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Abstract

The radiation burst from a single gamma-photon field interacting with a dense resonant absorber

is studied theoretically and experimentally. This effect was discovered for the fist time by P. Helisto

et al., Phys. Rev. Lett. 66, 2037 (1991) and it was named ”gamma echo”. The echo is generated

by 180-degree phase shift of the incident radiation field, attained by an abrupt change of the

position of the absorber with respect to the radiation source during the coherence time of the

photon wave packet. Three distinguishing cases of ”gamma echo” are considered, i.e., the photon

is in exact resonance with the absorber, close to resonance (on the slope of the absorption line),

and far from resonance (on the far wings of the resonance line). In resonance the amplitude of the

radiation burst is two times larger than the amplitude of the input radiation field just before its

phase shift. This burst was explained by P. Helisto et al. as a result of constructive interference

of the coherently scattered field with the phase shifted input field, both having almost the same

amplitude. We found that out of resonance the scattered radiation field acquires an additional

component with almost the same amplitude as the amplitude of the incident radiation field. The

phase of the additional field depends on the optical thickness of the absorber and resonant detuning.

Far from resonance this field interferes destructively with the phase-shifted incident radiation field

and radiation quenching is observed. Close to resonance three fields interfere constructively and

the amplitude of the radiation burst is three times larger than the amplitude of the input radiation

field.

PACS numbers: 42.50.Gy
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I. INTRODUCTION

Quantum information technology requires the development of methods of the operation

with single photons, i.e., storage and retrieval, photon shaping, etc. Since single photons

are suggested to carry quantum information between nodes in a quantum network, two kind

of nodes were proposed. One is based on a quantum electrodynamics scheme using a strong

coupling of a single atom with a single cavity mode (see, for example, Ref. [1]). The other is

based on the interaction of a single photon with ensemble of atoms (see, for example, Refs.

[2–6]). Ensemble approach has an advantage of large number of particles interacting with

the radiation field, which results in a collective enhancement of the atom-field interaction.

Collective scattering of a single photon by an ensemble of N particles is a coherent process

since all quantum paths of the photon interfere. Therefore, the probability amplitude of the

scattered radiation field is nonlinearly dependent on N , see Refs. [7, 8], while the probability

amplitude of the incoherent scattering in 4π angle is proportional only to N .

In the Feynman lectures [9] one can find an interesting explanation of the phenomena

of absorption and dispersion of light by a linear medium. According to Feynman the light,

transmitted by any sample, can be considered as a result of the interference of the input

wave, as if it would propagate in vacuum, with the secondary wave radiated by the linear po-

larization induced in the medium. In a optically thick sample these two waves are obviously

of the same amplitude and 180◦ out of phase, which leads to a fully destructive interference.

In Refs. [10, 11] it was proposed and experimentally implemented to bringing the sec-

ondary wave in phase with the incident radiation by abrupt change of its phase. A single-

photon radiation field is considered as a wave packet. The source starts to emit this wave

packet at a particular time t0. If the photon source is moved abruptly at a time t1 > t0,

changing almost instantaneously its position with respect to the absorber, the phase of the

single photon wave packet, ϕs, also changes at t1. If ϕs = π, the incident radiation becomes

in phase with the scattered radiation and they interfere constructively. This interference is

seen as a radiation burst whose amplitude is doubled (in some cases it is slightly more than

doubled) and its intensity is four times larger than the intensity of the incoming radiation

field.

The experiments, reported in Refs. [10, 11], are performed with the absorber, which is in

exact resonance with the source. In this paper we study nonresonant excitation and show
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that for a particular detuning from resonance three fields interfere constructively, i.e., the

incoming field just after its phase shift, a transient scattered field, induced at an earlier time

by the leading edge of the photon wave packet, and a field, formed in the absorber before

the phase shift and propagating with a slow group velocity. The phase of the third field

depends on optical thickness of the absorber and resonant detuning. Maximum amplitude

of the radiation burst is nearly 3 times larger than the amplitude of the incident radiation

just before the phase shift and its intensity is 9 times larger (in some cases 10 times larger).

Such a revival of a single photon radiation field can be applied for photon storage and

retrieval or/and photon shaping, which are in a scope of quantum computing and quantum

information. A kind of photon storage and photon shaping was studied using synchrotron

radiation (see, for example, Refs. [12–14])

The paper is organized as follows. In Sec. II we represent the general formalism of the

description of multiple scattering of a photon in an absorber with a single resonance. In Sec.

III we consider an instantaneous phase shift of a single photon radiation field and transients

induced in a thick absorber. In Sec. IV we consider an instantaneous frequency shift of the

radiation field. In Secs. V and VI experimental results and their discussion are represented.

II. PHOTON FILTERING THROUGH A RESONANT ABSORBER

In this section we present generalities of the time-domain Mössbauer spectroscopy using

the time delayed coincidence measurements (TDCM) of two photons, emitted in a cascade

by an excited state particle. In TDCM the detection of the first photon in the cascade

heralds the emission of the second photon, which is applied for spectroscopy of an absorber,

containing resonant nuclei.

The most popular Mössbauer isotope, 57Fe, incorporated into a solid, is usually used as

an absorber. The appropriate gamma-photon source for 57Fe consists of a macroscopically

large number of 57Co nuclei, incorporated into another solid to have an appreciable fraction

of emitted radiation without recoil. 57Co decays by electron capture to 57mFe, which decays

in turn by emission of a 122 keV photon, followed by a 14.4 keV photon (competing with

internal conversion) to the ground state. If the number of 57Co nuclei in the source is small

enough, i.e., the activity of the source is small, the long half-life of 57Co (271.8 days) secures

that during the life-time of 14.4 keV state (141 ns), almost no decay event of another 57Co
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in the absorber takes place.

Quantum mechanical calculation of the conditional probability amplitude a(t) of the

second photon, if the detection of the first photon in the cascade at time t0 took place, gives

(see, Ref. [15])

a(t) = Θ (t− t0) e
−(iωs+γ)(t−t0), (1)

where ωs is the frequency of the 14.4 keV photon, 2γ is the decay rate of the 14.4 keV state

(radiative and nonradiative if present), and Θ(t) is the Heaviside step function. Eq. (1) is

similar to the definition of the radiation field for the source photon, introduced in Ref. [7]

within a classical theory of gamma-photon propagation in a dense resonant medium. Here

the maximum of the probability amplitude a(t) is normalized to unity and the distances

from the source to the detector 1 (d1) and to the detector 2 (d2) are neglected since d1/c

and d2/c are much smaller than the lifetime of the 14.4 keV state, where c is the speed of

light in vacuum.

The probability amplitude of the second photon wave packet has a sharply rising leading

edge at t = t0 and an exponentially decaying tail. The former is defined by the time t0

at which the source is formed in the 14.4 keV state and the latter specifies the coherence

time of the photon τph = 1/γ. Such a time dependence of the single-photon field has been

detected, using radiation of a single nucleus in time delayed coincidence measurements of

gamma photons emitted in a nuclear cascade [7, 16–20]. Usually 57Co nuclei are incorporated

into a solid, which does not produce quadrupole and Zeeman magnetic splitting of nuclear

spin states. In such a case the source emits a single frequency radiation field (14.4 keV).

In TDCM technique a macroscopic absorber is placed in between the source and the

detector for the second photon. For simplicity we limit our consideration to an absorber

with a single absorption line. We consider the case when nuclei are randomly distributed

in the host. Hence, no Bragg scattering is present. Then, an incident photon, represented

by a plane wave at the input of the absorber, is scattered coherently only in the forward

direction by all nuclei, and propagates inside (see, for example, Ref. [21]). There is no

coherent scattering in other directions because of random phase. Incoherent scattering in

other directions may take place but its probability is much smaller than the probability of

coherent scattering in the forward direction.

In the classical theory [7], according to standard methods in electrodynamics, the am-

plitude of the radiation field at the output of the resonant absorber of physical thickness l
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is

a(l, t− t0) =
1

2π

∫ +∞

−∞

A0(ν)e
−i(ωs+ν)(t−t0)−α(ν)ldν, (2)

where l/c is neglected, A0(ν) is the Fourier transform of the amplitude a0(t) =

a(t) exp[iωs(t− t0)] of the input radiation, which is

A0(ν) =
i

ν + iγ
, (3)

and α(ν) is the transmission function. Eq. (2) is similar to the expression for the spatial

wave function of the single-photon radiation field at the output of a thick absorber, which

is derived within a quantum mechanical theory by Harris in Ref. [8] [see Eq. (40) in this

reference].

Here we adopt the Fourier transform of the form

F (ν) =

∫ +∞

−∞

f(t)eiν(t−t0)dt. (4)

For the absorber with a single resonance line, α(ν) is

α(ν) =
iγαB/2

ν +∆+ iγ
, (5)

where ∆ = ωs−ωa is the detuning of ωs from the resonant frequency, ωa, of the absorber and

αB is the Beer’s law absorption coefficient applicable to a monochromatic radiation tuned

in resonance. With this coefficient the conventional definition of the optical thickness of the

absorber for a resonant excitation, is T = αBl. The quantum mechanical definition of T is

T = nlσ0fa, where n is the density of 57Fe nuclei in the absorber, σ0 is the cross section

of resonant absorption for the 14.4 keV transition, and fa is the recoilless fraction of the

gamma-ray absorption in the absorber.

For a single photon radiation field (1), the integral in Eq. (2) has been calculated in

Ref. [7] with the help of the generating function for the Bessel function. If the nuclei in

the absorber have a single absorption line tuned in exact resonance with the source photon

(∆ = 0), then the amplitude of the output radiation is

a(l, t) = Θ (t) e−iωst−γtJ0

(

2
√
bt
)

, (6)

where J0(x) is the zero-order Bessel function, b = Tγ/2, and t0 = 0.

If b ≫ γ the decay of the radiation field at the output of a thick absorber is not

more defined by the function exp[−γ(t − t0)], but it is ruled by the Bessel function
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J0[2
√

b(t− t0)], whose decay rate is ∼ b at the initial stage (after t0 and before the first zero

of J0[2
√

b(t− t0)]).

As it is explained, for example, in Ref. [10], the accelerated decay of the radiation field

at the output of a thick absorber is due to destructive interference of the incident radiation

with coherently forward-scattered radiation field, i.e. this is a dynamical process, which is

reversible in principle. Therefore, just a π phase-shift of the input radiation field at a later

time changes destructive interference to constructive interference of the input radiation field

with the scattered field coming from the absorber excited at an earlier time. This change

results in a revival of the radiation field seen as a radiation burst.

For the nonresonant case, when the frequency of the source ωs is detuned from the

center of the absorption line of nuclei in the absorber, the result of the calculation of the

integral in Eq. (2) for the probability amplitude a(l, t) of the radiation field at the output

of the absorber becomes quite complicated. It is described by the infinite sum of the Bessel

functions of the ascending integer order, multiplied by the complex coefficients depending

on b, ∆, and t, see Ref. [7]. Actually there are two such expressions, one is for b > ∆ and the

other is for b < ∆. Both expressions converge very slowly and one has to take into account

many terms (between 50 and 100) of these sums to obtain an accurate approximation of the

integral in Eq. (2).

To simplify the analysis and obtain clear asymptotic expressions we use the response

function technique, applied in Ref. [10]. Then Eq. (2) is reduced to

a(l, t) = e−iωst

∫ +∞

−∞

a0(t− τ)R(τ)dτ. (7)

where we set t0 = 0 for simplicity and

R(t)e−iωst = δ(t)e−iωst + asc(t)e
−iωat, (8)

is the output field from the resonant absorber if the input field is a short pulse, described

by the delta function, δ(t). The second term in Eq. (8), which is proportional to

asc(t) = −a0(t)

√

b

t
J1

(

2
√
bt
)

, (9)

can be considered as a scattered field, produced by a short delta-like pulse. The response

function R(t)e−iωst, Eq. (8), for the absorber with a single resonance was calculated in Refs.

[22–24].
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Direct integration of the integral in Eq. (7) gives

a(l, t) = a0(t)e
−iωst [1 + fsc(t)] . (10)

where

fsc(t) = −
∫ t

0

ei∆τ

√

b

τ
J1

(

2
√
bτ
)

dτ. (11)

Integrating by parts the integral in Eq. (11), we obtain

fsc(t) = fsc1(t) + fsc2(t), (12)

where

fsc1(t) = J0

(

2
√
bt
)

ei∆t − 1, (13)

fsc2(t) = −i∆

∫ t

0

J0

(

2
√
bτ
)

ei∆τdτ. (14)

With this result we express Eq. (10) for the output radiation as follows

a(l, t) = a(t) + afs(t) + asl(t), (15)

where a(t) is the radiation field, passed through the absorber without scattering, afs(t) =

a(t)fsc1(t) is a part of the scattered radiation, which develops fast, and asl(t) = a(t)fsc2(t) is

the other part of the scattered radiation, which we name the slow radiation, since it develops

with slower rate than afs(t) and propagates with a slow group velocity (see discussion below

and in the Appendix).

In a thick absorber (b ≫ γ) and for resonant detuning ∆ satisfying the condition b ≫
|∆| ∼ γ, the scattered radiation afs(t) develops fast. Its effective amplitude fsc1(t), defined

without exponential factor exp(−γt), is close to −1 for bt > 1 (i.e., t > 1/b). The fast-

scattered radiation is in antiphase with the incoming radiation and their sum is

a(t) + afs(t) = a0(t)J0

(

2
√
bt
)

e−iωat, (16)

which oscillates with the resonant frequency of the absorber ωa and decays with the rate

∼ b.

In resonant case (ωs = ωa) the slow part of the scattered radiation is zero [asl(t) = 0]

and the amplitude of the output radiation, a(l, t), coincides with a(t) + afs(t), see Eq. (6).

Thus, only the fast scattered field

afs(t) = a(t)
[

J0

(

√

βt
)

− 1
]

(17)
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is developed in the absorber. Its destructive interference with the incident radiation is seen

as absorption.

Out of resonance (ωs 6= ωa) the fast scattered field is

afs(t) = a0(t)
[

J0

(

√

βt
)

e−iωat − e−iωst
]

, (18)

and the slow part of the scattered radiation field asl(t) is not zero anymore. Its effective

amplitude fsc2(t), defined without exponential factor exp(−γt), has the asymptote

lim
t→+∞

fsc2(t) = e−ib/∆, (19)

see Ref. [25]. Thus, for large t, the amplitude of the fast scattered field, afs(t), tends to the

value −a(t), while the amplitude of the slow scattered field, asl(t), tends to a(t) exp(−ib/∆).

The total amplitude of the scattered field, a(t)fsc(t), has the limit a(t)[exp(−ib/∆) − 1]. If

b/∆ = 2πm, where m is a natural number, the effective amplitude of the scattered field,

fsc(t), is zero. If b/∆ = π(2m + 1) the effective amplitude of the scattered field is −2. In

both cases the absorber becomes transparent for the radiation field since its interference with

the scattered field does not change the amplitude of the radiation field, but its phase, i.e.,

a(t) + asc(t) = ±a(t). For arbitrary value of b/∆ we have a(t) + asc(t) = a(t) exp(−ib/∆).

The transparency of the absorber is explained in the Appendix, where the rate of the

development of slow light is also evaluated. Here we briefly outline two important points of

the formation of slow light. If |ωs − ωa| ∼ γ, the central components of the photon spectrum,

close to ωs, play a crucial role. These components experience less absorption because of the

reduced value of Re[α(ν)] in the transmission integral, Eq. (2). Moreover, due to the normal

dispersion, defined by Im[α(ν)], they propagate with a small group velocity (smaller than

c), see Refs. [26–31].

III. INSTANTANEOUS PHASE SHIFT OF THE INCIDENT RADIATION FIELD

In this section we consider the influence of an instantaneous π-shift of the phase of the

incident field a(t) on the output radiation field from a thick absorber. This phase shift can

be realized by the sudden change of the distance between the source and the absorber, for

example, by a shift of the source towards the absorber on the distance λ/2, where λ is the

wavelength of the radiation field. If the phase shift takes place at t1 > t0, the probability
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amplitude of the photon is described by the equation, see Refs. [10, 11],

aπ(t) = [Θ (t− t0)− 2Θ (t− t1)]e
−(iωs+γ)(t−t0). (20)

The Fourier transform of its amplitude aπ0(t) = aπ(t) exp[iωs(t− t0)] is

Aπ0(ν) =
1− 2e−(γ−iν)(t1−t0)

γ − i(ν +∆)
. (21)

Obviously, such a phase shift changes the photon spectrum, introducing oscillations with a

period (t1 − t0)/2π.

Substituting Aπ0(ν) into Eq. (2) instead of A0(ν) and calculating the integral, we obtain

the expression for the amplitude of the output radiation field

aπ(l, t) = a(l, t)− 2a(l, t− t1)e
−γt1−iωst1 , (22)

where t0 = 0 and a(l, t) is defined by Eq. (2) where the photon spectral function is A0(ν).

Eq. (22) coincides with that found in Ref. [10] for the output radiation field if the input

field experiences the π-phase shift.

A. Resonant case

In resonant case (∆ = 0) Eq. (22) simplifies as follows

aπ(l, t) = a(t)
[

J0

(

2
√
bt
)

− 2Θ (t− t1)J0

(

2
√

b(t− t1)
)]

. (23)

At t = t1 it has a sharp peak whose amplitude aπ0(t, l) = aπ(t, l)e
+iωst+γt is

aπ0(l, t1) = J0

(

2
√

bt1

)

− 2. (24)

The corresponding probability pπ0(l, t) = |aπ0(l, t)|2 is

pπ0(l, t1) =
[

J0

(

2
√

bt1

)

− 2
]2

. (25)

The amplitude aπ0(t, l) and the probability pπ0(l, t) are defined without the exponential fac-

tors exp(−γt) and exp(−2γt), respectively, to visualize their comparison with the amplitude

and probability of the input radiation field, which are unity without these factors for any t1.

Below, for simplicity of notations we introduce the parameter Γ = 2γ, which is the decay

rate of the probability of the incident photon. Neglecting the Bessel function in the equation
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(25) we find that the total probability pπ(l, t) = |aπ(l, t)|2 increases four times with respect

to its value exp(−Γt1) with no absorber between the source and the detector.

Meanwhile, the Bessel function J0

(

2
√
bt
)

has a first minimum with negative value−0.403

when bt1 ≃ 3.67. Therefore, at t1, satisfying this relation, pπ(l, t1) increases even more, i.e.,

5.77 times with respect to the probability of the incident photon p(t1), see Ref. [10]. The

time dependence of the probability pπ(l, t) if bt1 ≃ 3.67 is shown in Fig. 1a.

It is obvious that due to the π phase-shift the absorption of the photon is decreased. To

calculate the total value of the transmitted radiation before and after phase shift we recall

that for a classical field, the total energy, transmitted through a unit area of the absorber

of thickness l, is proportional to

n(l,∆) =

∫ +∞

−∞

a(l, t)a∗(l, t)dt, (26)

For a single photon, this value is proportional to the number of counts of the second detector

in a wide time window without use of the first detector. Substituting a(l, t) from Eq. (2)

into Eq. (26) and calculating two integrals we obtain

n(l,∆) =

∫ +∞

−∞

Φ0(ν)e
−2Re[α(ν)]ldν, (27)

where Φ0(ν) = A0(ν)A
∗

0(ν)/2π is the energy spectral density of the incident radiation field.

In resonance for the phase-shifted photon the time integrated probability is

nπ(T ) =

∫ +∞

−∞

Φπ(ν)e
−2Re[α(ν)]ldν, (28)

where Φπ(ν) = Aπ0(ν)A
∗

π0(ν)/2π is the energy spectrum of the radiation field, which is

2πΦπ(ν) =
1 + 4(e−2γt1 − e−γt1 cos νt1)

ν2 + γ2
, (29)

and α(ν) is defined in Eq. (5), where ∆ = 0. The time integrated probability of the photon

without phase shift for ∆ = 0 is (see Refs. [23, 27, 32])

n(l, 0) = e−αB l/2I0(αBl/2)n0, (30)

where n0 = n(0, 0) = 1/Γ and I0(αBl/2) is the modified Bessel function of zero order. For

large optical thickness (T ≫ 1) the transmitted intensity decreases as n(l, 0) ≈ n0/
√
παBl,

see Ref. [23, 27, 33]. This dependence deviates strongly from the Beer’s law, exp(−αBl),
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for the monochromatic radiation because of low absorption of the long wings of the input

radiation field spectrum Φ0(ν).

A comparison of the thickness dependence of the absorption of the resonant photon

without phase shift, n(l, 0), see Eq. (30), with that for the photon with the phase shift,

nπ(T ), is shown in Fig. 1b. We selected t1, which satisfies the relation bt1 ≃ 3.67 when the

burst takes the maximum probability pπ0(l, t1) = 5.77. With this relation (bt1 ≃ 3.67) time

t1 ≃ 14.67/TΓ decreases with thickness increase. From the plot 1b it is clear that for T ≈ 20

almost 45% of the radiation is not absorbed and transmitted intensity increases ∼ 3.5 times

due to the phase shift.

B. Nonresonant case

If ∆ 6= 0 the functions a(l, t) and a(l, t− t1) in Eq. (22) for the probability amplitude of

the output radiation are described by Eq. (10). As it is shown in Sec. II for the nonresonant

excitation the scattered field a(t)fsc(t) consists of two parts, i.e., the fast a(t)fsc1(t) and the

slow a(t)fsc2(t) radiation fields. If the phase of the incoming field changes to π, the interfer-

ence of the fast radiation with the phase shifted incoming field will produce a spike whose

amplitude increases approximately two times, similar to the resonant case. Meanwhile, if

by the time t1 the slow field a(t)fsc2(t) is developed in the absorber, it will also contribute

to the total amplitude.

The phase of the slow field is defined by the value −b/∆, see Eq. (19). If b/∆ = ±π, the

slow field also interferes constructively with the phase shifted incoming field at t > t1. In this

case we have constructive interference of three fields, i.e., the incoming field, the fast field

a(t1)fsc1(t1), and the slow field a(t1)fsc2(t1). Then, one can expect the spike whose amplitude

is three times larger than the amplitude of the incoming radiation and its probability is nine

times larger. The explicit expression for the amplitude aπ0(l, t) of the spike at t1 is

aπ0(l, t1) = ei∆t1J0

(

2
√

bt1

)

+ fsc2(t1)− 2. (31)

Definite conditions should be fulfilled in order the field a(t1)fsc2(t1) could develop until time

t1 to give an appreciable contribution to the total field. The thicker the absorber, the shorter

time t1 is. Also, with ∆ increase the time of the slow field development shortens. This point

is illustrated in Fig. 2a, where the dependence of the maximum probability of the burst,
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pπ0(l, t1), on the detuning ∆ is shown for T = 26 and different times t1.

For Γt1 = 5 (shown by solid line on the plot) the slow field has time to reach its maximum

amplitude and hence the maximum probability takes place if ∆ = ±2.14Γ. For these values

of the detuning ∆ the slow field has the phase b/∆ = ±3.037, which is close to ±π. This is

just the condition for the constructive interference of the input field with the slow field. For

Γt1 = 5 the contribution of the term exp(i∆t1)J0

(

2
√
bt1

)

to the amplitude of the fast field,

a(t)fsc1(t), is almost negligible, see Eq. (13).

For the shorter time, Γt1 = 2 (shown by dotted line in Fig. 2a), the amplitude of the slow

field does not reach its maximum value, however for ∆ = ±2.6Γ the slow field has a proper

phase (close to ±π) to interfere constructively with the input radiation at t = t1. With

further increase of |∆| the amplitude of the slow field also increases but the absolute value

of its phase, |b/∆|, decreases to zero. Therefore, for large |∆| the real part of the amplitude

of the slow field interferes destructively with the input radiation, while its imaginary part

gives some contribution to the probability pπ0(l, t1). As a result, the maximum value of the

probability of the burst becomes smaller than 4. Besides, the part, exp(i∆t1)J0

(

2
√
bt1

)

, of

the fast field, a(t)fsc1(t), contributes to the signal at t1. Its phase depends on the value of

bt1 due to the oscillations of the Bessel function and on the value of ∆t1 due to the exponent.

The time evolution of the photon probability pπ(l, t1) for Γt1 = 2 and T = 26 is shown in Fig.

2b, where solid line represents the time dependence of the probability when the detuning is

∆ = 2.6Γ and dotted line is for ∆ = 0. Appreciable increase of the amplitude of the spike

for ∆ = 2.6Γ with respect to the resonant case, ∆ = 0, is clearly seen.

For even shorter time, Γt1 = 0.5 (shown by dash-dotted line in Fig. 1a), the slow field

has no time to develop for the detunings |∆| . 6Γ. For large detunings, |∆| & 6Γ, the

slow field is developed to a certain extent, but the absolute value of its phase becomes

appreciably smaller than π and hence the slow field interferes destructively with the phase

shifted incoming field. The part, exp(i∆t1)J0

(

2
√
bt1

)

, of the fast field also changes its phase

due to the exponential factor to the value ∆t1, which is close to ±π for ∆ = ±6Γ, while

J0

(

2
√
bt1

)

is negative and its value is close to the first minimum of the Bessel function. Thus,

the value of product exp(i∆t1)J0

(

2
√
bt1

)

is positive. Therefore, the interference of the slow

field, the part of the fast field, and the phase shifted incoming field, becomes destructive,

which results in the decrease of the probability pπ0(l, t1) with |∆| increase.
For the absorber with a moderate thickness the interference of the three fields produces
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the radiation burst whose probability does not reach its maximum value of 10. However

its probability can be larger than that for the resonant excitation when the slow field is

not developed at all. For example, in the absorber with optical thickness T = 12 the

probability of the radiation burst for the nonresonant excitation is still larger than that one

can observe for the resonant excitation if the condition of the maximum amplitude of the

burst, bt1 ≃ 3.67, is satisfied, see Fig. 3a. Comparison of the time dependence of pπ(l, t)

for resonant excitation (dotted line) and nonresonant excitation (solid line), when the phase

shift takes place in both cases at the same time t1 = 2.5/Γ, is shown in Fig. 3b.

Another interesting feature of the interference of the three fields is the possibility of their

destructive interference, which is seen as a radiation quenching. It takes place for large

resonant detuning ∆ when the phase of the slow field is close to zero while the phase shifted

incoming field has phase π. This case is illustrated in Fig. 4 where time dependence of the

detection probability pπ(l, t) of the radiation with resonant detuning ∆ = 4Γ at the output

of the absorber with optical thickness T = 12 is shown if at time t1 = 2/Γ input radiation

changes its phase to π.

Just after the phase shift the radiation burst is almost negligible since the slow field,

asl(t), and the input field are in antiphase, and they nearly compensate each other. Mostly,

the fast radiation, afs(t), which is not compensated at t1, contributes to the output field.

However, after some short time after t1 a new fast field is generated, which compensates the

previously generated fast field afs(t). Due to their destructive interference the dip in the

time dependence of pπ(l, t) is developed.

Destructive echo signals in the nuclear resonant scattering of synchrotron radiation on

two absorbers, the position of one of which is modulated with respect to the other, were also

found in Ref. [14]. The dip in the time dependence of the probability of scattered radiation

is observed if the second absorber was 5÷ 7 times thicker than the first absorber.

IV. INSTANTANEOUS FREQUENCY SHIFT OF THE INCIDENT RADIATION

FIELD

Instantaneous phase shift of the radiation field is practically impossible. If, for example,

the radiation source suddenly changes its position with respect to the absorber, physically

this change takes a finite time to be performed. For simplicity we assume that at time
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t1 the source starts to move with constant velocity v and it stops at time t2. This is

also idealization, since the source cannot acquire finite velocity v instantly, and it cannot

stop instantly. However, this idealization helps to understand physical processes in the

experiment with suddenly moving source or absorber.

Radiative decoupling and coupling of nuclei by stepwise Doppler-energy shift was studied

for two absorbers, excited by synchrotron radiation, in Ref. [14]

According to the model with constant velocity the phase factor exp(ikr) of the radiation

field changes in a time interval between t1 and t2 as exp[ikr0 + iϕ(t)], where k is the wave

number, r0 is position of the source with respect to the absorber at time t1, and ϕ(t) = kvt,

which we express as follows

ϕ(t) = δω [(t− t1)Θ(t− t1)− (t− t2)Θ(t− t2)] . (32)

Here δω has a meaning of the instantaneous frequency shift of the input radiation to the

constant value lasting from time t1 to t2. It can be expressed as δω = δϕ/τv, where δϕ is a

total phase shift, which takes place in a time interval τv = t2 − t1. The parameters δω, δϕ,

and τv play a crucial role in the effectiveness of the phase shift.

Generally, if ϕ(t) has an arbitrary time dependence, the probability amplitude of the

input radiation field can be expressed as aϕ(t) = a(t) exp[iϕ(t)]. To calculate the probability

amplitude of the radiation field at the output of the absorber we use Eq. (7) in a form

aϕ(l, t) = e−iωst

∫ +∞

−∞

a0(t− τ)eiϕ(t−τ)R(τ)dτ, (33)

which is valid due to the convolution theorem. Taking into account the definition of the

response function R(τ) of the absorber, Eq. (8), and calculating the integral in Eq. (33) we

obtain

aϕ(l, t) = a(t)
[

J0

(

2
√
bt
)

ei∆t+iϕ(0) + fϕ(t)
]

, (34)

fϕ(t) = i

∫ t

0

[ϕ′

t(t− τ)−∆] J0

(

2
√
bτ
)

eiϕ(t−τ)+i∆τdτ, (35)

where ϕ′

t(t− τ) is a time derivative of the function ϕ(t− τ).

Below we consider the model with constant velocity of the source in a time interval τv.

We study the case if δω ≫ b. If the frequency shift δω is comparable or smaller than b,

the phase shift δϕ is not rapid with respect to the dynamical beats originating from the

interference of the fields produced in a multiple scattering of the incoming radiation. Thus,
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such a slow phase shift cannot strongly compete with this interference and produce a sharp

burst of the radiation field.

If δϕ = π and bτv ≪ 1, with the help of Eqs. (34),(35) one can show that the model

with constant velocity gives the same result as the model with the instantaneous phase shift

where τv = 0. If the product bτv is comparable with unity or larger than unity, the phase

shift of the field can produce an essential burst of the radiation if δϕ ≫ π. To prove this we

consider the resonant (∆ = 0) and nonresonant (∆ 6= 0) excitation separately.

A. Resonant excitation

To calculate the integral in Eq. (35) we consider a plane (t, τ), where lines t = τ , t−t1 = τ ,

and t− t2 = τ divide this plane in three domains important for the integration, i.e. I, II, and

III, see Fig. 5. In the domain I we have t− t1 < τ or t− τ < t1 and hence ϕ(t− τ) = 0. In

the domain II the inequality t1 < t−τ < t2 holds and hence ϕ(t−τ) = δω(t− t1−τ). In the

domain III we have t2 < t− τ and hence the function ϕ(t− τ) has again zero value. Thus,

the integral in Eq. (35) is zero in the domains I and III and it gives nonzero contribution

only in the domain II. According to these arguments the integral is zero for t < t1 and it

has nonzero value for t > t1.

The domain II, in its turn, can be divided in two subdomains. One subdomain (b) is

located below the dashed arrow, shown in Fig. 5, and it corresponds to time t1 6 t 6 t2.

The other subdomain (a) is above this dashed arrow and it corresponds to time t > t2. For

the subdomain (b), were t1 6 t 6 t2, the integral in Eq. (35) is reduced to

fb(t) = iδω

∫ t−t1

0

eiδω(t−t1−τ)J0

(

2
√
bτ
)

dτ. (36)

If δω ≫ b, this integral can be calculated by parts iteratively. Retaining only terms not

smaller than b/δω, we obtain

fb(t) ≈ eiδω(t−t1) − J0

[

2
√

b(t− t1)
]

+ i
b

δω







eiδω(t−t1) −
J1

[

2
√

b(t− t1)
]

√

b(t− t1)







. (37)

If bt1 ≫ 1 we can neglect in aϕ(l, t), Eq. (35), the term proportional to the Bessel function

J0

(

2
√
bt
)

. Then, neglecting corrections proportional to b/δω in Eq. (37) we obtain the

following approximation for the probability of the radiation field, pϕ(l, t) = |aϕ(l, t)|2, i.e.,
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its phase dependent part pϕ0(l, t) = pϕ(l, t)/ |a(t)|2,

pϕ0(l, t) ≈ 1 + J2
0

[

2
√

b(t− t1)
]

− 2 cos [δω(t− t1)] J0

[

2
√

b(t− t1)
]

. (38)

which is valid for t1 6 t 6 t2. This probability has a first maximum at δω(t − t1) = π. If

δϕ = δω(t2 − t1) = π and b(t2 − t1) ≪ 1, such an instantaneous frequency shift gives the

same burst whose maximum is 4 as in the case of the instantaneous phase shift [compare

with Eq. (25)]. If δω(t2 − t1) ≫ π, the maxima take place at δω(t− t1) = (2m+ 1)π where

m is a natural number. Their values are

pϕ0(l, t) ≈
{

1 + J2
0

[

2
√

(2m+ 1)πb/δω
]}2

. (39)

The minima of pϕ0(l, t),

pϕ0(l, t) ≈
{

1− J2
0

[

2
√

2mπb/δω
]}2

, (40)

take place at δω(t− t1) = 2mπ. Their values are close to zero if 2mπb/δω ≪ 1.

For the subdomain (a), were t > t2, the integral in Eq. (35) is reduced to

fa(t) = iδω

∫ t−t1

t−t2

eiδω(t−t1−τ)J0

(

2
√
bτ
)

dτ. (41)

If δω ≫ b, this integral can be also calculated by parts iteratively. Retaining only terms not

smaller than b/δω, we obtain

fa(t) ≈ eiδϕf(t− t2)− f(t− t1), (42)

where

f(t) = J0

(

2
√
bt
)

+ i
b

δω
·
J1

(

2
√
bt
)

√
bt

. (43)

With the definition (43) the function fb(t) in Eq. (37) can be expressed as

fb(t) ≈ eiδω(t−t1)f(0)− f(t− t1). (44)

The first term, in this expression can be interpreted as the frequency shifted incoming field

and the second term as the scattered radiation field. Depending on the value of the phase

factor δω(t− t1) these fields interfere destructively or constructively.

Combining the results of the calculation of the integral in the domains I-III, we obtain

the final expression for the probability amplitude of the output radiation

aϕ(l, t) = a(t)
{

J0

(

2
√
bt
)

+Θ(t− t1)fb(t) + Θ(t− t2)[fa(t)− fb(t)]
}

. (45)
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Comparison of the time evolution of the spike after the instantaneous phase shift to π (bold

solid line) and during the instantaneous frequency shift (thin solid line) is shown in Fig. 6.

It is clearly seen from the plot that the burst in the second case consists of two maxima.

The positions of the maxima and minimum are well described by simple relations, i.e.,

δω(t− t1) = π and δω(t− t1) = 3π for the maxima, and δω(t− t1) = 2π for the minimum.

The spike in the second case has reduced intensity and broadened with respect to the spike

in the case of the instantaneous phase shift. The probability pϕ(l, t), calculated with the

help of the approximate expressions for fa(t), Eq. (42), and fb(t), Eq. (44), is shown by

dots. For δϕ = 10 radian, Γτv = 0.3, δω = 33.3Γ, and b = 3Γ the results of the numerical

calculation of the integral and analytical approximations are indistinguishable. It should

noted that in this example the product bτv = 0.9 is close to unity.

B. Nonresonant excitation

For the nonresonant excitation the integral in Eq. (35) is not zero in all three domains,

I, II, and III, see Fig. 5.

In a time interval between t = 0 and t = t1 this integral is fϕ(t) = fIb(t) where

fIb(t) = −i

∫ t

0

∆J0

(

2
√
bτ
)

ei∆τdτ, (46)

and index Ib denotes that the integral is taken in the domain I, subdomain b, which is

located below the dash-dotted line in Fig. 5. This integral coincides with fsc2(t) in Eq.

(14).

In a time interval t1 6 t 6 t2 this integral is fϕ(t) = eiδω(t−t1)fIIb(t− t1) + fIa(t), where

fIIb(t− t1) = −i

∫ t−t1

0

(∆− δω)J0

(

2
√
bτ
)

ei(∆−δω)τdτ, (47)

fIa(t) = −i

∫ t

t−t1

∆J0

(

2
√
bτ
)

ei∆τdτ. (48)

Here index IIb in fIIb(t) denotes that the integral is taken in the domain II, subdomain b,

which is located below the dashed line in Fig. 5, and index Ia in fIa(t) denotes that the

integral is taken in the domain I, subdomain a, which is located above the dash-dotted line.

For t > t2 this integral is fϕ(t) = fIII(t) + eiδω(t−t1)fIIa(t) + fIa(t), where

fIII(t) = −i

∫ t−t2

0

∆J0

(

2
√
bτ
)

ei(∆τ+δϕ)dτ. (49)
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fIIa(t) = fIIb(t− t1)− fIIb(t− t2). (50)

Here index III in fIII(t) denotes that the integral is taken in the domain III in Fig. 5, and

index IIa in fIIa(t) denotes that the integral is taken in the domain II, subdomain a, which

is located above the dashed line.

With these definitions the integral in Eq. (35) can be written as

fϕ(t) = F1(t) + F2(t), (51)

F1(t) = fsc2(t)−Θ(t− t1)fsc2(t− t1) + Θ(t− t2)e
iδϕfsc2(t− t2), (52)

F2(t) = eiδω(t−t1)[Θ(t− t1)fIIb(t− t1)−Θ(t− t2)fIIb(t− t2)]. (53)

If bτv ≪ 1 and τv ≪ t1, the main contribution to the function F1(t) in the time interval,

when the frequency shift takes place, is given by the slow field fsc2(t), developed before the

frequency shift.

If δω ≫ |∆| , b, the function fIIb(t− t1) can be calculated by parts iteratively. Retaining

only terms not smaller than b/(δω −∆), we obtain

fIIb(t− t1) ≈ f∆(0)− ei(∆−δω)(t−t1)f∆(t− t1), (54)

where

f∆(t) = J0

(

2
√
bt
)

+ i
b

δω −∆
·
J1

(

2
√
bt
)

√
bt

. (55)

In a time interval 0 < t < t2 the function fϕ(t), Eq. (35), is approximated as follows

fϕ(t) ≈ F1(t) + Θ(t− t1)[e
iδω(t−t1)f∆(0)− ei∆(t−t1)f∆(t− t1)]. (56)

If during the frequency shift (t1 < t < t2) all three components of this function are in phase

they interfere constructively, what is seen as a burst of the radiation field. For example, the

first spike takes place if the first term F1(t) ≈ fsc2(t), describing the slow field, is negative

and it has maximum absolute value, the second term is negative if δω(t− t1) = π, and the

third term is negative if ∆(t− t1) ≪ 1.

For t > t2 with the same approximations the function fϕ(t) is

fϕ(t) ≈ F1(t) + ei∆(t−t2)+iδϕf∆(t− t2)− ei∆(t−t1)f∆(t− t1). (57)

The time dependence of the detection probability of the radiation field, pϕ(l, t), calculated

with the help of Eq. (34), where fϕ(t) is approximated by equations (56) and (57), is shown
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in Fig. 7 by solid line. For the parameters δϕ = 10 radian, b = 3Γ, t1 = 2.4/Γ, and

τv = 0.3/Γ this approximation is indistinguishable from the exact result, Eq. (34), where

the function fϕ(t), Eq. (35), is calculated numerically. Two plots are represented in Fig. 7.

One (solid line) is for ∆ = 1.5Γ and the other (dotted line) is for the resonant excitation

(∆ = 0). It is clearly seen that two spikes for the nonresonant excitation are larger than for

resonant excitation. As it was shown in the previous subsection, for the resonant excitation

the first maximum of the burst takes place at t = t1 + π/δω. For the nonresonant case it

takes place slightly later, i.e., at t = t1 + π/(δω −∆) if ∆ > 0, or earlier if ∆ < 0.

V. EXPERIMENT

Our experimental setup is based on an ordinary delayed coincidence scheme usually used

in measurements of the lifetimes of nuclear states. The schematic arrangement of the source,

absorber, detectors, and electronics is shown in Fig. 8. The source, 57Co:RH, is mounted

on the holder of the Mössbauer drive, which is used to Doppler shift the frequency of the

radiation of the source. The details of this setup are described in Ref. [30]. The only

difference is in the holder for the absorber and some additional electronics.

The absorber was made of enriched K4Fe(CN)6 · 3H2O powder with effective thickness of

13.2. It was glued on a polyvinylidene fluoride (PVDF) piezo polymer transducer (thickness

28 µm, model LDT0-28K, Measurement Specialties, Inc.). Several piezoelectric transducer

constructions were tested to achieve controlled phase change of the radiation field. The best

of them was a piece of 28 µm thick, 3×5 mm polar PVDF film coupled to a plexiglas backing

of ∼ 2 mm thickness with epoxy glue. The PVDF film was driven with a square wave pulse

from Ortec Gate&Delay Generator (Model 416A ) or Mini-Circuits Model ZPUL-21 Pulse

Amplifier. They were triggered by the positive/negative output of the 122 keV channel

constant fraction discriminator. The rise time of the driving pulse was about 18 nsec and

10 nsec for Gate&Delay Generator and Pulse Amplifier, respectively.

To calibrate a time resolution of our setup we measured a time spectrum of the decay

of 14.4 keV state with no absorber. The time resolution of 9.1(5) nsec was obtained by

least square fitting the experimental lifetime spectra with the convolution of the theoretical

decay curve and a Gaussian distribution originating from the time resolution function of the

experimental setup (see, for example, Ref. [35] for the procedure). The curve measured for
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a single line source 57Co shows the single exponential decay with a mean life time τlt = 1/Γ

of 140(9) nsec, in good agreement with the mean lifetime and the natural linewidth data for

the 14.4 keV state of 57Fe.

Our experimental results of measurements of time dependence of the transmission through

the absorber with effective thickness of 13.2 are shown in Fig. 9. Different detunings ∆ are

obtained by Doppler shift the radiation frequency of the source with respect to the resonant

frequency of the absorber. In Figs. 9a-9d and Fig. 9e voltage steps +10V and −4 V,

respectively, were applied across the transducer at time t1 − t0 ≃ 280 nsec. In Fig. 9f a

voltage step +10V was applied at time t1 − t0 ≃ 140 nsec.

In Fig. 9 the background due to accidental coincidences and the fraction of radiation with

recoil, which is nonresonant for the absorber, are subtracted from data. The background

is defined from the counting rate at times preceding the fast front of the incident radiation

pulses. A contribution from the radiation field with recoil is estimated as follows. Theoretical

prediction of its contribution to the radiation probability is pnr(t) = (1 − fs)p(t). Then,

the total probability of the radiation at the output of the resonant absorber is ptot(t) =

pnr(t) + fsp(l, t), where p(l, t) = |a(l, t)|2 is the contribution from resonant photons without

recoil. The convolution of the function ptot(t) with the Gaussian distribution, responsible

for the time resolution of our setup, is proportional to the time dependence of the number

of counts N(t), measured in the experiment. Fitting the experimental time spectra to the

theoretical time dependence of N(t) with and without absorber, in resonance and far from

resonance we obtained fs = 0.75(9), which is consistent with the value fs reported in previous

publications (see, for example, Ref. [36]). These measurements were done without voltage

steps. Photons, emitted with recoil, pass through the absorber with no change since they

are not resonant for 57Fe nuclei. Therefore these photons carry no information about the

absorber and their contribution to the detector counts can be safely removed from the data.

VI. DISCUSSION

The experimental results were fitted with a full theoretical expression based on Eqs.

(34), (35). The shape of the phase function ϕ(t) was obtained by computer fitting the

experimental data. Actually we derived a function describing the charge collection on each

conducting plate of the PVDF transducer, which form a capacitor. We calculated a voltage,
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which is created across the plates of the capacitor by the voltage step applied from the

external source to the transducer. We assumed that the mechanical displacement of the

transducer faces with respect to each other due to piezo effect is proportional to the voltage

across the capacitor. However, such a simplified picture does not take into account the

mechanical properties of the transducer. Each mechanical stress of the transducer creates a

current producing a voltage, i.e., so called charge generator is to be present in the model of

the piezo transducer on the top of the capacitor, formed by the conducting plates. Therefore,

in our imperfect model of the phase function the fitting parameters were not relevant to the

duration of the voltage step of the source, to the capacitance of the transducer, and to the

internal resistance of the voltage source. The shape of the fitting function ϕ(t) is shown in

Fig. 10. Its maximum value δϕ varies between 14 and 10 radian for experimental plots in

Figs. 9 a-d and 9f, where voltage step was +10 V, and it equals −4.5 radian for Fig. 9e,

where voltage step was −4 V. While it describes quite well the main part of the transient

pulse, it fails to describe oscillations obviously seen in the tail of these transients.

The time dependence of ϕ(t), shown in Fig. 10, explains why the transient pulses are quite

extended in our experiments. We assume that mechanical displacement of the transducer

slows down due to the fact that a heavy weight of the absorber affects strongly the mechanical

properties of the light PVDF transducer whose density is nearly 3-4 times smaller.

The plots a-d in Fig. 9 obviously show that the amplitude of the pulse of the photon

revival is larger for the nonresonant excitation (∆ = +1.3Γ and ∆ = −1.4Γ) compared with

that for nearly resonant excitation (∆ = −0.05Γ). With further increase of the resonant de-

tuning (∆ = −1.93Γ) this amplitude decreases. For large detuning (∆ = −2.6Γ) destructive

interference is observed (see Fig. 9e).

The delayed-coincidence spectrum in Fig. 9f is measured when the step voltage is applied

almost two times earlier than in Fig. 9a-9e.

Thus, plots a-e qualitatively confirm our theoretical analysis of the interference of three

fields. In resonance (∆ = 0) the first maximum of the pulse takes place when ϕ(t) = π,

while the first minimum, if observed, takes place when ϕ(t) = 2π. This allows to control

the position of the absorber with an accuracy of half wavelength of γ-ray, which is λ/2 = 43

pm.
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VII. CONCLUSION

We studied theoretically and experimentally the influence of the phase shift of a single

photon wave packet after its leading edge on the transmission through an optically dense

absorptive medium. In exact resonance a photon revival is observed if the phase shift is

equal π. This revival appears due to the constructive interference of the phase shifted part

of the field with the coherently scattered radiation field coming from the absorber excited at

an earlier time. The source of the coherently scattered field is a coherent ringing of resonant

particles in response to the incident radiation field. With no phase shift the interference of

the coherently scattered field with the input radiation field is destructive, which is seen as

acceleration of the radiation damping at the output of a thick absorber. Time integrated

probability of the photon at the output of the absorber decreases due to this destructive

interference and incoherent scattering as well. If the absorption spectrum of an individual

resonant particle in the absorber and the energy spectrum of the photon are both Lorenzian

with the same width, then the phase shift of the photon wave packet allows retrieval of

almost 50% of the radiation at the output of a thick absorber.

If the central frequency of the photon spectrum is detuned from resonance with the

absorber, the spectral components close to the central frequency are less absorbed. They

interact adiabatically with the absorber forming a wave packet, which propagates with

appreciably reduced group velocity. The phase of this adiabatic wave packet ϕa = αBlγ/2∆

depends on the product of the half of the optical thickness of the absorber (T/2) and the

ratio of the halfwidth of the absorption line γ and resonant detuning ∆. The scattered

radiation does not change instantly after the phase shift of the input radiation field. If

ϕa = ±π, then just after the phase shift three fields interfere constructively producing a

radiation burst. They are the phase shifted incident radiation field, the fast coherently-

scattered-radiation field, coming from the absorber excited at an earlier time, and the slow

component, developed before the phase shift.

We expect that the control of a single photon radiation field with the help of a thick

resonant absorber, moving abruptly at a particular moment of time, could be promising for

quantum information and quantum computing. In gamma domain this method helps to

detect extremely small displacements of the absorber with an accuracy of 0.5 Å . Therefore

we expect that this technique could open new opportunities for calibration of displacements
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of the tip of scanning tunneling microscopes.
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IX. APPENDIX

A. Adiabatic approximation

An example of how the integral in Eq. (2) may be evaluated in the adiabatic following

approximation, Ref. [27–31], will be presented here. This approximation describes that part

of the output radiation field, which propagates in the absorber with slow group velocity.

Below it will be shown that adiabatic method gives a nice approximation of the slow part

of the scattered field and provides analytical estimates of the development rate of this field.

If the decay rate γ of the coherence of the nuclear excited and ground states in the

absorber coincides with the decay rate of the probability amplitude of the source photon,

we can introduce a new variable ν1 = ν+ iγ in the integral (2), which corresponds to a shift

of the integration axis in a complex plane. This substitution results in an exponentially

decaying factor Θ(t) exp(−γt) for a(l, t) in Eq. (2), which transforms to the integral

a(l, t) =
a(t)

2π

∫ +∞+iγ

−∞+iγ

i

ν1
exp

(

−iν1t−
ib

ν1 +∆

)

dν1. (58)

In the adiabatic following approach the transmission function α(ν) in Eq. (2) is approxi-

mated by its expansion in a power series near ν = 0. It was shown in Ref. [29] that to

describe the propagation of the adiabatic part of the pulse for the off resonance excitation

one can take only three terms of the expansion. For the transmission function in Eq. (58)

this expansion is
ib

ν1 +∆
≈ ib

∆

(

1− ν1
∆

+
ν2
1

∆2
+ ...

)

, (59)

whose terms have the following physical meaning. The first term, ib/∆, describes the total

phase shift of the field at the output of the absorber. The second term, −ibν1/∆
2, gives
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a time delay of the pulse, td = b/∆2, at the output caused by the reduction of its group

velocity to the value

Vg =
c

1 + αBγc
2∆2

. (60)

The third term of the expansion (59) describes the group velocity (delay) dispersion, Ref.

[29].

To calculate the integral in Eq. (58) with the approximated transmission function (59)

we calculate first the integral

Rs(t) =
1

2π

∫ +∞+iγ

−∞+iγ

exp

[

−iν1(t− td)− i
b

∆
− i

b

∆3
ν2
1

]

dν1, (61)

which is

Rs(t) =

√

∆3

4πb
exp

[

i
∆3

4b
(t− td)

2 − i
b

∆
− i

π

4

]

. (62)

Then, with the help of the convolution theorem we find

aapr(l, t) = a(t)

∫ +∞

−∞

Rs(t− τ + td)Θ(τ − td)dτ. (63)

Integration gives

aapr(l, t) =
a(t)

2
e−ib/∆ {1 + (1− i) [C (∆br(t− td)) + iS (∆br(t− td))]} , (64)

where C(x) and S(x) are Fresnel integrals, Ref. [33], and ∆br =
√

∆3/2πb is a parameter,

which describes the pulse broadening in time due to the group velocity dispersion.

The probability p(l, t), calculated with the help of the approximation, Eq. (64), is com-

pared in Figs. 11 and 12 with that, which is calculated with the help of the exact expression

(10), for different values of the detuning ∆ and b. The adiabatic approximation describes

quite well time evolution of the photon probability for large t. Initial fast oscillatory decay

of the photon probability is not described by this approximation. We conclude that this

approximation can be used for the estimation of the development rate of slow part of the

radiation field developed in the absorber.

According to the adiabatic approximation the front of the photon wave packet experiences

the time delay td = b/∆2 due to the reduced group velocity. The delay time td rises with

increase of the absorber thickness, which is proportional to b. With increase of the absolute

value of the detuning ∆ the delay time td shortens. The front of the photon wave packet

also experiences a time broadening due to the group velocity (delay) dispersion. The time
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broadening tbr is quantified by a parameter 1/∆br =
√

2πb/∆3. Thus, a time when the

probability of the output photon reaches its input value, i.e., when the slow part of the

photon wave packet is formed, can be estimated as td + tbr. For the numerical examples,

given in Figs. 11 and 12, this estimate coincides quite well with time when |aapr(l, t)|2

reaches the value of |a(t)|2, shown by a thin solid line. In Fig.11 this time is 24.3 (a), 7.3

(b), and 2.3 (c) in units 1/Γ. In Fig.12 this time is 41.4 (a), 12.1 (b), and 3.7 (c) in units

1/Γ.

Concluding this subsection we compare the time development of the absolute values of

the effective amplitude of the full scattered field fsc(t), of the fast component fsc1(t) and of

the slow component fsc2(t). Their time dependencies are shown in Fig. 13 for b = 3Γ and

∆ = Γ when these fields are almost in phase for large t since b/∆ ≈ π. It is clearly seen that

the fast component develops really fast compared with the slow component, which reaches

its maximum value with an appreciable delay.

B. Frequency domain arguments

To explain the difference in the development rates of the fast afs(t) and slow asl(t)

components of the scattered field we address to the arguments of the concept that considers

the absorber as a frequency filter, Ref. [27, 30]. First, we express the field as a sum of

resonant ar(t) and nonresonant anr(t) components, i.e.,

a(t) = ar(t) + anr(t), (65)

where ar(t) = Θ(t) exp(−γt − iωat) and ar(t) = Θ(t) exp(−γt)[exp(−iωst) − exp(−iωat)].

The amplitude ar0(t) = Θ(t) exp(−γt+i∆t) of the field ar(t) has sharply rising leading edge,

while the amplitude anr0(t) = Θ(t) exp(−γt)[1− exp(i∆t)] of the field anr(t) rises smoothly

with the rate ∆. Therefore, the former acquires large amplitude transients at the output of

a thick absorber, and the latter develops smoothly if b > |∆|.
To show this, we calculate the Fourier transform of the components ar0(t) and anr0(t),

which are

Ar0(ν) =
i

ν +∆+ iγ
, (66)

Anr0(ν) =
i∆

(ν + iγ)(ν +∆+ iγ)
, (67)
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respectively. The integral in Eq. (2) for the component Ar0(ν), describing the transmission

of the resonant component through the absorber, is easily calculated. It is

ar0(l, t) = Θ(t)e−γt+i∆tJ0(2
√
bt), (68)

which coincides with [1 + fsc1(t)]a0(t).

For the nonresonant component Anr0(ν) this integral can be calculated as follows. Since

Anr0(ν) is a product of Ar0(ν) and ∆/(ν + iγ), then according to the convolution theorem

we have

anr0(l, t) = −i∆Θ(t)

∫ t

0

e−γ(t−τ)ar0(l, τ)dτ. (69)

Here we take into account that the original function of ∆/(ν + iγ) is −i∆Θ(t) exp(−γt).

Thus, the nonresonant component, transmitted through the absorber, anr0(l, t) coincides

with the slow component of the scattered field asl(t).

To explain the difference in the transmission of the resonant and nonresonant components

of the radiation field we compare their spectra. The resonant component Ar0(ν) has long

wings decreasing as i/ν for large absolute values of ν. The spectral wings of the nonresonant

component Anr0(ν) decrease much faster as i∆/ν2. Therefore these components are very

differently filtered by the resonant absorber. By our opinion this is the main feature maiking

a crucial difference in properties of the slow and fast components of the scattered field.

As a proof of this statement we consider another decomposition of the single photon

spectrum in two components, proposed in Refs. [27, 30]. We formally represent the Fourier

transform of the single photon field Eq. (3) as A0(ν) = A0s(ν) + A0a(ν), where

A0s(ν) =
γ

ν2 + γ2
, (70)

A0a(ν) =
iν

ν2 + γ2
, (71)

are the symmetric and antisymmetric parts, respectively. The first part is an even function

whose wings decrease as γ/ν2. The second part is an odd function whose wings drop as i/ν.

The time domain counterparts of these functions are

a0s(t) =
1

2
exp(−γ |t|), (72)

a0a(t) =



















1
2
exp(−γt) if t > 0,

0 if t = 0,

−1
2
exp(γt) if t < 0.

(73)

26



The function a0s(t) has no discontinuity, except a discontinuity in its slope. The function

a0a(t) is a discontinuous function. Therefore, the former should not acquire large amplitude

transients at the output of a thick absorber, and the latter should have them.

Calculating the integral in Eq. (7) for the components a0s(t) and a0a(t) we obtain

a0s(l, t) =







1
2
[a0(l, t)− atr(l, t)] if t > 0,

1
2
exp

(

γt− b
Γ−i∆

)

if t 6 0,
(74)

a0a(l, t) =







1
2
[a0(l, t) + atr(l, t)] if t > 0,

−1
2
exp

(

γt− b
Γ−i∆

)

if t < 0,
(75)

where a0(l, t) = a(l, t) exp(iωst), a(l, t) is defined in Eq. (15) and

atr(l, t) = Θ(t)

{

e−γt+i∆tJ0

(

2
√
bt
)

− eγt
[

e−
b

Γ−i∆ − (Γ− i∆)

∫ t

0

e(i∆−Γ)τJ0

(

2
√
bτ
)

dτ

]}

.

(76)

Time dependence of the absolute values of the amplitudes a0s(l, t) and a0a(l, t) for b = 3Γ

and ∆ = Γ is shown in Fig. 14. These amplitudes are compared with the absolute values

of input amplitudes a0s(t) and a0a(t). It should be noted that since input amplitudes differ

only in sign for t < 0, their absolute values are identical.

The plots in Fig.14 clearly demonstrate that symmetric component is strongly absorbed.

It delays in time and its shape is smoothened and not too much corrupted. This component

does not show fast and strong transients. In contrast, the asymmetric part shows strong

transients. In Fig. 15 these transients are compared with that of the absolute value of the

total field amplitude a0(l, t). The initial sharp rise of the total field amplitude and its first

stage of fast decay coincide well with the transients of the absolute value of the amplitude

of the asymmetric part.

We assume that such a time dependence is defined by the far wings of the spectrum of

the asymmetric component. These wings pass through the absorber, which acts as a stop-

band spectral filter rejecting the frequencies close to the resonance but transmitting the far

sidebands. Just the far wings define sharply rising leading edge of the field amplitude with

no delay.

To give another argument of the role of the spectral wings of the photon spectrum in the

initial sharp rise of the time dependence of the single photon radiation field amplitude, we

remind that if in the photon spectrum A0 = i/(ν+ iγ) one sets γ → 0, then its time domain
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counterpart a0(t) = Θ(t) exp(−γt) will transform simply into the step function Θ(t).
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FIG. 1: (a) Time evolution of the detection probability pπ(l, t) (solid line) of the photon at the

output of the absorber with optical thickness T = 12, which corresponds to b = 3Γ. Time of

the instantaneous phase shift, t1, satisfies the relation bt1 ≃ 3.67, i.e., Γt1 = 1.22, where Γ = 2γ.

Time evolution of the probability of the input radiation is shown by dashed line. (b) Thickness

dependence of the time integrated transmission of the phase shifted photon (dashed line) and a

photon without the phase shift (solid line). Both are normalized to n0.
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FIG. 2: (a) Resonant detuning dependence of the maximum probability of the radiation burst,

pπ0(l, t1) at time t1, when the phase of the input radiation changes to π. Plots are represented

for the absorber with T = 26 and for different values of t1: Γt1 = 5 (solid line), Γt1 = 2 (dotted

line), and Γt1 = 0.5 (dash-dotted line). (b) Time evolution of the detection probability pπ(l, t) of

the photon at the output of the absorber with optical thickness T = 26 if Γt1 = 2: solid line is for

nonresonant case, ∆ = 2.6Γ, and dotted line is for resonant case, ∆ = 0.
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FIG. 3: (a) Dependence of the probability of the radiation burst, pπ0(l, t1), on the resonant detuning

∆ for Γt1 = 2.5 (solid line) and for Γt1 = 1.22 (dashed line). (b) Time dependence of the probability

pπ(l, t) for ∆ = 1.46Γ (solid line) and for ∆ = 0 (dotted line). Optical thickness of the absorber is

T = 12 for (a) and (b).
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FIG. 4: Time evolution of the detection probability pπ(l, t) of the radiation at the output of the

absorber with optical thickness T = 12 (solid line). Input radiation changes its phase to π at

time t1 = 2/Γ. The resonant detuning is ∆ = 4Γ. Time evolution of the probability of the input

radiation is shown by dots.
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FIG. 5: Integration paths of the integral in Eq. (35). See the text for details
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FIG. 6: Evolution of the output probability pπ(l, t) after the phase shift of the input radiation

field to π (bold solid line) and pϕ(l, t) during the frequency shift lasting between t1 = 2/Γ and

t2 = 2.3/Γ (thin solid line). Dotted line shows the analytical approximation of the second case (see

the text). The parameters are b = 3Γ and δϕ = 10 radian.
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FIG. 7: Time evolution of the detection probability pϕ(l, t) of the photon at the output of the

absorber with optical thickness T = 12 for resonant (dots) and nonresonant (solid line) excitations.

The frequency shift of the radiation field δω = 33.3Γ starts at time t1 = 2.4/Γ and terminates at

t2 = 2.7/Γ. The total phase shift of the radiation field is δϕ = 10 radian.
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`  

FIG. 8: Scematic layout of the experimental setup. TAC is a time to amplitude converter. PHA

is a pulse-height analyzer. TA is a timing amplifier. SA is a spectroscopy amplifier. SCA is a

single-channel analyzer. DFG-MD is the Mössbauer driving unit and function generator. HV is a

high voltage supply. This setup differs from that, described in Ref. [30], by square-voltage-pulse

Generator, synchronized via delay line with the pulse coming from the 122 keV detector. The

square voltage pulse feeds PVDF transducer where the absorber is mounted.
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FIG. 9: (Color online) The delayed-coincidence spectra (dots) for the absorber with the effective

thickness T = 13.2 and for different resonant detunings ∆ = ωs−ωa. Time t1, when a step voltage

is applied to the PVDF transducer, is 280 nsec for a-e and 140 nsec for f. Voltage step is +10V

except for e, where it is −4V. Thin solid line (in blue) shows the lifetime curve, measured without

absorber. The thick solid line (in red) shows the theoretical fit.
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FIG. 10: Time dependence of phase ϕ(t) obtained from the fitting of the theoretical model with

experimental data. Maximum value of ϕ(t) at t → ∞ is taken 10 radian for visualization.
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FIG. 11: Time dependence of the detection probability of the output photon, which is calculated

with the help of exact value for the probability amplitude, given in Eq. (10) (thick solid line).

Dotted line shows the result of the adiabatic approximation, given in Eq. (64). Thin solid line

shows exponential decay of the probability of the input photon for comparison. The value of the

resonant detuning ∆ is given in each plot and b = 3. The vertical scale is logarithmic.
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FIG. 12: The same plots as in Fig. 11 for b = 6.
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FIG. 13: Time dependence of the absolute value of the effective amplitude of the full scattered field

fsc(t) (dotted line), of the fast component fsc1(t) (solid line) and of the slow component fsc2(t)

(dash-dotted line). The parameters are b = 3 and ∆ = 1.
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FIG. 14: Time dependence of the absolute values of the amplitudes of the symmetric (a) and

asymmetric (b) components of the incident radiation field (dotted line). Their time dependence at

the output of the resonant absorber is shown by solid lines. The parameters are b = 3 and ∆ = 1.
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FIG. 15: Comparison of time dependence of the absolute value of the total amplitude of the output

radiation field (dotted line) with that of the asymmetric part (solid line). The parameters are the

same as in Fig. 14.
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