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Abstract: We report approximate analytical solutions to the (3+1)-dimensional spatiotemporal nonlinear Schrödinger equation, with the uniform 

self-focusing nonlinearity, and a variable negative radial diffraction coefficient, in the form of three-dimensional solitons. The model may be realized in 

artificial optical media, such as left-handed materials and photonic crystals, with the anomalous sign of the group-velocity dispersion (GVD). The same 

setting may be realized through the interplay of the self-defocusing nonlinearity, normal GVD, and positive variable diffraction. The Hartree 

approximation is utilized to achieve a suitable separation of variables in the model. Then, an inverse procedure is introduced, with the aim to select a 

suitable profile of the modulated diffraction coefficient supporting desirable soliton solutions (such as dromions, single- and multi-layer rings, and 

multi-soliton clusters). The validity of the analytical approximation and stability of the solutions is tested by means of direct simulations. 

PACS number: 42.65.Tg, 05.45.Yv. 

 

1. Introduction 
Light bullets [1], or optical spatiotemporal solitons, in which both the diffraction and group-velocity dispersion (GVD) are 
balanced by the nonlinearity, are challenging objects in nonlinear optics [2]. In addition to their fundamental significance 
as particle-like waves, light bullets can find application in long and short-distance communications, all-optical switching, 
and digital computing, among others [3]. Solitons in Kerr-type self-focusing media are governed by the cubic nonlinear 
Schrödinger (NLS) equation, and they are known to be unstable in two and three dimensions (2D and 3D) in homogeneous 
media, because of the collapse of the wave function. Various schemes to arrest the collapse were proposed, such as the use 
of weaker saturable [4, 5] or quadratic nonlinearities [6-8], the application of the nonlinearity and/or GVD management [9], 
and the use of tandem structures, which are composed of periodically alternating linear dispersive and nonlinear layers 
[10]. 

Higher-dimensional NLS equations admit a broader variety of self-trapping scenarios than their 1D counterparts – in 
particular, "accessible" light bullets [11] and spatiotemporal bullet trains [12] in nonlocal 3D nematic liquid-crystal 
systems. However, the study of the multi-dimensional solitons is impeded by the lack of the corresponding integrable 
systems. 

In this paper we find light-bullet solutions in the framework of the 3D NLS equation with a negative variable diffraction 
coefficient, which depends on the transverse radial coordinate, while the negative GVD and self-focusing nonlinearity are 
uniform. The same equation, in its complex conjugate form, describes a medium with the positive variable diffraction 
coefficient, combined with the uniform normal GVD and self-defocusing cubic nonlinearity. Various optical media which 
admit the nonuniform diffraction, including that with the inverted (negative) sign, are available, such as photonic crystals 
[13]. The opposite relative sign of the diffraction and cubic nonlinearity precludes the collapse in the present case [14], 
although the same feature poses a question, how in principle self-trapped modes may be supported in this case, as the 
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existence of bright spatial solitons requires, usually, identical signs of the nonlinearity and diffraction. As we argue below, 
the comparison with recent works [15] suggests that this counterintuitive result of the interplay of the nonlinearity and 
diffraction is possible because, essentially, the nonzero diffraction is bounded (in the present model) to a finite area, see 
Figs. 1(d), 2(d), 3(d) and 4(d) below. On the other hand, the use of the variable transverse diffraction coefficient makes the 
model and solitary waves found in it akin to the non-autonomous solitons which may be supported by diverse variants of 
the "management" techniques [16,17]. In particular, the stabilization of 3D solitons by a variant of the management based 
on out-of-phase sign-changing oscillations of the nonlinearity and strength of the external trap (i.e., alternation of 
waveguiding and anti-waveguiding segments of the trap, which is a known setting which can support spatial solitons [18]) 
was recently elaborated in Ref. [19].     

To construct the localized modes, we employ the Hartree approximation, which yields a factorized solution with 
separated variables. We then express the solution in terms of two arbitrary (but appropriately chosen) functions, which 
imply a rich structure of the beam field. In particular, one can find localized excitations that include "dromions", ring 
solitons, soliton clusters, etc., which are all derived from the general 3D light bullet solution. The freedom in the choice of 
the functions comprising the solution makes it feasible to formulate an inverse problem: first define appropriate 
expressions of the two arbitrary functions, which describe the desired localized mode, and then find the corresponding 
diffraction coefficient, which produces such a solution. Following this route, we construct some interesting approximate 
analytical solutions for the localized structures. The careful choice of the two arbitrary functions may lead to realistic 
models of dispersion and diffraction in various media. We find that the appropriate diffraction coefficients, leading to 
desirable localized solutions, are often negative and oscillating. Materials displaying such effective diffraction include 
left-handed materials, nematic liquid crystals, and photonic crystals [13]. The stability of the so constructed localized 
solutions is verified by direct simulations. 

The paper is structured as follows. In Sec. 2 the solution method is introduced. Localized solutions are presented in Sec. 
3, and results of simulations are displayed in Sec. 4. Section 5 concludes the paper. 

 
2. The solution method 

We begin the analysis from the scaled (3+1)D spatiotemporal nonlinear Schrödinger equation [2, 9, 13], 
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which governs the propagation of a slowly-varying field envelope u  along coordinate z  in the self-focusing Kerr 
optical medium, characterized by the variable diffraction coefficient ( )rβ , while the coefficient of the anomalous GVD is 

scaled to be 1 . Here 2
⊥∇  is the transverse 2D Laplacian, τ is the retarded time in the reference frame moving with the 

pulse, and 22 yxr +=  is the transverse radial coordinate. Although the form of Eq. (1) seems non-Lagrangian, it can 

be made derivable from the Lagrangian if the equation is divided by coefficient ( )rβ .  
  Dealing with the model in the form of Eq. (1), we will only consider the one with the negative diffraction, 0<β . 

However, applying the complex conjugation to Eq. (1), and using the complex-conjugate field variable, ∗u , it is obvious 
that Eq. (1) is tantamount to a more realistic physical model, combining the positive diffraction, self-defocusing 
nonlinearity, and normal GVD. 
     Using polar coordinates ( )ϕ,r , we search for solutions to Eq. (1) that separate the variables: 

                         ( ) ( ) ( ), , , , ,u z r U z rφ τ φ τ= Φ ,                             (2)           

with the azimuthal part  
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                        ( ) ( ) ( )ϕϕϕ miqm sincos +=Φ ,                            (3)          

where m  is a non-negative real topological charge. Under certain circumstances, the effective topological charge may be 
fractional, allowing the possibility of fractional angular momentum; such a possibility has recently been discussed 
theoretically [20, 21] and demonstrated experimentally [22-24].  
   Parameter [ ]1,0∈q  in Eq. (3) determines the depth of the azimuthal modulation. With this form of the azimuthal 

function, the nonlinearity retains the ϕ  dependence in 2u . Still, we will employ this form of function ( )ϕΦ , to derive 

an equation for U  in which the influence of ϕ  is averaged out, in the spirit of the mean-field approximation. This 
approximation is relevant for the weak nonlinearity and for large q , close enough to 1. 

Substituting expression (2) into Eq. (1) and integrating over ϕ  from 0  to π2 , we obtain the following averaged 

equation, for integer or half-integer m : 
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In the general case, one can represent complex field ( )τ,, rzU  in terms of amplitude A  and phase B :        

                             ( ) ( ) ( ) zikriBerArzU 0,,,, += τττ ,                          (5)  

where 0k  is the propagation constant. The substitution of this expression into Eq. (4) and separation of the real and 

imaginary parts leads to coupled equations for A  and B , 
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   In general, this system of equations is difficult to treat analytically. One approach is to assume specific forms for 
amplitude ( )τ,rA  and the phase ( )τ,rB  and then analyze the resulting equations for the presumed solutions. Another 

possibility is to assume a specific form for B  in terms of A , which formally solves Eq. (6b), and then deal with the 
equation for A . In this work, we consider the simplest possibility, when B  is a constant; hence Eq. (6b) drops out, and 
Eq. (6a) becomes 
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   We treat Eq. (7) by means of the Hartree approximation [25-28], which is based on the product ansatz, 

                                      ( ) ( ) ( )ττ TrRrA =,                                   (8) 

that again separates the variables. Substituting this into Eq. (7), we arrive at the equation 
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Similar to what we encountered above, the nonlinearity does not allow the rigorous separation of the variables. We proceed 
as before, by deriving the averaged equations for R  and T , following the Hartree approximation. Multiplying Eq. (9) 
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by R , integrating it over r  from 0  to ∞  and dividing by ∫
∞

0

2drR , leads to the following equation for ( )τT : 
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Here, it the localization is assumed, ( ) 0=∞→rR  and 
2
1

0 =k  is fixed by scaling. An obvious relevant solution of Eq. 

(10), to be utilized here, is the bright solitary wave, ( ) ( )ττ sech
1

2
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integrated from −∞  to +∞  and divided by ( )∫
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   The treatment of Eq. (11) is more difficult. Using the fact that the function ( )rβ  was not specified yet, we invert the 
procedure: Rather than treating Eq. (11) as an equation for R  with given β , we assume that it is an equation for β  
with given R . Thus, with R  given in a certain form, β  is determined following a procedure which may be facilitated 

by the use of the Hirota binary operator [29, 30], ( ) ( )[ ] ( ) ( )
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amplitude A  can be presented as a quotient, ( )
f
grR = , of two arbitrary nonzero real functions ( )rg  and ( )rf . Then, 

Eq. (11) yields an expression for the diffraction coefficient ( )rβ  in terms of the Hirota’s bilinear form:   
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Hence, by an appropriate choice of functions f  and g  , leading to a localized spatial part R  of the light bullet 
solution, one can determine the diffraction coefficient β  for which such solutions are allowed. 

   At this point it is relevant to recall the full form of the approximate light-bullet solution of Eq. (1), as per substitutions (2), (3), 

(5), and (8): 
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where B = const. and 
2
1

0 =k , as fixed above. Selecting relevant arbitrary functions ( )rg  and ( )rf  in Eq. (13), one may 

construct various localized structures in the models with the diffraction coefficient defined by Eq. (12).  
   A similar inverse problem, i.e., constructing a potential function which would produce a desired solution to the 
equation, was elaborated in Ref. [31] for 1D and 2D Gross-Pitaevskii equations. Crucial to this procedure is the proper 
choice of boundary conditions, in particular those for localized solutions. Below we present relevant examples of so 
generated solutions. 
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3. Localized modes 
While the choice of functions f  and g  is arbitrary, care must be taken to produce physically relevant localized 

solutions. Initially, we choose these functions in Eq. (13) as ( )0
2sin arg −=  and ( )2exp / 2f r= , where 0a  is an 

arbitrary constant. Such a choice leads to the localized excitations resembling "dromions" [32, 33, 34], which decay 
exponentially in all directions, as shown in Fig. 1 (a)-(c) for 160 =a . For given g  and f , the corresponding ( )rβ  is 
calculated from Eq. (12). The graphs of ( )rβ  for different m  are shown in Fig. 1 (d). It is seen that the diffraction 

coefficient vanishes at 0=r , being negative at 0r > . In the limit of 0=q  and for 0≠m , the localized modes feature 

two radial layers. The modes with integer m  are built of m4  bright spots, while half-integer m  give rise to 
asymmetric localized patterns, structured along the azimuthal coordinate and featuring 12 +m  bright spots. 
 

Fig. 1 
 

FIG. 1. (Color online) Typical localized light-bullet patterns (the top row), and the corresponding diffraction function ( )rβ  (the bottom row). Intensity 

isosurfaces of light bullets are displayed for different values of the topological charge, m. Other parameters: 160 =a , 0=q .  

 
It is commonly known that bright spatial solitons exist under the action of the diffraction and cubic nonlinearity with 

identical signs, while, in the present case, ( ) 0<rβ  has the sign opposite to that of the cubic term in Eq. (11). Actually, 
solitons may exist in this setting due to the fact that nonzero values of ( )rβ  are confined to a finite region, as seen in Fig. 

1(d). To better understand this feature, we refer to recent works [15], which are dealing with the normal diffraction and 

self-defocusing cubic term, the coefficient in front of which quickly diverges at | |x → ∞ : 
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In spite of the "wrong" relative sign of the diffraction and nonlinearity, this equation gives rise to stable bright solitons, 

including, for instance, an exact solution for the dipole soliton, ( ) ( )⎥⎦
⎤

⎢⎣
⎡ +−= 23

2
1exp

2
, xizxxzu . Now, dividing Eq. (14) 

by ( )2exp 2x , and taking into regard that function ( )2exp 2x−  is, practically, different from zero in a finite region, we 

conclude that the stationary version of the so obtained equation is quite similar to those considered above with the negative 
diffraction coefficient confined to the finite region. This comparison helps to understand the reason for the existence of 
bright solitons in the present model.    

Examples of multiple dromion-like [32, 33, 34] and multiple-ring [35] axially symmetric modes are obtained with other 
choices of functions g  and f . For instance, the light bullets obtained with  

     ( )2rLrg m
n

m= ,   
2

2
1r

ef = ,                            (15) 

where m
nL  are the generalized Laguerre polynomials and n  is an integer, are displayed in Figs. 2 and 3. Parameters q , 

m  and n  control the shape of these modes as per Eq. (13), for the corresponding ( )rβ  functions, which are calculated 
from Eq. (12) and displayed in Figs. 2 (d) and 3 (d). When 0=m  ( 1=q ), the multi-dromion (multi-ring) solutions can 

be obtained for different values of n . For 0=n , a single-dromion solution of the instanton type is found, see Fig. 2 (a), 
and multi-dromions are obtained for 1≥n . Two- and three-layer dromions are plotted in Figs. 2 (b) and (c). The 
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multi-dromion modes feature 1+n  layers for 1≥n .  
 

Fig. 2 
 

FIG. 2. (Color online) (a), (b), (c): Isosurface profiles of the multi-dromion modes for 0=m  and 2,1,0=n , respectively. (d) The corresponding 
diffraction functions. 
 

   Modes shaped as thin rings are obtained with 1=m  and 1=q . Examples of the rings are shown in Fig. 3. For 0=n , 

the single-ring mode is shown in the left panel of Fig. 3. For integer 1≥n , these light bullets feature 1+n  layers, see 
panels (b) and (c) in Fig. 3.  
   The corresponding diffraction coefficient is presented in Fig. 3 (d), for 1=m  and different values of n . In this case 
too, β  is negative, being zero at the center. As mentioned, possible materials for the observation of such light bullets 

might be nematic liquid crystals (NLCs), photonic crystals, and left-handed materials. The self-focusing of the light beam 
in bulk NLC was reported in Ref. [36]. It is relevant to mention that the field-induced complex refractive index changes in 
nano-dispersed NLCs, exhibiting negative and positive refractive indices, achieved at different values of the strength of the 
applied field and different anchoring conditions, over a broad spectral regime. Partially incoherent spatial solitons have 
been observed in undoped E7 NLC cells [37, 38]. These incoherent solitons (“nematicons”) were generated at milliwatt 
power levels in voltage-biased planar cells. 
 

Fig. 3 
 

FIG. 3. (Color online) (a)-(c) Intensity distributions in the ring-shaped modes, for 1,1 == mq  and 2,1,0=n , from left to right. (d) The 
corresponding dispersion functions. 
 

It is also possible to construct bound states of an arbitrary number of localized modes. For this purpose, we introduce 

f  and g  as Gaussian functions, ( )∑
=

−−+=
N

n

rr
n

nebag
1

0
2

 and ( )∑
=

−−+=
J

j

rr
j

jecdf
1

0

2

, where ( )00 ≠a , nb , ( )00 ≠d , 

jc , nr  and jr  are arbitrary constants. The analytical solution given by Eq. (13) in this case, and the corresponding 

function ( )rβ  given by Eq. (12), can be easily written down. The number of localized modes in the bound state is 
controlled by N  and J , and the amplitude and the location of each mode are determined by parameters 0a , nb , 0d , 

jc , and nr , jr , respectively. This type of clustered solutions, generated by Eq. (13), can generate sundry profiles. For 

example, choosing 5=N ,  1=J , 11054320 ======= cdbbbba , eb 21 = ， and ( )0,01 =r , ( )2,22 =r , 

( )2,23 −−=r , ( )2,24 −=r , ( )2,25 −=r , we obtain the patterns shown in Fig. 4. 
In Fig. 4(a), 0=m  gives rise to a complex built of five localized modes, with the one located at the center having a 

smaller amplitude than the other four. For 1=m , the pattern is formed by six local modes, with two of them, that have the 
lower amplitude, set close to the center, see Fig. 4 (b). Half-integer m  gives rise to an asymmetric pattern, see Fig. 4 (c). 
As seen in Fig. 4(d), the diffraction coefficient supporting the clustered patterns must again be negative.  

 

Fig. 4 
 

FIG. 4. (Color online) (a)-(c) Bound state in the form of clustered Gaussians, and (d) the corresponding diffraction functions, for 23,1,0=m . The 

corresponding functions g  and f  and other parameters are defined in the text. 
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4、Comparison with direct simulations 
The expression given by Eq. (13) is an approximate solution of Eq. (1). Therefore, it is necessary to verify the 

existence and stability of the so predicted states by means of a direct numerical solution of Eq. (13), which was done with 
the help of the split-step beam propagation method [28, 39], for the initial configuration taken as per Eq. (13) at 0z = , 

( ) ( ) ( ) iBe
f
g

q
miqmru τϕϕτϕ sech

1
sincos2,,,0

2+
+= , 

the same functions ( )g r  and ( )f r  as in Eq. (15), and the corresponding diffraction-coefficient function, see Eq. (12). 

Setting 23=m  and 1=n , the corresponding plot of the intensity distribution, ( )2,,, τϕrzu , as produced by the 

numerical solution, is compared to the respective approximate solution, given by Eq. (13), for 0=q  and 1=q . The 

numerical solution does not give to any visible instability, and good agreement with the approximate analytical solution is 
observed. Similar behavior was seen for other initial conditions.  
 

Fig. 5 
 

FIG. 5. (Color online) Comparison of the approximate solutions with their numerical counterparts for 1=q  (left column) and 0=q  (right column). 
(a) The intensity distribution as predicted by the analytical expression (13). (b) The respective numerical solution of Eq. (1), after propagation distance 

50=z . The corresponding functions g  and f  and the parameters are defined in the text. 

 
5、Conclusions 
    In this work, we have studied localized modes in the (3+1)D spatiotemporal nonlinear Schrödinger equation with the 
self-focusing nonlinearity, anomalous GVD, and a variable negative diffraction coefficient, which is effectively confined 
to a finite region. The same model applies to the medium combining the positive diffraction, self-defocusing nonlinearity, 
and normal GVD. Using the Hirota’s bilinear method and Hartree approximation, we have determined a variety of profiles 
of the modulated diffraction coefficient that can maintain light-bullet modes with different desired shapes. Specific 
features of the localized patterns supported by such engineered profiles of the diffraction coefficient were discussed. The 
existence of the spatially localized modes, despite the negative relative sign of the cubic nonlinearity and diffraction, was 
explained qualitatively, a key property being the fact that the diffraction coefficient is different from zero in a finite region. 
The validity of the analytical approximation was verified by direct simulations of the underlying NLS equation.  
 

This work is supported by the Nature Science Foundation of Guangdong Province under Grant No.1015283001000000, 
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