superposition of all the descriptions of the waves
separately propagation in the nonlinear medium not leads the
answer. The nonlinearity of the medium will cause interac-
tions between cylindrical electromagnetic waves, which are
traditionally described by a set of coupled wave equations.So
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it is interesting to give a method to extend the exact solution
to deal with problems of interactions between the cylindrical
electromagnetic waves.

There are some highlights in our work. For example, we
give an effective method to deal with problems of interactions
between the cylindrical electromagnetic waves, and we give
an explicit analytical expression which contains all the main
nonlinear optical effects. To the best of our knowledge, such
expression is the first explicit analytical expression which con-
tains all the main nonlinear optical effects. The traditional
method describing nonlinear optical effects is the coupled-
wave equation approach which can be solved only numer-
ically in the cylindrical geometry. On the other hand, the
present work gives a verification of previous work [14], which
put forward some approximations to deal with SHG. However,
it needs to verify that are these approximations applicative in
other cases? The present work shows that these approxima-
tions are applicative at least in the case of discussing SFG and
DFG.

In this article, we will employ two different methods to in-
vestigate SFG and DFG of cylindrical electromagnetic waves
in a nonlinear nondispersive medium. Firstly, following the
method proposed in reference [15] for constructing exact ax-
isymmetric solutions of Maxwell equations in a nonlinear
nondispersive medium and the method proposed in reference
[14] for describing second-harmonic generation by the exact
solutions, we will demonstrate that this exact axisymmetric
solution, which has been successfully used to discuss electro-
magnetic shock waves [15] and second-harmonic generation
[14], can also be used to describe SFG and DFG. This will be
discussed in detail in Sec. II. Secondly, to verify effective-
ness of the new method, we will use coupled wave equations,
which are derived in reference [14] from imitating plane non-
linear optics and describing the interaction between cylindri-
cal electromagnetic waves and a nonlinear medium, to study
SFG and DFG of cylindrical electromagnetic waves. This will
be discussed in detail in Sec. III. At last, we end our paper
with a short summary in Sec. IV.
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II. ANALYSIS OF SFG AND DFG BY USING EXACT
SOLUTION

A. analysis with simple approximation

At the beginning, we shall introduce the physical model we
will discuss in this work. Considering the medium possesses
an axis of symmetry and taken as thez axis of a cylindrical
coordinate system (r, φ, z), we use the axisymmetric model in
which the fields are independent ofφ andz, then the Maxwell
equations can be written as follows [15]:

∂H
∂r
+

H
r
= ε(E)

∂E
∂t
,

∂E
∂r
= µ0
∂H
∂t
, (1)

where H ≡ Hφ(r, t), E ≡ Ez(r, t), ε(E) = dD/dE =

ǫ0ε1 exp(αE), with ε1 and α are certain constants. Thus
P = D0 + ǫ0(ε1 − 1)E + ǫ0ε1αE2/2+ · · · , andχ(2)

= ε1α/2.
Exact solution of such system can be written as [15]:

E = E(ρeαE/2, τ +
Z0αρH

2
√
ε1

),

H =

√
ε1eαE/2

Z0
H(ρeαE/2, τ +

Z0αρH

2
√
ε1

), (2)

whereE(ρ, τ) andH(ρ, τ) represent the solution of linear
problem (1) withα = 0, ρ = r/a, τ = t/(

√
ǫ0ε1µ0a),

Z0 =
√

µ0/ǫ0 anda is a constant with the dimension of length.
Now we will use Eq. (2) to derive exact solution of two

cylindrical electromagnetic waves propagation in an infinite
nonlinear medium. The solution of single cylindrical wave
propagation in an infinite and linear medium is:E(r, t) =
ζJ0(kr) cos̟t andH(r, t) = −ζJ1(kr) sin̟t. Here Jm is a
Bessel function of the first kind of orderm, ζ is a constant and
k = ̟

√
ǫ0ε1µ0. For linear medium, superposition principle is

always applicable. The exact solution can be easily extended
to describe two cylindrical waves with frequencies̟1 and̟2

propagation in the linear medium:

E(r, t) = ζ1J0(k1r) cos̟1t + ζ2J0(k2r) cos̟2t,

H(r, t) = −ζ1J1(k1r) sin̟1t − ζ2J1(k2r) sin̟2t. (3)

Rewriting it in variable (ρ, τ), the solution becomes:

E(ρ, τ) = ζ1J0(k1ρa) cos(̟ 1τ
√
ǫ0ε1µ0a)

+ζ2J0(k2ρa) cos(̟ 2τ
√
ǫ0ε1µ0a),

H(ρ, τ) = −ζ1J1(k1ρa) sin(̟ 1τ
√
ǫ0ε1µ0a)

−ζ2J1(k2ρa) sin(̟ 2τ
√
ǫ0ε1µ0a). (4)

By using Eq. (2) we can obtain the solution of nonlinear prob-
lem:

E = ζ1J0(k1reαE/2) cos(̟ 1t + αµ0̟1rH/2)

+ζ2J0(k2reαE/2) cos(̟ 2t + αµ0̟2rH/2), (5)

H = −
√
ε1eαE/2

Z0

(

ζ1J1(k1reαE/2) sin(̟ 1t + αµ0̟1rH/2)

−ζ2J1(k2reαE/2) sin(̟ 2t + αµ0̟2rH/2)
)

. (6)
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FIG. 1: (Color online) (a) Calculation result of oscillograms of
two cylindrical electromagnetic waves propagation in an infinite lin-
ear medium by using exact solution (5,6) withα = 0. We use
ζ1 = ζ2 = 1, r = 0.7 µm, ̟1 = 6 × 108 MHz, ̟2 = 8 × 108

MHz andZ1 =
√

µ0/(ǫ0ε1). (b) Calculation result of oscillograms
of two cylindrical electromagnetic waves propagation in aninfinite
nonlinear medium by using exact solution (5,6) withα = 0.3. Other
parameters remain the same as Fig. 1(a). (c) Frequency spectrum of
the electric field when two cylindrical electromagnetic waves prop-
agation in an infinite linear medium. The calculation resultis based
on Fig. 1(a). (d) Frequency spectrum of the electric field when two
cylindrical electromagnetic waves propagation in an infinite linear
medium. The calculation result is based on Fig. 1(b).

This solution describes two cylindrical electromagnetic
waves propagation in a nonlinear medium and one can ob-
tain the full information ofE andH varies withr andt from
it. For example, if we observeE at r = 0, we can get:

E = ζ1 cos(̟ 1t) + ζ2 cos(̟ 2t). (7)

The exact solution (5,6) shows that the electric field and mag-
netic field of the cylindrical electromagnetic waves in a non-
linear medium are not separate, but coupling with each other
by nonlinear coefficientα. Such coupling effect will change
the frequency spectrums. Figure 1 shows the differences of
frequency characteristics of two cylindrical electromagnetic
waves propagation in an infinite linear and nonlinear medium.
When two cylindrical electromagnetic waves with frequen-
cies̟1 and̟2 propagate in the linear medium, the frequency
spectrum of the electric field only have the two base frequen-
cies̟1 and̟2, which is shown in Fig. 1(c). However, when
two cylindrical electromagnetic waves propagate in the non-
linear medium, as shown in Fig. 1(d), the frequency spectrum
of the electric field contains not only two base frequencies̟1

and̟2, but also other frequencies, such as 2̟1, 2̟2,̟1+̟2

and̟1−̟2. The calculations are based on the exact solution
(5,6). It implies that the exact solution may be used to deal
with problems of SFG and DFG. Reference [14] has proposed
a method to derive second-harmonic generation from Eq. (2).
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Here we want to go one step further by extending the method
to deal with problems of SFG and DFG.

Similar to reference [14], we begin our discussion by using
the approximationαµ0̟rH ≪ 1 and exp(αE/2) ≈ 1, and
writing the magnitude of the magnetic field as:

H ≈ γ1 sin̟1t + γ2 sin̟2t, (8)

whereγi = −ζi
√
ε1J1(kir)/Z0, i = 1, 2. Substitution Eq. (8)

into Eq. (5) leads

E ≈ ζ1J0(k1r) cos(̟ 1t + x11 sin̟1t + x12 sin̟2t)

+ζ2J0(k2r) cos(̟ 2t + x21 sin̟1t + x22 sin̟2t), (9)

wherexi j = αµ0r̟iγ j/2 = −αrkiζ jJ1(k jr)/2, i, j = 1, 2. Us-
ing αµ0̟rH ≪ 1, viz. xi j ≪ 1, cos(xi j sin̟it) ≈ 1, and
sin(xi j sin̟it) ≈ xi j sin̟it, we can simplify Eq. (9) as fol-
lows:

E ≈ − x11ζ1J0(k1r) + x22ζ2J0(k2r)
2

︸                                ︷︷                                ︸

optical rectification

+ ζ1J0(k1r) cos̟1t
︸               ︷︷               ︸

base frequency of̟ 1

+ ζ2J0(k2r) cos̟2t
︸               ︷︷               ︸

base frequency of̟ 2

+
x11ζ1J0(k1r)

2
cos 2̟ 1t

︸                      ︷︷                      ︸

second-harmonic of̟ 1

+
x22ζ2J0(k2r)

2
cos 2̟ 2t

︸                      ︷︷                      ︸

second-harmonic of̟ 2

+
x12ζ1J0(k1r) + x21ζ2J0(k2r)

2

(

cos(̟ 1 +̟2)t
︸            ︷︷            ︸

sum frequency

− cos(̟ 1 −̟2)t
︸            ︷︷            ︸

difference frequency

)

. (10)

It implies that if two waves with frequencies̟1 and̟2 prop-
agate in the nonlinear medium, there are respective second-
harmonic, sum frequency and difference frequency genera-
tion. Second-harmonics of̟ 1 and̟2 have been studied in
reference [14] and in this article we are interested in the term
of SFG and DFG.

Equation (10) shows that sum and difference frequencies
have the same amplitude but inverse direction of vibration.
The amplitude of sum or difference frequencyAsum can be
easily obtained as:

Asum =
x12ζ1J0(k1r) + x21ζ2J0(k2r)

2

=
αζ1ζ2

4

(

k1rJ0(k1r)J1(k2r) + k2rJ0(k2r)J1(k1r)
)

. (11)

Defining η1 as the ratio between amplitudes of the sum fre-
quency̟1 + ̟2 and the base frequency̟1 and η2 as the
ratio between amplitudes of the difference frequency̟ 1−̟2

and the base frequency̟1 in frequency spectrogram, we then
haveη1 = η2 and

η1 =
αζ2

4

(

k1rJ1(k2r) + k2rJ0(k2r)J1(k1r)/J0(k1r)
)

. (12)

Consideringζ1 = 0 or ζ2 = 0, viz. only one wave propagating
in the nonlinear medium, equation (11) indicates that there
is no sum and difference frequency. Simultaneously, equation
(10) degenerates into the case of second-harmonic generation,
which is the same as prevenient results [14].

B. analysis with improved approximation

As an approximate solution, equation (10) has shown most
of the nonlinear optical phenomena, however, still need to be
improved. There are several reasons. First, the amplitudesof
SFG and DFG obtained by Eq. (10) are not in good agreement
with exact solution (5,6). Figure 2(a) shows the efficiencies
of generation of sum frequency (η1) and difference frequency
(η2) with differentr which ranges from 0 to 2. There are many
differences between curves of using exact solution (5,6) and
curves of using approximate solution Eq. (10). Second, equa-
tion (10) shows that the sum and difference frequency have the
same amplitude, which turn out to be imprecise. Figure 2(a)
shows that there are many differences between the amplitudes
of the sum and difference frequency. Thus, the approximate
solution Eq. (10) is not a very good approximation to de-
scribe SFG and DFG and some of the approximations, which
are used to deduce the approximate solution Eq. (10), need to
be improved.

Using numerical simulation we verify that Eq. (8) is a good
approximation and the errors of Eq. (10) mainly arise from
the approximation exp(αE/2) ≈ 1, precisely,J0(kreαE/2) ≈
J0(kr). Such case also exists in the study of second-harmonic
generation. Reference [14] introduces a correction factorto
describe the feature of second-harmonic generation more pre-
cisely and gives an advanced approximation to show the origin
of the correction factor. In what follows we will use the im-
proved approximation proposed in reference [14] to replace
the approximationJ0(kreαE/2) ≈ J0(kr) and show that the im-
proved approximation can also be used to deal with the prob-
lem of SFG and DFG.

Now we turn to deal with the problem of sum and difference
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FIG. 2: (Color online) Comparison diagram of using exact solution
and two approximate solutions. We useα = 0.3, ζ1 = ζ2 = 1,
̟1 = 6× 108 MHz and̟2 = 8× 108 MHz. (a) Calculation result of
η1 andη2 by using exact solution (5,6) and approximate solution Eq.
(10). (b) Calculation result ofη1 andη2 by using exact solution (5,6)
and approximate solution Eq. (17).

frequency by using Eq. (8) and the new approximation

J0(kreαE/2) ≈ J0(kr)
(

1− αEkrJ1(kr)
2J0(kr)

)

. (13)

Substitution Eq. (13) into Eq. (5) leads:

E = ζ1J0(k1r)
(

1− αEk1rJ1(k1r)
2J0(k1r)

)

× cos(̟ 1t + x11 sin̟1t + x12 sin̟2t)

+ζ2J0(k2r)
(

1− αEk2rJ1(k2r)
2J0(k2r)

)

× cos(̟ 2t + x21 sin̟1t + x22 sin̟2t). (14)

We also can write Eq. (14) as the form ofE ≈ E0 + Ec,
whereE0 is the previous approximate solution Eq. (10) and
Ec is a correction term. Here we focus onEc, especially the
correction factor of SFG and DFG. From Eq. (14) we can
obtainEc as:

Ec = x11E cos(̟ 1t + x11 sin̟1t + x12 sin̟2t)

+x22E cos(̟ 2t + x21 sin̟1t + x22 sin̟2t). (15)

SubstitutionE = E0 into Ec and ignoring higher harmonics,
we have:

Ec =
x11A1 + x22A2

2
+ x11A0 cos̟1t + x22A0 cos̟2t

+
x11A1

2
cos 2̟ 1t +

x22A2

2
cos 2̟ 2t +

x11A2 + x22A1

2

×
(

cos(̟ 1 +̟2)t + cos(̟ 1 −̟2)t
)

, (16)

whereA0 = −(x11ζ1J0(k1r) + x22ζ2J0(k2r))/2, A1 = ζ1J0(k1r)
andA2 = ζ2J0(k2r). E ≈ E0 + Ec leads a new approximate
solution of the exact solution Eq. (5):

E ≈ (A1 + x11A0) cos̟1t
︸                    ︷︷                    ︸

base frequency of̟ 1

+ (A2 + x22A0) cos̟2t
︸                    ︷︷                    ︸

base frequency of̟ 2

+ x11A1 cos 2̟ 1t
︸            ︷︷            ︸

second-harmonic of̟ 1

+ x22A2 cos 2̟ 2t
︸            ︷︷            ︸

second-harmonic of̟ 2

+
x11A2 + x22A1 + x12A1 + x21A2

2
cos(̟ 1 +̟2)t

︸                                                        ︷︷                                                        ︸

sum frequency

+
x11A2 + x22A1 − x12A1 − x21A2

2
cos(̟ 1 −̟2)t

︸                                                        ︷︷                                                        ︸

difference frequency

. (17)

This approximate solution is better than Eq. (10) and two
disadvantages, which are mentioned at the beginning of this
section, have eliminated naturally here. Figure 2(b) shows
the efficiencies of generation of sum frequency (η1) and dif-
ference frequency (η2) with differentr which ranges from 0
to 2. We can find that curves of using exact solution (5,6)
are in good agreement with curves of using approximate so-
lution Eq. (17). Equation (17) shows that sum and difference
frequency have different amplitudes, which can be observed
from Fig. 2(b).

III. ANALYSIS OF SFG AND DFG BY USING COUPLED
WAVE EQUATIONS

In what follows, we will use coupled wave equations of
cylindrical electromagnetic waves interacting with a nonlin-
ear medium, which is a traditional method, to deal with the
problem of SFG and DFG from another perspective. The cou-
pled wave equations have been deduced in reference [14] as
follows:

∂2E(̟i)
∂r2

+
1
r
∂E(̟i)
∂r

+ k2
i E(̟i) = −µ0̟

2
i PNL(̟q = ̟i).

(18)
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PNL is used as secondary nonlinear polarizationP(2) for the
problem of sum and difference frequency:

PNL(̟q = ̟1) = 2ǫ0χ(2)(−̟1, ̟3,−̟2) : E(̟3)E∗(̟2)

= 2ǫ0χ(2)(−̟1, ̟2, ̟4) : E(̟2)E(̟4),

PNL(̟q = ̟2) = 2ǫ0χ(2)(−̟2, ̟1,−̟4) : E(̟1)E∗(̟4)

= 2ǫ0χ(2)(−̟2, ̟3,−̟1) : E(̟3)E∗(̟1),

PNL(̟q = ̟3) = 2ǫ0χ(2)(−̟3, ̟1, ̟2) : E(̟1)E(̟2),

PNL(̟q = ̟4) = 2ǫ0χ(2)(−̟4, ̟1,−̟2) : E(̟1)E∗(̟2),
(19)

where̟3 = ̟1 + ̟2, ̟4 = ̟1 − ̟2. Substitution of
Eqs. (19) into Eq. (18) leads to two sets of coupling equa-
tions: one describes the coupling betweenE(̟1), E(̟2) and
E(̟1+̟2), hereafter we call it sum frequency coupling equa-
tions; the other describes the coupling betweenE(̟1), E(̟2)
andE(̟1−̟2) which is called difference frequency coupling
equations. The sum frequency coupling equations can be ob-
tained as:

∂2E(̟1)
∂r2

+
1
r
∂E(̟1)
∂r

+ k2
1E(̟1) = −2K1E(̟3)E∗(̟2),

∂2E(̟2)
∂r2

+
1
r
∂E(̟2)
∂r

+ k2
2E(̟2) = −2K2E∗(̟1)E(̟3),

∂2E(̟3)
∂r2

+
1
r
∂E(̟3)
∂r

+ k2
3E(̟3) = −2K3E(̟1)E(̟2),

(20)

whereK j = ǫ0µ0̟
2
j deff with deff being effective nonlinear

optical coefficient of the nonlinear medium. Below are differ-
ence frequency coupling equations:

∂2E(̟1)
∂r2

+
1
r
∂E(̟1)
∂r

+ k2
1E(̟1) = −2K1E(̟4)E(̟2),

∂2E(̟2)
∂r2

+
1
r
∂E(̟2)
∂r

+ k2
2E(̟2) = −2K2E(̟1)E∗(̟4),

∂2E(̟4)
∂r2

+
1
r
∂E(̟4)
∂r

+ k2
4E(̟4) = −2K4E(̟1)E∗(̟2).

(21)

HereE(̟ j) is a function ofr andt. ConsiderE(̟ j) can be
write asE(̟ j) = A j(r)J0(k jr) exp(−i̟ jt), viz. the amplitude
of the cylindrical electromagnetic waves only varying withr,
then we can obtain:

d2E0(̟1)
dr2

+
1
r

dE0(̟1)
dr

+ k2
1E0(̟1) = −2K1E0(̟3)E∗0(̟2),

d2E0(̟2)
dr2

+
1
r

dE0(̟2)
dr

+ k2
2E0(̟2) = −2K2E∗0(̟1)E0(̟3),

d2E0(̟3)
dr2

+
1
r

dE0(̟3)
dr

+ k2
3E0(̟3) = −2K3E0(̟1)E0(̟2),

(22)

and

d2E0(̟1)
dr2

+
1
r

dE0(̟1)
dr

+ k2
1E0(̟1) = −2K1E0(̟4)E0(̟2),

d2E0(̟2)
dr2

+
1
r

dE0(̟2)
dr

+ k2
2E0(̟2) = −2K2E0(̟1)E∗0(̟4),

d2E0(̟4)
dr2

+
1
r

dE0(̟4)
dr

+ k2
4E0(̟4) = −2K4E0(̟1)E∗0(̟2),

(23)

whereE0(̟ j) = A j(r)J0(k jr). Equation (22) describes the
process of sum frequency while Eq. (23) describes the process
of difference frequency.
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FIG. 3: (Color online) Calculation results of sum frequencyand
difference frequency generation by using coupled wave equations
and exact solution. We usedeff = 0.15, α = 0.3, ζ1 = ζ2 = 1,
̟1 = 6 × 108 MHz and̟2 = 8 × 108 MHz. (a) The figure shows
E0(̟1), E0(̟2) andE0(̟1 + ̟2) (above) andE0(̟1), E0(̟2) and
E0(̟1 − ̟2) (below) as functions ofr. The results are obtained by
using coupled wave equations. (b) Efficiencies of generation of sum
frequency (η1) and difference frequency (η2) with differentr which
ranges from 0 to 2µm. The results are obtained by two methods: one
is using coupled wave equations (solid curves) and the otheris using
exact solution (dashed curves).

Figure 3 shows calculation results of SFG and DFG by us-
ing coupled wave equations (22) and (23) and exact solution
(5,6). The relation betweendeff andα is deff = α/2, which
has been obtained in previous work [14]. We usedeff = 0.15,
α = 0.3, ζ1 = ζ2 = 1,̟1 = 6 × 108 MHz and̟2 = 8× 108

MHz. Figure 3(a) showsE0(̟1), E0(̟2) andE0(̟1 + ̟2)
(above) andE0(̟1), E0(̟2) and E0(̟1 − ̟2) (below) as
functions ofr. It is obvious in Fig. 3(a) that the amplitude
of sum frequency is very different from difference frequency.
In the present case, the amplitude of sum frequency is much
large than the amplitude of difference frequency. Figure 3(b)
shows calculation results of efficiencies of generation of sum
frequency (η1) and difference frequency (η2). From Fig. 3(b)
we can find that descriptions of SFG and DFG by coupled
wave equations are in good agreement with exact solution.



6

An important issue with SFG and DFG is that of phase-
matching. In the present work, there is no discussion of phase-
matching is because phase-matching of cylindrical nonlinear
optics requires that the medium is inhomogeneous or disper-
sive. For more details one can see reference [14]. Here we
focus on the propagation of cylindrical electromagnetic waves
in a nonlinear and homogeneous medium, which the exact so-
lutions have been obtained. And we find that the SFG and
DFG come out quite naturally from such exact solution and
the results obtained from exact solution are consistent with
the results calculated by using coupled wave equations.

IV. CONCLUSION

In conclusion, we have used two methods to deal with
the problem of cylindrical sum frequency and difference fre-
quency generation. One method is using the exact solution
obtained recently. We have found a simple method to deduce
sum frequency and difference frequency generation from this
exact solution. The other method is using traditional coupled
wave equations. We have set up coupled wave equations of
cylindrical electromagnetic waves interacting with nonlinear
medium to describe sum frequency and difference frequency

generation. Using the coupled wave equations we have an-
alyzed features of cylindrical sum frequency and difference
frequency generation, and found that the results are in good
agreement with which are obtained by using the exact solu-
tion. Our results show that both methods are useful in dealing
with the problem of cylindrical sum frequency and difference
frequency generation and both have advantages in some as-
pects.
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