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The process of two input electromagnetic waves fiedént frequencies overlap in a nonlinear medium is
a typical phenomenon of nonlinear optics. The traditionathnd of dealing with such problem is utilizing
coupled wave equations. In this paper, sum afiiédince frequency generation of cylindrical electromagnet
waves in a nonlinear medium has been investigated in a newWayse exact solutions of Maxwell equations
to describe the propagation of cylindrical electromagnetaves in a nonlinear medium and show that sum
and diference frequency generation comes out quite naturally fnach exact solutions. For comparison, the
traditional method of utilizing coupled wave equationslsoadiscussed, and we find that the results obtained
from two different approaches are consistent with each other.

PACS numbers: 42.65.Ky, 03.50.De, 41.20.Jb

I. INTRODUCTION it is interesting to give a method to extend the exact satutio
to deal with problems of interactions between the cylinalric

Sum frequency generation (SFG) anéfetience frequency €/€ctromagnetic waves.

generation (DFG) are second-order nonlinear optical pro-

cesses in which two input electromagnetic waves witfedi o )

ent frequencies overlap in a nonlinear medium and generate There are some highlights in our work. For example, we
an output wave at the sum orfiirence frequency of those 9ive an éfective method to deal with prqblems of interactions
of the applied fields[1-4]. As typical phenomena in nonlin-Petween the cylindrical electromagnetic waves, and we give
ear optics, SFG and DFG in a nonlinear medium have beefin e_pr|C|t an_alytlcal expression which contains all thédma
widely studied and used in various fields. For example, théonlinear optical fiects. To the best of our knowledge, such
generation of tunable optical radiation typically religsrmn- ~ €Xpression s the first explicit analytical expression wtton-
linear frequency conversion in nonlinear medium [5-7], and@ins all the main nonlinear opticaffects. The traditional

as a noninvasive and noncontact probe of the electronic anf@#éthod describing nonlinear opticaffects is the coupled-
structural properties, SFG has been frequently used in cheri/@ve equation approach which can be solved only numer-
istry [8, 9], biochemistry [10, 11] and biophysical [12, 13] ically in the cylmdncal geometry. On_the other hand, @he
On the subject of SFG and DFG, plane waves are always co/€sent work gives a verification of previous work [14], whic
sidered in most works. Features of SFG and DFG with cylinPut forward some approximations to deal with SHG. However,
drical or spherical waves, however, remain poorly studiad. it needs to verify that are these approximations applieativ

this paper, we will investigate SFG and DFG of cylindrical Other cases? The present work shows that these approxima-
electromagnetic waves in a nonlinear medium. tions are applicative at least in the case of discussing G a

Our motivations are twofold. Firstly, the previous study DFG.

[14] on cylindrical nonlinear optics shows that the exadtiso

tion obtained in reference [15] can be used to describe skcon . . . ]
harmonic generation well, while we want to go one step fur- In this article, we will employ two dferent methods to in-
ther here by extending the method to deal with other phenom(estigate SFG and DFG of cylindrical electromagnetic waves
ena like SFG and DFG. Similarly to second-harmonic generin @ nonlinear nondispersive medium. Firstly, followingth
ation, SFG and DFG also come from the secondary nonlinedpethod proposed in reference [15] for constructing exact ax
polarization of a nonlinear medium. Secondly, previouglstu 1Symmetric solutions of Maxwell equations in a nonlinear
ies [14—17] of the exact solution usually focus on singleele Nondispersive medium and the method proposed in reference
tromagnetic wave propagation in a nonlinear medium. How{14] for describing second-harmonic generation by the exac
ever, for the case of two or more waves existing in the nonlinSolutions, we will demonstrate that this exact axisymnoetri
ear medium simultaneously, there are fefieetive methods to solut|on_, which has been successfully used to dls_cussreﬂect_
deal with it. Superposition of all the descriptions of theres ~ Magnetic shock waves [15] and second-harmonic generation
separately propagation in the nonlinear medium not leagls th14], can also be used to describe SFG and DFG. This will be
answer. The nonlinearity of the medium will cause interac-discussed in detail in Sec. . Secondly, to verifjeetive-
tions between cylindrical electromagnetic waves, whiah ar Ness of the new method, we will use coupled wave equations,

traditionally described by a set of coupled wave equatiios. which are derived in reference [14] from imitating plane non
linear optics and describing the interaction between dyiin

cal electromagnetic waves and a nonlinear medium, to study

SFG and DFG of cylindrical electromagnetic waves. This will
*Electronic addressaoxiong1217@gmail . com be discussed in detail in Sec. Ill. At last, we end our paper
TElectronic addresssiliugang@gmail.com with a short summary in Sec. IV.



1. ANALYSISOF SFG AND DFG BY USING EXACT
SOLUTION

A. analysiswith simple approximation

At the beginning, we shall introduce the physical model we
will discuss in this work. Considering the medium possesse
an axis of symmetry and taken as thaxis of a cylindrical K
coordinate systent (¢, 2), we use the axisymmetric model in
which the fields are independent®fndz, then the Maxwell

100 3 50 100

equations can be written as follows [15]: 600
oH H oE oE oH 400
-+ — = E —, - = —_—, 1 - W,
a T B ar ~H%t @ " :
1
whereH = Hy(r.t), E = E/r.t), ¢E) = dD/dE = 1w1+wjfz
€e1 €XpEE), with ¢ and « are certain constants. Thus % p 5 3 * 2' 5
P = Do+ e(e1 — 1)E + Eogla'EZ/Z 4o, andX(z) = g1a/2. frequency (MHz) y 10? frequency (MHz) , 1¢®
Exact solution of such system can be written as [15]:
E - ET2 ZoapH FIG. 1; (C_:olor online) (a) C_:alculation result _of qscil_lo_gna_ of
= &lp , T+ PN ), two cylindrical electromagnetic waves propagation in dmite lin-
£ VeL ear medium by using exact solution (5,6) with= 0. We use
\Ere” /2 ZoapH H=086=1r1=07um @ = 6x 10 MHz, w, = 8 x 108
H = H (o€ 20+ )2 ) MHz andZ; = +/uo/(e0e1). (b) Calculation result of oscillograms
Z 21

of two cylindrical electromagnetic waves propagation inirg#imite

problem (1) withe = 0, p = r/a, t = t/(~/@oewiod), parameters remain the same as Fig. 1(a). (c) Frequencyspect

. . . ) the electric field when two cylindrical electromagnetic ws\prop-
Zp = o/ € andais a constant with the dimension of length. ;g ation in an infinite linear medium. The calculation resibased

Now we will use Eq. (2) to derive exact solution of tWo on Fig. 1(a). (d) Frequency spectrum of the electric field mviveo
cylindrical electromagnetic waves propagation in an itdini cylindrical electromagnetic waves propagation in an itditinear
nonlinear medium. The solution of single cylindrical wave medium. The calculation result is based on Fig. 1(b).
propagation in an infinite and linear medium i&(r,t) =
Jo(kr) coswt and H(r,t) = —¢Jdi(kr) sinwt. HereJy is a
Bessel function of the first kind of orden, ¢ is a constantand ~ This solution describes two cylindrical electromagnetic
k = @ +/éoe1io0. For linear medium, superposition principle is waves propagation in a nonlinear medium and one can ob-
always applicable. The exact solution can be easily exténdetain the full information ofe andH varies withr andt from
to describe two cylindrical waves with frequenciesandw, it. For example, if we observg atr = 0, we can get:

propagation in the linear medium:
E = {1 cos@t) + {2 cos(@at). (7)

The exact solution (5,6) shows that the electric field and-mag
netic field of the cylindrical electromagnetic waves in a hon

&(r, 1) = £1Jo(kar) coswit + £2Jo(Kor) coswat,
ﬂ(r, t) = —{1J1(k1r) Sinwlt — {ng(kgr) Sinw’zt. (3)

Rewriting it in variable p, 7), the solution becomes: linear medium are not separate, but coupling with each other
by nonlinear cofficienta. Such coupling ffect will change
E(p,7) = (1Jo(kyod) COSEo1T \€oE110d) the frequency spectrums. Figure 1 shows théedénces of
+£2Jo(kop@) COS@ 2T \ere1iiod), frequency characteristics of two cylindrical electrometim

_ . waves propagation in an infinite linear and nonlinear medium

Hlp.1) = ~G1di(kepd) S!n(wlT Veo£1403) When two cylindrical electromagnetic waves with frequen-
—(231(k2p@) SiN(@2T Veo£140). (4)  ciesw, andw, propagate in the linear medium, the frequency

spectrum of the electric field only have the two base frequen-

By using Eq. (2) we can obtain the solution of nonlinear prOb'cieSzul anda,, which is shown in Fig. 1(c). However, when

lem: two cylindrical electromagnetic waves propagate in the-non
E = &Hdo(kire™®2) cosit + apomirH/2) linear medigm,_ as shown in Fig. 1(d), the frequency spectrum
T(kor €S2 ¢ H/2 5 of the electric field contains not only two base frequenciges
+230( ZEr/Z ) cos@at + apowarH/2), (5)  andw,, but also other frequencies, such a822w,, @1 +w>
_ Nae E/2\ o andwi — @w>. The calculations are based on the exact solution
H = - Zo (gl‘ll(klrea ) sin(@1t + apomwrH/2) (5,6). It implies that the exact solution may be used to deal

E/2y o with problems of SFG and DFG. Reference [14] has proposed
—{2J1(kor € sin(wat + aﬂoerH/z))- (6)  amethod to derive second-harmonic generation from Eg. (2).
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Here we want to go one step further by extending the methodherex;; = auorwiy;/2 = —arki;jJi(kjr)/2,i, j = 1,2. Us-

to deal with problems of SFG and DFG. ing apowrH < 1, viz. x; < 1, coskijsinwit) = 1, and
Similar to reference [14], we begin our discussion by usingsin(x;; sinwit) = x;; sinw;t, we can simplify Eq. (9) as fol-

the approximationyugwrH < 1 and exp¢E/2) ~ 1, and  lows:

writing the magnitude of the magnetic field as:

H =~ y1 sinwit + v, Sinwat, (8)

wherey; = —¢ive1di(kir)/Zo,i = 1,2. Substitution Eq. (8)
into Eq. (5) leads

E = {1Jo(k1r) COS(ID’lt + X11 sinwlt + X12 Sinwgt)
+§2J0(k2r) COS@D’gt + Xo1 sinwlt + X22 Sinw'zt), (9)

X11£1Jo(Kar) + Xoo2Jo(Kor X11£1Jo(Kar
E~ - 1é1Jo(kar) 5 eadodolker) + {1do(kir) cosmt + {2 Jo(Kor) cosmot + Xufrhilar) 20( 1) COS 2wt
optical rectification base frequency afr; base frequency af, second-harmonic afry
X222 Jo(Kor X181 Jo(Kar) + Xo142Jo(Kor
N 2202 20( or) COS 2ot + 12{1Jo(K1r) _ 2102Jo(k2 )(Cos(w1+w2)t—cosén1 —wz)t). (10)
second-harmonic ab sum frequency difference frequency
It implies that if two waves with frequencies; andw, prop- B. analysiswith improved approximation

agate in the nonlinear medium, there are respective second-

harmonic, sum frequency andfi@irence frequency genera-  as an approximate solution, equation (10) has shown most
tion. Second-harmonics af; andw, have been studied in  of the nonlinear optical phenomena, however, still needeto b
reference [14] and in this article we are interested in thate improved. There are several reasons. First, the amplitoiles
of SFG and DFG. SFG and DFG obtained by Eq. (10) are not in good agreement
Equation (10) shows that sum andfdience frequencies Wwith exact solution (5,6). Figure 2(a) shows thaencies
have the same amplitude but inverse direction of vibrationof generation of sum frequency,) and diference frequency
The amplitude of sum or fierence frequencpsym can be  (772) with differentr which ranges from 0 to 2. There are many
easily obtained as: differences between curves of using exact solution (5,6) and
curves of using approximate solution Eqg. (10). Second, equa
Xt 1do(ker) + X122 Jo(Kar) tion (10) shpws thatt_he sum and’fé’renc_e frequ_ency have the
Asum = 2100 216270072 same amplitude, which turn out to be imprecise. Figure 2(a)
2 shows that there are manyfidgirences between the amplitudes
@(klrJo(klr)Jl(kzr) + kero(kzr)Jl(klr)). (11)  of the sum and dierence frequency. Thus, the approximate
4 solution Eqg. (10) is not a very good approximation to de-
scribe SFG and DFG and some of the approximations, which

Definingn; as the ratio between amplitudes of the sum fre-are used to deduce the approximate solution Eg. (10), need to

quencyw; + @» and the base frequeney; andrn, as the beimproved.

ratio between amplitudes of thefifirence frequency, — w» Using numerical simulation we verify that Eq_. (8) i§ a good
and the base frequeney, in frequency spectrogram, we then approximation and the errors of Eq. (10) mainly arise from
haven; = 1, and the approximation expE/2) ~ 1, precisely,Jo(kret/?) ~

Jo(kr). Such case also exists in the study of second-harmonic

generation. Reference [14] introduces a correction factor
m o= “_Q(klrJl(kzr) + kzrJo(kzr)Jl(klr)/Jo(klr)). (12)  describe the feature of second-harmonic generation mere pr
4 cisely and gives an advanced approximation to show therorigi

of the correction factor. In what follows we will use the im-
Considering1 = 0 or, = 0, viz. only one wave propagating proved approximation proposed in reference [14] to replace
in the nonlinear medium, equation (11) indicates that therg¢he approximatiory(kre*t/?) ~ Jo(kr) and show that the im-
is no sum and dierence frequency. Simultaneously, equationproved approximation can also be used to deal with the prob-

(10) degenerates into the case of second-harmonic gesrerati lem of SFG and DFG.

which is the same as prevenient results [14]. Now we turn to deal with the problem of sum andfeience



(b) Substitution Eq. (13) into Eq. (5) leads:
1
— exact pdlution
. _ EkyrJi(ker)
0.8 ----approkifnate solution E = J k r (1_ a 171\ )
06 £1dollar) 2Jo(Kar)
= 04 X COS(@1t + X11 Sinwt + X2 Sinwt)
. aEkzI’Jl(kzl')
02 Jo(kor (1 - 7)
0 +42Jo(kzr) 23o(kar)
0 1 2 X COS(@ot + Xo1 SiNwit + X2 SiNwot). (24)
1 We also can write Eq. (14) as the form Bf ~ Eg + Eg,
08 whereEy is the previous approximate solution Eq. (10) and
06 E. is a correction term. Here we focus &g, especially the
' correction factor of SFG and DFG. From Eq. (14) we can
04 obtainE. as:
0.2
o Ec. = xpuEcos@it + Xg1Sinw it + X2 Sinw,t)

1 . .
1 (1 m) +X22E COS(wat + X1 Sinwt + Xg2 Sinwot). (15)

SubstitutionE = Eg into E; and ignoring higher harmonics,
FIG. 2: (Color online) Comparison diagram of using exact8oh e have:

and two approximate solutions. We uge= 0.3, 4 = & = 1,
@y = 6x 10 MHz andw, = 8 x 10° MHz. (a) Calculation result of X11A1 + Xo2An

n1 andn, by using exact solution (5,6) and approximate solution Eq. Ec = 2 + X110 COSm1L + Xp2A0 COSwt
(10). (b) Calculation result of; andn, by using exact solution (5,6) X1 1A Yoo A X118 + XooAA
and approximate solution Eq. (17). + 222 cos 2o1t + 2222 cos 2ot + %
x(cos(wl + @)t + CcOSfwy — wz)t), (16)
frequency by using Eg. (8) and the new approximation whereAy = —(x1181Jo(Kar) + Xo222Jo(kor))/2, Ar = Z1Jo(Kar)
«Ekr Jy(kr) andA; = HJo(ker). E = Ep + E¢ leads a new approximate
Jo(kre®®?) ~ Jo(kr)(l - 2\]—(;)) (13)  solution of the exact solution Eq. (5):
0

E = (Al + X]_]_Ao) cosw it + (Az + X22A0) COSwt + X11A1 COS 2o1t + XooAp COS 2ot

base frequency ab; base frequency afr, second-harmonic afr;  second-harmonic ab,
X11A2 + X22A1 + X12A1 + X21 A X112 + X22A1 — X12A1 — X21A:
+ 1172 22 12 12A1 21 zcosénl+wz)t+ 1172 22 12 121 21 2COS@1_w2)t. 17)
sum frequency difference frequency
This approximate solution is better than Eg. (10) and two Il1l. ANALYSISOF SFG AND DFG BY USING COUPLED
disadvantages, which are mentioned at the beginning of this WAVE EQUATIONS

section, have eliminated naturally here. Figure 2(b) shows

the dficiencies of generation of sum frequengy)(and dif-

ference frequencyng) with differentr which ranges from 0 In what follows, we will use coupled wave equations of
to 2. We can find that curves of using exact solution (5,6).yjindrical electromagnetic waves interacting with a rionl
are in good agreement with curves of using approximate SQsar medium, which is a traditional method, to deal with the
lution Eq. (17). Equation (17) shows that sum anflledence  proplem of SFG and DFG from another perspective. The cou-

frequency have dierent amplitudes, which can be observedpieq wave equations have been deduced in reference [14] as
from Fig. 2(b). follows:

0%E(w) N EaE(wi)
or2 r or

+ KE(wi) = —pow! PaL(wq = @)
(18)



P is used as secondary nonlinear polarizatf$fi for the
problem of sum and flierence frequency:

Pau(@q = @1) = 26 @ (~w@1, @3, ~@2) : E(w@3)E"(w2)
= 260V (-1, w2, w4) | E(w2)E(wy),

PaL(@q = @2) = 26 @ (~w2, @1, ~@4) | E(@1)E"(wa)
= 260V P (~w2, w3, —w1) | E(w3)E" (@),

Pau(@q = @3) = 26 @ (~w3, @1, @2) 1 E(w1)E(w2),

Pnu(@q = @4) = 260D (~ s, @1, ~@2) : E(@1)E" (@),
(19)

where w3 w1 + wWo, W4 = w1 — Wy Substitution of
Egs. (19) into Eq. (18) leads to two sets of coupling equa:
tions: one describes the coupling betwétar;), E(w>) and
E(w1+w?2), hereafter we call it sum frequency coupling equa-
tions; the other describes the coupling betwEétr1), E(w?)
andE(w — @) which is called diference frequency coupling

equations. The sum frequency coupling equations can be ol
tained as:

°E(w1) 10E(w1) , “(

ar2 o kiE(@1) = ~2KiE(@3)E (@2),
#E(w2) 10E(w2) . *

=7 PR + KSE(@2) = —2K,E*(w1) E(@3),
0°E(ws) 10E(w3)

9 + PR + kgE(we,) = —2Kz:E(@1)E(w2),

(20)

whereK; = Eoyowzdeﬂc with deg being dfective nonlinear
optical codficient of the nonlinear medium. Below arefer-
ence frequency coupling equations:

and

dzior(;ﬂl) %dE(()j(:ﬂl) + K2Eo(w1) = —2K1Eo(w4)Eo(w2).
dzEdor(ZtUZ) . %dEc;(:vz) + KEo(@2) = —2KoEo(w1)El(wa),
dzior(;m) N :FLdE(()j(:m) + KEo(ma) = —2K4Eo(w1)Ef(w2).

(23)

where Eq(wj) = Aj(r)Jo(kjr). Equation (22) describes the
process of sum frequency while Eq. (23) describes the psoces
of difference frequency.
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FIG. 3: (Color online) Calculation results of sum frequeraryd

difference frequency generation by using coupled wave eqsation
and exact solution. We u

=015ae¢ =03, 1 = H =1,

@1 = 6x 10 MHz andw, = 8 x 10° MHz. (a) The figure shows

0°E(w1) | 10E(wm1)  »
- ot kiE(w1) = —2K1E(w4)E(w?),
62E(w2) 1 aE(m’z) %
T KE(w2) = —2K:E(w1)E" (wa),
2
9 ESW') + }6E{gzrn4) + KGE(w4) = —2K4E(w1)E* (w2).

(21)

Here E(wj) is a function ofr andt. ConsiderE(w;) can be
write asE(w@;) = Aj(r)Jo(Kjr) expiw;t), viz. the amplitude
of the cylindrical electromagnetic waves only varying with
then we can obtain:

h

don(‘(Ul) 1 dEo(w1) .
dr2 rdar T kiEo(@1) = ~2K1Eo(@s)Eqg(w2),
d?Eo(w,) . 1dEo(w>) *
5 + F o + k%EO(mz) = —ZKQEO(W]_)EO(WS)’
2
d Edor(;ﬂg) + %dE(Zj(:HS) n k%EO(WS) — _ZKSEO(wl)Eo(Uz),

(22)

Eo(@1), Eo(w2) and Eo(w, + @2) (above) andEy(w1), Eo(w2) and
Eo(w, — w7) (below) as functions of. The results are obtained by
using coupled wave equations. (bifiEiencies of generation of sum
frequency ;) and diference frequencyp§) with differentr which
ranges from 0 to 2zm. The results are obtained by two methods: one
is using coupled wave equations (solid curves) and the aghesing
exact solution (dashed curves).

Figure 3 shows calculation results of SFG and DFG by us-

ing coupled wave equations (22) and (23) and exact solution
(5,6). The relation betweetlyg anda is dgg = @/2, which

as been obtained in previous work [14]. We dgg = 0.15,

a = 0.3,(1 = §2 =1,w = 6 x 10° MHz ande =8x 108
MHz. Figure 3(a) show&o(w1), Eo(w?) and Eg(wy + @?2)
(above) andEy(w1), Eo(wz) and Eo(w1 — @?2) (below) as
functions ofr. It is obvious in Fig. 3(a) that the amplitude
of sum frequency is very fierent from diference frequency.

In the present case, the amplitude of sum frequency is much
large than the amplitude offiierence frequency. Figure 3(b)
shows calculation results officiencies of generation of sum
frequency 4;) and diterence frequencyf). From Fig. 3(b)
we can find that descriptions of SFG and DFG by coupled
wave equations are in good agreement with exact solution.



An important issue with SFG and DFG is that of phase-generation. Using the coupled wave equations we have an-
matching. In the present work, there is no discussion of@has alyzed features of cylindrical sum frequency anffetence
matching is because phase-matching of cylindrical noatine frequency generation, and found that the results are in good
optics requires that the medium is inhomogeneous or dispeegreement with which are obtained by using the exact solu-
sive. For more details one can see reference [14]. Here wion. Our results show that both methods are useful in dgalin
focus on the propagation of cylindrical electromagnetieega  with the problem of cylindrical sum frequency andtfdience
in a nonlinear and homogeneous medium, which the exact sdrequency generation and both have advantages in some as-
lutions have been obtained. And we find that the SFG angbects.

DFG come out quite naturally from such exact solution and
the results obtained from exact solution are consistertt wit

the results calculated by using coupled wave equations.
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