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Recently, waveguide lattices with non-uniform tunneling amplitudes have been explored due to
their myriad tunable properties, many of which arise from the extended nature of their eigenstates
in the absence of disorder. Here, we investigate the dynamics, localization, and parity- and time-
reversal-(PT ) symmetry breaking in lattices that support only localized eigenstates in the disorder-
free limit. We propose three families of tunneling profiles that lead to qualitatively different single-
particle time evolution, and show that the effects of weak disorder contain signatures of the localized
or extended nature of clean-lattice eigenstates. We show that in lattices with localized eigenstates,
the signatures of PT -symmetry breaking are acutely sensitive to the initial form of the wave packet.
Our results suggest that waveguide lattices with localized eigenstates will exhibit a wide array of
phenomena that are absent in traditional systems.

I. INTRODUCTION

Over the past decade single-mode, coupled, optical
waveguides [1] have become a new paradigm for the real-
ization of an ideal, one-dimensional, tight-binding lattice
model [2] with roughly constant tunneling amplitudes
and on-site potentials [3, 5], as well as non-Hermitian
parity- and time-reversal- (PT -) symmetric gain and loss
potentials [6]. The electric field E(k, z) in waveguide
k at a distance z along the waveguide obeys equation
of motion that is identical to that of a time-dependent
wave function ψ(k, t); here k is the lattice-site index and
t = z/v where v = c/nR is the speed of electromagnetic
waves in the waveguide and nR is its refractive index. Op-
tical waveguides have been used to simulate several phe-
nomena such as the Anderson localization [3–5], sponta-
neous PT -symmetry breaking [6], Bloch oscillations [7],
quantum random walks [8, 9], and Hanbury-Brown-Twiss
correlations due to random tunneling and on-site poten-
tial [10]. Most recently, one-dimensional, tight-binding
lattice models with a position-dependent tunneling have
been explored. The energy spectrum, density of states,
and single-particle wave packet evolution in these tunable
waveguides can be varied over a wide range by choos-
ing an appropriate tunneling function [11, 12]; in par-
ticular, tunneling functions that lead to commensurate
energy levels, and the attendant wave packet reconstruc-
tion, have been extensively explored [13, 14].
All of these cases have focused on lattice models that,

in the continuum limit, describe the dynamics of a non-
relativistic, quantum particle with a position-dependent
mass that is determined by the tunneling function. The
eigenstates of the corresponding Hamiltonians are, thus,
extended [11]. Therefore, the effects of diagonal (on-site)
and off-diagonal (tunneling) disorder in such systems,
and their signatures in Anderson localization [15] and
the Hanbury-Brown-Twiss correlations [16], correspond
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to those in condensed matter systems. Since these sys-
tems are typically probed through transport, tradition-
ally, lattice models that have only localized eigenstates
in the clean limit have not been studied; such models
would result in a vanishing electrical conductivity even
in the disorder-free limit. Optical waveguides, on the
other hand, are probed via light intensity measurements
along the waveguide, not by the motion of a wave packet
across them. They offer an unprecedented ability to tai-
lor the site-dependent tunneling [13, 17]; something that
is difficult to do in condensed matter systems and, to a
lesser degree, in optical lattices [18, 19].

In this paper, we investigate the dynamics, disorder ef-
fects and PT -symmetry breaking in non-uniform, tight-
binding lattice models in which most of the eigenstates
are localized in the absence of disorder. We propose three
classes of tunneling functions that demonstrate the wide
range of properties typical of such models. Our three
primary results are as follows: (i) The energy spectra
and wave packet time-evolution have properties with no
counterparts in systems with extended eigenstates. (ii)
The wave packet localization due to a weak disorder en-
codes the (extended or localized) nature of eigenstates
even for lattices with identical clean-limit energy spectra.
(iii) Signatures of PT -symmetry breaking are acutely
sensitive to the initial form of the wave packet. Our
results show that light propagation can be significantly
controlled and manipulated in coupled waveguides with
localized eigenstates.

The plan of the paper is as follows. In the following
paragraphs, we introduce the tight binding model for a
non-uniform N -site lattice. Section II presents the prop-
erties of a clean lattice for the three classes of tunneling
functions that we introduce. We consider the effects of
a weak disorder on the time-evolution in such lattices in
Sec. III. In Sec. IV, we expand these models to their
PT -symmetric counterparts, and consider the effect of a
single pair of balanced loss and gain impurities at mirror-
symmetric positions. We conclude the paper with a brief
discussion in Sec. V.

A lattice of N coupled waveguides is described by the
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following Hamiltonian,

H = −
N−1
∑

i=1

t(i) (|i+ 1〉〈i|+ |i〉〈i+ 1|) +
N
∑

i=1

vi|i〉〈i|, (1)

where |k〉 represents the state with a (single) particle at
site k, t(k) > 0 is tunneling amplitude between sites k
and k + 1, and vk is the on-site potential determined by
the local index of refraction at site k. Hamiltonian (1)
represents open boundary conditions, t(0) = 0 = t(N).
Note that although t(k), vk have the units of energy, we
will use their scaled versions, t(k)/~c, vk/~c, which have
the units of inverse-length, in the discussion of possible
sample parameters [4, 9, 17].
We choose tunneling amplitude profiles characterized

by two continuous, distinct, functions. tO(2k− 1) on the
odd sites and tE(2k) on the even sites are chosen such
that tE(2k)/tO(2k − 1) ≪ 1 for most k ∼ O(N). In the
limit tE ≡ 0, the system decouples into N/2 waveguide-
pairs or dimers, the energy spectrum of Eq.(1) is given
by ∓tO(1),∓tO(3), . . ., and the eigenfunctions are local-
ized, symmetric (S) and antisymmetric (A), dimer states

given by |S(A), 2k − 1〉 = (|2k − 1〉 ± |2k〉)/
√
2. Thus,

the particle-hole symmetric energy spectrum of the clean-
lattice Hamiltonian is determined by the odd-tunneling
function tO.
When tE 6= 0, the Hamiltonian in the dimer basis be-

comes a block-tridiagonal, symmetric matrix with the di-
agonal block D2k−1 and off-diagonal block T2k−1,2k+1 =

T †
2k+1,2k−1

given by

D2k−1 = tO(2k − 1)diag [−1,+1] , (2)

T2k−1,2k+1 = tE(2k)

[

+1 +1
−1 −1

]

. (3)

In the following section, we explore the consequences of
such tunneling profiles for a disorder-free lattice.

II. DYNAMICS IN A CLEAN LATTICE

We start with three tunneling functions,

tp(k) =

{

k2 odd,
k even,

(4)

tl(k) =

{

k odd,
β ln(k) even,

(5)

te(k) =

{

[k(N − k)]
1/2

odd,
β ln[k(N − k)] even,

(6)

each of which satisfies the criterion tE/tO ≪ 1 and the
energy-scale prefactor t′ in Eqs. (4)-(6) has been set to
unity, t′ = 1; recall that for traditional waveguide lattices
with constant tunneling, t′/~c ∼ 102−104 m−1 [4, 9, 17].
As we will show below, the functional forms - the power-
law tunneling function tp(k), logarithmic tunneling func-
tion tl(k), and the tunneling function te(k) that supports
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FIG. 1. (color online) a) Left: Typical energy spectra for lat-
tices with tunneling functions tp(k) (blue circles), tl(k) (black
diamonds), and te(k) (red squares), and N = 20, β = 1; the
energy eigenvalues are scaled by their maximum. For tp(k)
(blue circles) the spectrum is quadratic, for tl(k) (black dia-
monds) it is mostly linear, and for te(k) it is linear near the
band edges. The primary features of the spectra are deter-
mined by the odd-tunneling function tO(2k−1) ≫ tE(2k). b)
Right: Dimensionless eigenfunctions for ground-state (bars)
and the center-band state (stems). The top panel shows
ground state localized at the last dimer and the center-band
state localized at the first dimer. The center panel shows
a broadened ground state, localized near the last dimer, and
the center-band state localized at the first dimer. The bottom
panel shows an extended, Gaussian, ground state centered at
N/2 and the center-band state localized near both edges.

extended states - of the tunneling amplitude broadly dic-
tate the results that follow.
The left-hand panel in Fig. 1 shows typical, particle-

hole symmetric [21], energy spectra for a lattice with
N = 20, β = 1 for tp(k) (blue circles), tl(k) (black di-
amonds), and te(k) (red squares). We use the maximum
energy Emax = −Emin to define the energy and time
scales; it varies asEp,max(N) ∼ t′N2, El,max(N) ∼ t′N ∼
Ee,max(N) for N ≫ 1. Note that the energy spectrum
for tl(k) is exactly linear when β = 0, and a nonzero
β ≪ N creates deviations from linearity at the band
edges [20]. On the other hand, the linearity of the spec-
trum for te(k) arises from the exactly linear spectrum of
T (k) = [k(N − k)]1/2 [11, 13, 14], and the spectrum be-
come nonlinear when β ≪ 1. Note that these results are
true for any N ≫ 1. Given the wide range over which the
tunneling amplitude [9, 17] and the number of waveguides
in a lattice can be varied (N ∼ 10 − 100) [3, 4, 9], the
construction of waveguide lattices with tunneling profiles
(4)-(6) seems feasible.
It follows from earlier analysis that the ground state of

Hamiltonian (1) is localized near the dimer with largest
internal tunneling, max tO, whereas the eigenstate near
the center of the band is localized near the dimer with
smallest internal tunneling, min tO; this is true regardless
of the number of lattice sites N . The right-hand panels
in Fig. 1 show these two eigenfunctions. The top panel,
with a power-law tunneling tp(k), shows the ground-state
(blue bars) and the center-band state (blue stems). The
center panel, with a log tunneling tl(k), shows a broad
ground state (black bars) and narrow center-band state
(black stems); this difference between the ground-state
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sizes is because the ratio tE(N − 1)/tO(N), a measure
of perturbation away from the dimer picture, is smaller
for tp(k) than it is for tl(k). The bottom panel shows the
ground state (red bars) and center-band state (red stems)
for te(k); we remind the reader that the ground state for
the tunneling function T (k) is a Gaussian centered at
site N/2 [11]. Results in Fig. 1 suggest that in spite
of the perturbation introduced by the even-site hopping
functions tE in Eqs. (4) and (5), the localized nature of
eigenstates is preserved.

10
−4

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

1/N (lattice size)

m
in

iu
m

um
 a

nd
 m

ax
im

um
 R

(N
)

 

 

t
p
(k)

t
p
(k)

t
l
(k)

t
l
(k)

t
e
(k)

t
e
(k)

β=1

FIG. 2. (color online) Minimum (open symbols) and maxi-
mum (filled symbols) inverse participation ratios R(N) as a
function of lattice size N for the three tunneling functions
with β = 1; note the logarithmic scale on both axes. For
power-law tunneling tp(k) (blue), all states are localized, as
are those for the log-tunneling function tl(k) (black). The
tunneling function te(k) (red squares) has both localized and
extended states. When β = 0, all eigenstates - dimers - are
localized, and as β increases, the minimum R values for tl(k)
and te(k) decrease.

To quantify this claim, we calculate the N -dependence
of inverse participation ratio R(N) for all eigenstates.
The inverse participation ratio Rψ(N) for a normalized

eigenstate |ψ〉 = ∑N
i=1

fi|i〉 is defined as

Rψ(N) =
N
∑

i=1

|fi|4. (7)

As N → ∞, Rψ(N) ≤ 1 saturates to a nonzero value
for a localized state and vanishes, Rψ(N) ∼ N−α with
α > 0, for an extended state [22]. Figure 2 shows
the minimum and maximum values of R(N) for lattices
with N = 20 − 3000 and the three tunneling functions,
Eqs. (4)-(6), with β = 1; note the logarithmic scale on
both axes. For power-law tunneling tp(k), the minimum
(blue open circles) and maximum (blue filled circles) val-
ues of R(N) are nonzero, almost equal to each other,
and indicate that all localized eigenstates have approx-
imately the same size. The nonzero minimum (black
open diamonds) and maximum (black filled diamonds)

R(N) values for the log-tunneling function tl(k) imply
that the ground state, although localized, is broader than
the center-band state (see Fig. 1). For tunneling function
te(k), inverse participation ratios show the existence of
both localized (red filled squares) and extended (red open
squares) states. These results show that most, if not all,
states of a disorder-free lattice with these tunneling pro-
files are localized.

Now, we study the time-evolution of a wave packet that
is initially confined to one (or two) waveguides. Figure 3
shows the amplitude A(k, t) = |〈k|ψ(t)〉| of the time-
evolved wave functions |ψ(t)〉 = exp[−iHt/~]|ψ(0)〉 for
the three tunneling functions in a disorder-free lattice
with N = 28 sites. The horizontal axis in each panel de-
notes time normalized by ~/Emax for each tunneling func-
tion, t/(~/Emax). The corresponding distances along the
waveguide, for a normalized time-range t/(Emax/~) =
100, are given by z = ct ∼ (10− 103)/N2 ∼ 0.01− 1 mm
for the power-law tunneling function tp(k) and z = ct ∼
(10− 103)/N ∼ 0.3− 30 mm for the other two tunneling
functions. Note that waveguides with constant tunneling
amplitude are a few mm long [4, 9]; thus, they correspond
to a time-range t/(Emax/~) ∼ 104 for power-law tunnel-
ing function and a time-range of t/(Emax/~) ∼ 100−1000
for the log-tunneling function. This is consistent with the
observation [12] that for a non-uniform waveguide array
with a given physical length can be used to explore short-
time or long-time behavior based on its bandwidth.

The top panel in Fig. 3 shows A(k, t) for tunneling

function tp(k), and |ψ(0)〉 = (|N/4〉+ |3N/4〉)/
√
2. Since

all states of this Hamiltonian are strongly and equally lo-
calized, the partial wave packets located on two spatially
separated dimers evolve independently. Each undergoes
Rabi oscillations with the local frequency, and the ratio
∼ 9 = 32 of these frequencies is equal to the ratio of
A-S energy gap 2tO for the dimers at 3N/4 and N/4 re-
spectively. The (blue) side-wings in each case indicate
the mixing with adjacent dimers due to the small, but
nonzero, even-tunneling function tE(2k)/tO(2k − 1) ∼
1/k. The center panel corresponds to tl(k) with β = 0.5,
and an initial state localized at the central waveguide,
|ψ(0)〉 = |N/2〉. Due to the linear spectrum, the wave
packet is reconstructed after a time Tl = 2π~/∆El
where ∆El ≈ 2El,max/N is the (approximately) constant
energy-level spacing (see Fig. 1). The time-dependent
width of the wave packet is due to the even-tunneling
function tE/tO ∼ β ln(k)/k > 1/k and it increases with β
for β ≪ N [20]. The bottom panel shows A(k, t) for the
tunneling function te(k), which has both localized and
extended eigenstates, and |ψ(0)〉 = |N/2〉. We see that,
although the wave packet remains confined to the dimer
when β ≪ 1, it spreads across all waveguides for a mod-
erate value of β = 1.5 ≪ N . In addition, as expected,
it undergoes partial reconstructions that are reminiscent
of (and due to) the perfect revival that occurs in lattices
with tunneling function T (k) = [k(N − k)]1/2 [12, 14].

Thus, we predict that the dynamics of a wave packet in
the disorder-free lattices can be systematically controlled
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FIG. 3. (Color online) Time-dependent amplitude A(k, t) for
lattices with N = 28. Top panel: power-law tunneling func-
tion tp(k) leads to Rabi oscillations with waveguide-index de-
pendent frequency determined by the local gap 2tO . Cen-
ter panel: log-tunneling function tl(k) with β = 0.5 leads to
periodic wave packet reconstruction due to its linear spec-
trum. Note that increasing β leads to asymmetrical increase
in the vertical spread of the wave packet, as is expected due
to the higher even-tunneling amplitude at larger waveguide
index. Bottom panel: tunneling function te(k) with β = 1.5
has a partially linear spectrum and some extended states.
For a fixed N , the maximum wave packet spread shown in
the center and bottom panels increases monotonically with
β. The bottom panel shows that for a moderate value of
β = 1.5 ≪ N = 28, the wave packet spreads over the entire
array, even though for β = 0 it is localized on the dimer.

by a suitable value of β and the initial waveguide location.

III. EFFECT OF A WEAK DISORDER

For an infinite, one-dimensional system, an arbitrar-
ily weak disorder exponentially localizes all states [15].
In a finite waveguide lattice, an arbitrarily weak disor-
der localizes the wave packet to its initial waveguide m0.
The localized fraction, characterized by the intensity at
waveguidem0, saturates with time (or distance along the
waveguide), but increases with the disorder strength v0.
Therefore, the long-time, steady-state, disorder-averaged
intensity I(k) = |〈k|ψ(t)〉|2v0 has a maximum at k = m0

and, for 1 ≪ m0 ≤ N/2, it symmetrically decays with ex-
ponential tails away fromm0 [3, 15]. At short times, how-
ever, the time- and waveguide-dependent intensity I(k, t)
is determined by the competition between the spread dic-
tated by the disorder-free lattice spectrum and localiza-
tion due to the disorder.
In the following, we focus on the steady-state intensity

I(k) for two lattices, with tunneling functions T (k) and
tl(k) respectively. Both of them have (nearly) identical,

linear, energy spectra in the disorder-free limit. However,
all eigenstates of the former are extended and the latter
are localized in the absence of disorder.
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FIG. 4. (Color online) (a) Steady-state, disorder-averaged in-
tensity in a waveguide lattice with N = 40, tunneling function
T (k), and initial wave packet |ψ(0)〉 = |N/2〉 shows localiza-
tion with exponential tails. (b) The time-dependent intensity
I(k, t) for the same. The disorder strength is v0/Emax = 0.2.
(c) Same as panel (a), but with tunneling function tl(k) as a
function of β. For small β ≤ 1, the localized fraction is con-
fined largely to the dimer (N/2− 1, N/2). With increasing β,
however, the weight at neighboring waveguides increases, the
weight at the central maximum decreases, and the intensity
profile approaches that in panel (a); note the scale-difference
in the two panels. (d) The time-dependent intensity I(k, t) for
tunneling function tl(k) with β = 2 shows a larger fraction of
the wave packet localized at the initial waveguide compared
to its value in panel (b).

Figure 4 shows results for a weak disorder, v0/Emax =
0.2, in lattices with N = 40 sites, and tunneling func-
tions T (k) (top row) and tl(k) (bottom row). We have
verified that the results are independent of the number
of realizations Nr ∼ 103 for the disorder potential vk,
and the type of disorder-potential distribution (Gaussian,
uniform) as long the distribution as zero mean and vari-
ance v0. Panels (b) and (d) show typical time-dependent
intensity I(k, t) for a state |ψ(0)〉 = |N/2〉; horizontal
(vertical) axis is the waveguide index (normalized time).
Recall that in the absence of disorder, v0 = 0, the inten-
sity time-evolution in the two panels should be similar
to that in Fig. 3. When disorder is included, the local-
ized fraction for tunneling function tl(k), with β = 2, is
greater than that for T (k). Panels (a) and (c) show cor-
responding steady-state intensity I(k). Panel (a) shows
that the wave packet is localized with exponential tails,
as is expected for a lattice with extended eigenfunctions
in the clean limit [3, 11]. Panel (b) shows qualitatively
different intensity profiles as a function of β; note the
vertical-scale difference in panels (a) and (b). As β in-
creases from 0.5 (blue circles) to 2.0 (red dashed line),
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the intensity maximum at the center reduces, while the
intensity at the neighboring waveguides increases. Even-
tually, the intensity profile approaches that in panel (a).
These results demonstrate the crucial role played

by qualitatively different eigenstates of (approximately)
isospectral Hamiltonians in the presence of disorder, and
the change that the localization profile undergoes when
going from one to the other. For Hamiltonians with tun-
neling functions (4)-(6), the continuum limit is a mas-
sive particle with an internal, dimer, degree of freedom.
Therefore, its disorder localization profile is different.

IV. PT -SYMMETRY BREAKING

In this section, we will explore disorder-free lattices
with localized eigenstates in the presence of a single pair
of PT -symmetric, gain and loss impurities ±iγ [6]. To
this end, we consider a lattice with 2N waveguides and
define the PT -symmetric extension of the tunneling func-
tion,

tPT (k) =







t(k) 1 ≤ k < N,
tC k = N,

t(2N − k) N + 1 ≤ k < 2N,
(8)

where t(k) is either a power-law or log tunneling func-
tion, Eqs. (4)-(5), and tPT (N) = tC is arbitrary. Note
that it is straightforward to modify this definition when
the number of waveguides in an array is odd. The non-
Hermitian, PT -symmetric Hamiltonian for the system is
then given by

HPT = H(tPT ) + iγ(|m〉〈m| − |m̄〉〈m̄|) 6= H†
PT , (9)

where H(tPT ) is Hamiltonian (1) with the tunneling
function (8) or T (k) = [k(2N − k)]1/2 = T (2N − k), m is
the position of the gain impurity, and m̄ = 2N + 1 −m
denotes its mirror position where the loss impurity is lo-
cated. Although HPT is not Hermitian, all of its eigen-
values are real when γ < γc(m). The critical impurity
strength γc(m), in general, is a function of the tun-
neling profile and the distance d = |m − m̄| between
the loss and gain impurities. However, in the special
case of nearest neighbor impurities, m = N , the critical
impurity strength is given by γc(N) = tC and all en-
ergy eigenvalues simultaneously become complex when
γ > γc(N) = tC [23]. We choose tC = tPT (N − 1) =
tPT (N + 1), so that the tunneling amplitude at the lat-
tice center is continuous. In the following, we focus on
the evolution of time-dependent intensity across the PT -
symmetry threshold, γ/γc = 1.00 ∓ 0.01. Note that
since the Hamiltonian HPT , Eq.(9), is not Hermitian,
the time evolution operator exp[−iHPT t/~] is not uni-

tary and the total intensity I(t) =
∑2N

k=1
I(k, t) is not

conserved. As in Sec. III, we consider two tunneling
functions: the first, PT -symmetric version of the log-
tunneling function, Eq.(5), with β = 0.5, has a linear
spectrum and purely localized eigenstates; the second,

T (k) = [k(2N − k)]1/2 for a lattice with 2N sites, has a
linear spectrum and only extended eigenstates.
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FIG. 5. (Color online) Intensity I(k, t) for log (top row)
and T (k) (bottom row) tunneling functions in a lattice with
2N = 40 sites, gain and loss impurities ±iγ at positions
(20, 21), and initial state |ψ(0)〉f = (|10〉 + |31〉)/

√
2 local-

ized far away from them. The impurity strength is below the
threshold, γ/γc = 0.99, for the left-hand column and above
the threshold, γ/γc = 1.01, for the right-hand column. The
top row shows that I(k, t) does not change significantly across
the threshold, and the maximum intensity does not change
from its Hermitian limit. The bottom row shows that the
maximum intensity is higher than its γ = 0 limit since the
wave packet comes across the impurities, and there is a small
increase in the intensity as the threshold is passed.

Figure 5 shows the intensity I(k, t) for a particle away
from the impurities, with an initial state |ψ(0)〉f =

(|N/2〉 + |3N/2 + 1〉)/
√
2 in lattice with 2N = 40 sites

and nearest neighbor impurities at (m, m̄) = (20, 21).
The left-hand (right-hand) column corresponds to im-
purity strength γ/γc below (above) the PT -symmetry
breaking threshold. The top row shows that the time-
dependent intensity I(k, t) for the PT -symmetric log-
tunneling function does not change appreciably as im-
purity strength increases from γ/γc = 0.99 (left-hand
panel) and γ/γc = 1.01 (right-hand panel); in addition,
the maximum intensity is the same as its corresponding
value in the Hermitian limit. These results are expected
since the initial wave packet, localized away from the
lattice center, does not “come across” the gain and loss
impurities. The bottom row shows corresponding results
for tunneling function T (k). We see that the intensity
profile does not change significantly, although there is a
minor enhancement for γ/γc = 1.01 (right-hand panel)
compared to γ/γc = 0.99 (left-hand panel), and the max-
imum intensity is higher than its γ = 0 value. These re-
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sults are due to the extended nature of eigenstates, which
ensures that any wave packet “comes across” the gain and
loss impurities.
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FIG. 6. (Color online) Intensity I(k, t) for log (top row) and
T (k) (bottom row) tunneling functions in a lattice with 2N =
40 sites, gain and loss impurities ±iγ at positions (20, 21), and
initial state |ψ(0)〉c = (|15〉+|26〉)/

√
2 localized close to them.

The impurity strength is below the threshold, γ/γc = 0.99, for
the left-hand column and above the threshold, γ/γc = 1.01,
for the right-hand column. The bottom row shows that that
the maximum intensity is higher than its γ = 0 limit since
the wave packet comes across the gain and loss impurities,
and there is a small increase in the intensity as the threshold
is passed; see the bottom row, Fig. 5. The top row shows
that the intensity increases by an order of magnitude as the
impurity strength γ is varied from below the threshold (left-
hand panel) to above the threshold (right-hand panel); see
the top row, Fig. 5.

How do these results change when the initial state is
closer to the impurities? Figure 6 shows corresponding
results for the same lattice, same impurity strengths, and
the same time-range, but with initial state |ψ(0)〉c =

(|3N/4〉+ |5N/4 + 1〉)/
√
2. The bottom row shows that

the intensity profile does not change significantly from
the left-hand panel, γ/γc = 0.99 to the right-hand panel,
γ/γc = 1.01, although there is a minor enhancement in
the right-hand panel (see the bottom row, Fig. 5). This
is because the weight of any extended eigenstate at the
gain-impurity site is small, and therefore, the effect of en-
countering the gain-site on a wave packet is small. The
top row shows corresponding results for the log-tunneling
function, where the initial wave packet locations are in-
dicated by gray circles at (3N/4, 5N/4 + 1) = (15, 26).
The left-hand panel shows a moderate intensity enhance-
ment below the threshold, γ/γc = 0.99. The right-hand
panel shows a dramatic intensity enhancement above the

threshold, γ/γc = 1.01; note the order-of-magnitude dif-
ference in the intensity scale. This order-of-magnitude
enhancement occurs because the dimer eigenstates, with
energies near the band edges, have a strong weight at the
gain impurity site.
These results show that due to the localized nature

of all eigenstates, the time-dependent intensity profile
I(k, t) is acutely sensitive to parameters, such as β and
the initial state, which control whether the wave packet
“comes across” the loss and gain impurities. Thus, we
predict that lattices with localized eigenstates provide a
unique control over the violation of unitarity - how much
and how rapidly does the intensity change from its value
in the Hermitian limit - that has no counterpart in tra-
ditional lattices with extended eigenstates.

V. DISCUSSION

In this paper, we have investigated the dynamics, dis-
order effects, and PT -symmetry breaking signatures in
waveguide lattices that have, in the disorder-free limit,
a majority of localized eigenstates. We have presented
three, novel tunneling profiles, Eqs. (4)-(6), that lead to
such eigenstates. We have shown that the spatial spread
of the wave packet and the frequency of Rabi oscillations
can be controlled by the choice of the tunneling function
and the initial position of the wave packet. We have also
shown that the effect of weak disorder on such lattices
is qualitatively different, and argued that, due to the lo-
calized nature of disorder-free lattice eigenstates, the sig-
natures of PT -symmetry breaking in these lattices are
acutely sensitive to the initial form of the wave packet.
In this work, we have ignored the quartic interaction

term that, in the case of optical waveguides, arises from
nonlinear susceptibility and in the continuum limit, gives
rise to the nonlinear Schrödinger equation; this approxi-
mation is justified at low intensities. Since the interplay
between interactions and disorder has profound effects on
the phenomenon of localization [3, 24], it will be inter-
esting to explore them in the present system.
Here, we have only focused on PT -symmetry breaking

in even lattices with nearest neighbor impurities. Al-
though Figs. 5 and 6 show the remarkable dependence
of PT -symmetry breaking signatures on the initial wave
packet, PT -symmetry breaking in even and odd lattices
and the differences between them [25] is an open ques-
tion.
Our results are not dependent on the exact forms of

the tunneling functions, Eqs. (4)-(6). Indeed, for exam-
ple, any power-law tunneling function (kµ, kν) instead of
(k, k2) will give similar results if µ 6= ν. Similarly, the
k− β ln(k) tunneling function leads to a linear spectrum
over a wide range β because ln(x) grows more slowly
than any power of x. The robustness of these results
implies that the small, ubiquitous variations in the on-
site potential and tunneling amplitudes in experimental
samples will not affect our predictions. The experimen-
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tal exploration of such coupled optical waveguides will
deepen our understanding of lattice models with tunnel-
ing profiles whose continuum limit is different from the
traditional Schrödinger equation for a massive particle.
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