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We present a method for rapid modeling of new Bragg ultra–cold atom interferometer (AI) designs
useful for assessing the performance of such interferometers. The method simulates the overall effect
on the condensate wave function in a given AI design using two separate elements. These are (1)
modeling the effect of a Bragg pulse on the wave function and (2) approximating the evolution of
the wave function during the intervals between the pulses. The actual sequence of these pulses and
intervals is then followed to determine the approximate final wave function from which the interfer-
ence pattern can be calculated. The exact evolution between pulses is assumed to be governed by
the Gross–Pitaevskii (GP) equation whose solution is approximated using a Lagrangian Variational
Method to facilitate rapid estimation of performance. The method presented here is an extension
of an earlier one that was used to analyze the results of an experiment [J.E. Simsarian, et al., Phys.
Rev. Lett. 83, 2040 (2000)], where the phase of a Bose–Einstein condensate was measured using
a Mach–Zehnder–type Bragg AI. We have developed both 1D and 3D versions of this method and
we have determined their validity by comparing their predicted interference patterns with those
obtained by numerical integration of the 1D GP equation and with the results of the above experi-
ment. We find excellent agreement between the 1D interference patterns predicted by this method
and those found by the GP equation. We show that we can reproduce all of the results of that
experiment without recourse to an ad hoc velocity–kick correction needed by the earlier method,
including some experimental results that the earlier model did not predict. We also found that this
method provides estimates of 1D interference patterns at least four orders–of–magnitude faster than
direct numerical solution of the 1D GP equation.

PACS numbers: 03.75.Dg,67.85.Hj,03.67.Lx,03.75.Kk,42.50.Gy

I. INTRODUCTION

It is possible to use ideas inspired by advances in
quantum information science (QIS) to devise improved–
performance matter–wave interferometers. A recent ex-
ample of this has been seen in neutron interferometry
where the idea of decoherence–free subspaces was used
to redesign a neutron interferometer to reduce the effect
of mechanical shaking on the interference contrast [1, 2].
The use of ideas from QIS to drive new neutron inter-
ferometer designs may also be possible for atom interfer-
ometers. Two promising areas of QIS where this could
happen include decoherence avoidance and minimization.
Interferometer applications where QIS–inspired redesigns
may result in improved performance include precision
navigation and metrology. This paper presents a tool
for rapid assessment of new atom-interferometer designs
for such applications.
Atom interferometers (AI), where laser light is applied

to ultra–cold atoms, have many applications. These in-
clude quantum decoherence [3, 4], properties of Bose–
Einstein condensates [5–8], precision measurement of the
fine-structure constant [9, 10] and testing the charge neu-
trality of atoms [11]. Atom interferometers are also used
in many precision measurement devices. These include
gravimeters, gyroscopes, and gradiometers which all have
important applications in precision navigation [12–14].
Atom interferometers also have applications in atomic
physics such as atomic polarizability measurements and
Casimir–Polder potentials for atoms near surfaces [15].

More uses of atom interferometry are described in Ref.
[16].
With the advent of gaseous Bose–Einstein condensates

(BEC) [17–21], strong interest has developed in using AIs
for precision metrology [10, 22–28]. Most of these ultra–
cold atom interferometers were of the standard Mach–
Zehnder design. However, some more recent precision
interferometers [10] have different designs. This also sug-
gests that advances in interferometer design may lead to
significant AI performance gains.
There are many factors that can limit the performance

of an AI. Some of these include mirror vibration, random
initial motion of BECs at birth, stray light, external mag-
netic fields, and errors in the frequency or intensity of the
applied laser light. Atom interferometers confined on an
atom chip can have other problems related to atom loss,
heating, and decoherence [29]. One of the ways in which
some of these factors may be addressed is with new AI
designs.

In order to pursue the program of drawing ideas from
QIS to inspire new AI designs, it will be necessary to de-
velop tools that can be used to provide rapid assessment
of the performance of these new designs. In this work we
present a method for rapid simulation of the behavior of
condensates in Bragg interferometers. We assume that
the evolution of the condensate between Bragg pulses is
described by the Gross–Pitaevskii (GP) equation. The
method approximates the evolution of the condensate
wave function by modeling the effect of individual pulses
and its evolution between pulses. Thus the final conden-
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sate wave function can be found enabling the prediction
of the final interference pattern. As will be seen below,
our method provides reasonable estimates of AI behav-
ior in a time that is four orders–of–magnitude faster than
that needed for numerical solution of the (1D) GP equa-
tion to simulate a standard Mach–Zehnder AI. The time–
savings factor for 3D simulation will be greater. Such a
tool will be essential for preliminary testing of new AI
designs having more pulses and longer evolution times.
In Section II we describe the standard π/2–π–π/2

Bragg interferometer followed in Section III by a gen-
eral overview of the two elements of our Bragg proto-
typer model and the details of the original model used
in the analysis of a Bragg interferometer experiment
carried out at NIST [30]. In the original model each
definite–momentum cloud in the condensate wave func-
tion was represented by a single gaussian. An extra ve-
locity “kick”, caused by the repulsion of the separating
clouds after a π/2 Bragg pulse, was needed to obtain
agreement with the experimental results. A study of this
kick for a single pulse was conducted as a function of
interaction strength of the condensate and the results
are presented in Section IV. Section V presents the two–
cloud version of our Bragg prototyper model for both the
1D and 3D cases. Finally, Section VI contains a summary
and discussion of the possible applications of the method.

II. BRAGG ATOM INTERFEROMETER

A Bose–Einstein condensate (BEC) can be coher-
ently split into two clouds, a fast–moving cloud and a
slow–moving cloud, through the application of a Bragg
pulse [31]. If the condensate is stationary when a Bragg
pulse is applied to it, then the result will be two clouds,
one that remains stationary and another whose momen-
tum is h̄∆k = h̄(k1 − k2) where k1 (k2) is the photon
momentum of the higher (lower) frequency laser beam.
If the condensate is moving with this momentum when
the Bragg pulse is applied, then the result is again two
clouds one of which keeps its momentum while the other
cloud’s momentum is reduced by h̄∆k. In either case,
the net result of applying a Bragg pulse to a condensate
is a fast cloud and a slow cloud. One of these clouds has
the momentum of the original cloud and the momentum
of the other cloud is increased (decreased) if the original
cloud was slow (fast).
A Mach–Zehnder–type Bragg interferometer can be

constructed by applying three Bragg pulses in the se-
quence π/2–π–π/2 with variable time intervals between
them [32]. This is shown in Fig. 1 where the open circle
shows the initial condensate which may be released from
the trap and allowed to expand for a time T0. The first
π/2 pulse splits the condensate into a slow cloud (upper
path) and a fast cloud (lower path). After a time inter-
val T1 the π pulse is applied which stops the fast (lower)
cloud and starts the slow cloud so that the two clouds
come back together. The final pulse is applied after a

T0 T2

ππ/2 π/2

T1 T3

δx

FIG. 1: (color online) This figure shows the sequence of Bragg
pulses (represented by green arrows) applied to a condensate
in a π/2–π–π/2 Bragg interferometer. The vertical (horizon-
tal) direction represents space (time). See text for further
details.

time T2 when the two clouds again overlap causing each
cloud to split again. After a further time T3 there is a pair
of overlapping slow clouds and a pair of overlapping fast
clouds that give rise to the final pattern that is imaged
at that moment.

III. BRAGG INTERFEROMETER

PROTOTYPER MODELS

The operation of an arbitrary Bragg AI can be specified
by stating the times and angles of the Bragg pulses ap-
plied to the condensate. Although it is possible to apply
a Bragg pulse having an arbitrary angle, θ, here we will
restrict our attention to pulses where θ = π or θ = π/2
radians. Hence these pulses will either split clouds into
two equal pieces, one fast and one slow, or will leave the
condensate whole and merely swap its fast or slow veloc-
ity. Thus we only consider interferometer sequences that
are composed of π/2 and/or π pulses.

A. Overview of prototyper models

Our general prototyper model will enable us to ap-
proximate the evolution of the condensate wave function
through all of the steps of any given interferometer se-
quence. We assume that the duration of all Bragg pulses
is short compared to the characteristic time for collective
effects of the condensate to be manifested. This time is
usually h̄/µ where µ is the chemical potential of the con-
densate. This means that we assume that any changes
in the momentum space distribution of the condensate
atoms caused by a Bragg pulse happen instantaneously.
We further assume that the characteristic size of any mo-
mentum change is large in the sense that the wavelength
of the photon causing the change is small compared to
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the size of the condensate. Finally we assume that the
evolution of the condensate between pulses is governed
by the Gross–Pitaevskii equation.
Our Bragg prototyper method therefore has two es-

sential elements: (1) an approximation of the effect of
a Bragg pulse on the condensate wave function, and (2)
a model for approximating the GP–governed condensate
wave function behavior between pulses. The method con-
sists of applying these two elements to the pulse sequence
of the given interferometer design to produce an approx-
imate final condensate wave function so that predictions
about the measured interference patterns can be made.
For the first element, as will be described in more detail

below, we represent the condensate wave function at any
moment as a superposition of a number of fast or slow
gaussian clouds. We model the effect of Bragg pulses as
follows. If the wave function for a given cloud in the con-
densate wave function is ψ(r, t) before the Bragg pulse,
then the change in this wave function is, for
slow clouds:

ψ(r, t) → 1√
2

(

ψ(r, t)− e−iφei∆k·rψ(r, t)
)

(π/2 pulse)

ψ(r, t) → −e−iφei∆k·rψ(r, t) (π pulse) (1)

and for fast clouds:

ψ(r, t) → 1√
2

(

eiφψ(r, t) + e−i∆k·rψ(r, t)
)

(π/2 pulse)

ψ(r, t) → eiφe−i∆k·rψ(r, t) (π pulse) (2)

where ∆k is the momentum change for Bragg pulses
defined above. The factor φ is the phase of the mov-
ing standing wave in the center of the initial atomic
wavepacket in the middle of the Bragg pulse [32]. Thus
the action of a π/2 pulse is to double the number of
clouds, adding a new fast cloud on top of a previously
existing slow cloud and adding a new slow cloud on top
of a previously existing fast cloud. In each case the shape
of the previously existing cloud is unchanged. The action
of a π pulse is to convert a previously existing slow (fast)
cloud into a fast (slow) cloud.
For the second element we use the Lagrangian Vari-

ational Method (LVM) [33, 34] to approximate the con-
densate evolution between pulses. Although it is possible
to solve the 3D GP equation to determine this evolution,
this is not practical for rapid estimation of the final con-
densate wave function. The LVM provides approximate
solutions to the GP equation in the form of equations
of motion for time–dependent parameters that appear in
an assumed trial wave function. Thus the exact solution
of the GP equation that requires the solution of a 3+1
partial differential equation is traded for approximate so-
lutions that can be obtained by solving a system of or-
dinary differential equations in time. We briefly review
this method now.
The GP equation is given by

ih̄
∂Ψ

∂t
= − h̄2

2m
∇2Ψ+ Vtrap(r)Ψ + gN |Ψ|2 Ψ (3)

where we assume that any trapping potential is har-
monic:

Vtrap(r) =
1
2mω

2
xx

2 + 1
2mω

2
yy

2 + 1
2mω

2
zz

2. (4)

where m is the mass of a condensate atom.
Here we will introduce scaled variables that will be

used throughout the rest of the paper. First we choose a
length unit appropriate to the harmonic potential: L0 =
(h̄/2mω̄)1/2 where ω̄ = (ωxωyωz)

1/3 and then define the

energy unit as E0 = h̄2/2mL2
0 and the time unit as

T0 = h̄/E0. We then introduce scaled position and time
variables as x̄ = x/L0, ȳ = y/L0, z̄ = z/L0, t̄ = t/T0,
and use barred quantities in general to represent quan-
tities expressed in the scaled units. If, additionally, we
write the condensate wave function in scaled units as
Ψ = Ψ̄/L

3/2
0 then the GP equation becomes

i
∂Ψ̄

∂t̄
= −∇̄2Ψ̄ + V̄trap(r̄)Ψ̄ + ḡN

∣

∣Ψ̄
∣

∣

2
Ψ̄ (5)

where ∇̄2 = ∂2/∂x̄2 + ∂2/∂ȳ2 + ∂2/∂z̄2 and

V̄trap(r̄) =
1
4γ

2
xx̄

2 + 1
4γ

2
y ȳ

2 + 1
4γ

2
z z̄

2 (6)

and where γη = ωη/w̄, η = x, y, z and ḡ = g/(E0L
3
0).

The LVM produces equations of motion for the m
time–dependent variational parameters that appear in a
given trial wave function ψ̄trial(r̄; q1(t), . . . , qm(t)). The
equations of motion are obtained from the LVM La-
grangian via the usual Euler–Lagrange equations of mo-
tion:

d

dt

(

∂LLVM

∂q̇j

)

− ∂LLVM

∂qj
= 0. j = 1, . . . ,m. (7)

The LVM Lagrangian, in turn, is computed by integrat-
ing the LVM Lagrangian density

LLVM(q1(t), . . . , qm(t)) =

∫

d3rL
[

ψ̄trial(r̄, t)
]

. (8)

Finally, the LVM Lagrangian density that corresponds to
the GP equation is given by

L [ψ] = i
2 (ψψ

∗

t − ψ∗ψt) + ∇̄ψ∗ · ∇̄ψ + V̄trap(r̄) |ψ|2

+ 1
2 ḡN |ψ|4 , (9)

where ψt denotes the partial derivative of ψ with respect
to t. In order to get equations of motion relevant for a
Bragg interferometer, we must choose a trial wave func-
tion. In this work we present equations of motion for
single–cloud gaussian trial wave functions in three di-
mensions and two–cloud gaussian trial wave functions for
both one and three dimensions.
An alternative approach to efficient approximate solu-

tion of the GP equation in interferometric applications
has recently been presented by Jamison et al. [10]. It is
based on a generalization of the Thomas-Fermi method
originally proposed by Castin and Dum. [35]
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FIG. 2: (color online) This figure shows the evolution of a 1D
condensate that is initially released and allowed to expand
until T = 1 scaled time unit at which time a π/2 Bragg pulse
is applied. The scaled velocity imparted by the Bragg pulse
to the fast cloud is v̄L = 16 scaled velocity units. (a) The
initial condensate density just after the trap is turned off,
(b) after the π/2 Bragg pulse is applied, the density exhibits
rapid oscillations in the region where the fast and slow clouds
overlap, (c) and (d) nearly complete and complete separation.
The value of ḡN = 10 in scaled units.

B. 3D single–cloud LVM model

In the single–cloud LVM model we choose the trial
wave function to have the form of a single, three–
dimensional gaussian wavepacket, as was done previously
in Ref. [33]

Ψ̄(r̄, t̄) = Ā(t)
∏

η=x,y,z

e−(η̄−η̄0(t̄))
2/2w̄2

η(t̄)+iᾱη(t̄)η̄+iβ̄η(t̄)η̄
2

.

(10)
Here (x̄0, ȳ0, z̄0) are the coordinates of the center of
the wavepacket. The quantities (ᾱx, ᾱy, ᾱz) are the lin-
ear phase coefficients which govern the motion of the
wavepacket center. The (w̄x, w̄y , w̄z) are the widths of
the gaussian along the three axes and the (β̄x, β̄y, β̄z) are
the quadratic phase coefficients and govern the evolution
of the widths. Finally, Ā(t) is a normalization coefficient
that will be removed from the Lagrangian later when the
normalization constraint is imposed. We can take Ā to
be real because, if Ā had a phase, it would represent an
overall wave function phase which would not be physical.
The equations of motion are derived as described above

and the result is [33]

¨̄η0 + γ2η η̄0 = 0

¨̄wη + γ2ηw̄η = 4
w̄3

η
+ 2ḡN

(2π)3/2w̄xw̄yw̄zw̄η

β̄η =
˙̄wη

4w̄η

ᾱη = 1
2
˙̄η0 − 2β̄ηη̄0 η = x, y, z. (11)

It is worth noting that our equations of motion differ

slightly from those in Ref. [33] because of differences in
the definition of scaled units.

C. NIST experiment and the single–cloud LVM

model

A Bragg AI was implemented at NIST and used to im-
age the phase evolution of an evolving Bose–Einstein con-
densate [30]. In that experiment, a condensate of about
1.8×106 sodium atoms was held in a magnetic trap with
trapping frequencies ωx =

√
2ωy = 2ωz = 2π×27 Hz and

subjected to π/2–π–π/2 pulse sequence. This sequence
was performed both with the trap left on and with the
trap turned off and the condensate allowed to expand for
a time T0. With the trap on, the time conditions were
fixed so that T1 = T2 ≡ T where T was typically 1-2 ms
and the clouds were allowed to expand in order for them
to separate before imaging. In the trap–off case, a series
of runs was carried out in which T1 was held fixed at 1
ms while T2 was varied such that the cloud overlap at the
time of the final Bragg pulse ranged from fast cloud just
arriving at the slow cloud until it had passed through and
was just leaving. This series of runs was performed for
an expansion time of T0 = 1 ms and repeated for T0 = 4
ms.
The results of this experiment were analyzed using the

single–cloud LVM just described [30]. While the results
of the single–cloud LVM model agreed well with exper-
iment for runs performed with the trap on, it did not
agree with experiment for trap–off cases. This discrep-
ancy was due to the presence of an extra relative veloc-
ity between interfering clouds at the moment of the final
Bragg pulse. The extra velocity was caused by repulsion
between overlapping clouds which occurred just after the
first π/2 pulse and again just before the second π/2 pulse.
Agreement between theory and experiment was achieved
by adding in by hand a small relative velocity correc-
tion to the condensate wave function predicted by the
single–cloud model. It is clear that any model able to
account for this repulsion would need to include at least
two clouds. In order to derive a simple model we need to
validate a key approximation by studying this correction
for a single π/2 Bragg pulse.

IV. REPULSION STUDY FOR SINGLE π/2
BRAGG PULSE

Before turning to a two–cloud model, we studied the
effects of fast/slow cloud repulsion on the final relative
velocity of the separating clouds after a single π/2 Bragg
pulse. We performed this study by simulating the ap-
plication of such a pulse on a 1D condensate and its
subsequent evolution by numerical solution of the GP
equation.
In what follows we shall give the value of quantities in

1D scaled units which is a special case of the 3D scaled
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units given above. In these units, all quantities are de-
fined in terms of the length unit L0 =

√

h̄/2mω0 which,
in turn, is tied to a reference frequency, ω0. This fre-
quency is often the trap frequency but need not be as
in the case where the trap has been turned off. Since
these quantities are scaled out of the problem, it will be
useful to give a numerical example of the sizes of the
scaled units. Thus, given a quasi–1D 87Rb condensate
confined in a ω = 2π × 10 Hz trap, the length unit is
L0 = 2.4µm, the time unit is T0 = 15.8 ms, and the ve-
locity unit v0 = 0.015 cm/s. The value of the interaction
strength is varied over the range 0 ≤ ḡ1DN ≤ 200 so that
the transition from non–interacting up to the Thomas–
Fermi regime could be studied. Here, N is the number
of condensate atoms.
Figure 2 shows a typical simulation where a condensate

is released from the trap (panel (a)) and allowed to ex-
pand for until T = 1 scaled time unit at which time a π/2
Bragg pulse is applied splitting the condensate into fast
(on the right) and slow clouds. During the separation the
two clouds push each other apart so that the fast cloud
moves with a velocity v̄f = v̄L+ δv̄ that is slightly larger
than the recoil velocity v̄L caused by the laser light and
the slow cloud drifts backwards with velocity −δv̄. In SI
units, the recoil velocity is vL = h̄∆k/m and, in scaled
units it can be expressed as v̄L = vL/(L0/T0) = 2∆k̄.
The interaction strength of the initial condensate in this
example was ḡN = 10 in scaled units.
To study this velocity “kick”, δv̄, we used the GP sim-

ulations to determine its value as a function of the in-
teraction strength of the initial condensate. The value
of δv̄ for a given value of ḡN was obtained by running
a simulation where a π/2 Bragg pulse was applied. The
velocities of the fast and slow clouds were determined, for
each value of ḡN , as follows. In each run the two clouds
were allow to separate fully after the pulse; a midpoint
between the two clouds, x̄mid, and a time after which
both clouds were fully separated, t̄sep, were then deter-
mined; and then the expectation value of x̄ was computed
numerically for each cloud separately at each time step
in the range t̄ ≥ t̄sep:

x̄slow(t̄) =

∫ x̄mid

−L̄/2

x̄
∣

∣Ψ̄(x̄, t̄)
∣

∣

2
dx̄

≡ x̄slow(t̄sep) + v̄slow(t̄− t̄sep)

x̄fast(t̄) =

∫ L̄/2

x̄mid

x̄
∣

∣Ψ̄(x̄, t̄)
∣

∣

2
dx̄

≡ x̄fast(t̄sep) + v̄fast(t̄− t̄sep) (12)

where L̄ is the length of the numerical grid used in the
GP simulation. Care was taken to make sure that none
of the clouds got close to the edges of the grid. Finally,
the velocities of the fast and slow clouds were extracted
by fitting straight lines to the x̄slow and x̄fast results to
obtain v̄slow and v̄fast. The extra velocity ”kicks” for
each cloud due to repulsion were determined by δv̄fast =
v̄fast − v̄L and δv̄slow = v̄slow. Convergence runs of the
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FIG. 3: (color online) This figure shows the velocity “kick”,
δv̄, versus interaction strength, ḡN . The open circles are
the results obtained from GP–equation simulations; the three
curves show estimates of the velocity kick obtained by equat-
ing the difference in total kinetic energy of the interacting
system and the non–interacting system with 2/3 of the total
interaction energy. These estimates are derived from (1) the
exact GP initial state (solid curve), (2) LVM–approximate ini-
tial state (dashed curve) and (3) Thomas–Fermi approximate
initial state (dotted curve).

GP solver for finer space and time steps showed that
δv̄slow = δv̄fast ≡ δv̄ over the entire interaction strength
range. This shows that momentum was conserved and
supports the picture of two equal–mass clouds pushing
against each other as they separate.
Fig. 3 contains a graph of the velocity kick versus in-

teraction strength for 0 ≤ ḡN ≤ 200. For this set of
simulations, the Bragg pulse was applied and the trap
was turned off simultaneously at t̄ = 0. For the results
shown, the recoil velocity was v̄L = 10 scaled velocity
units. In the example mentioned above this would give
87Rb atoms a recoil velocity of 0.15 cm/s. The result
displayed in Fig. 3 can be quantitatively understood in a
simple way as we now explain.
The velocity kick, δv̄, is the result of mutual repulsion

between the fast and slow clouds as they separate after
the Bragg pulse. From a classical viewpoint, this repul-
sion will result in a change in the total kinetic energy
of the center–of–mass (CM) motion of the two clouds.
Thus the difference between the total CM kinetic energy
of the two interacting clouds and the kinetic energy of the
two non–interacting clouds should be equal to the energy
available for repulsion assuming the repulsion produces
no distortion.
Since the Bragg pulse splits the N–atom condensate

into two equal pieces we can express this equality as (we
begin in SI units and then convert):

Urep =
(

N
2

)

1
2m (vL + δv)2 +

(

N
2

)

1
2m(δv)2

−
(

N
2

)

1
2mv

2
L (13)
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where Urep is the many–body energy available for differ-
ent clouds to repel each other. We can derive an expres-
sion for this from the total many–body interaction energy
given by [20]

Uint =
1
2N(N − 1)g

∫ ∞

−∞

dx |Ψ(x, t)|4 (14)

where Ψ(x, t) is the condensate wave function after the
π/2 Bragg pulse and has the general form

Ψ(x, t) = ψ1(x, t) + ei∆kxψ2(x, t). (15)

We have chosen to distinguish between ψ1 and ψ2, even
though they are the same in our model, for bookkeeping
purposes that will become apparent below. Substituting
Eq. (15) into (14) we have

Uint = g
2N(N − 1)

∫ ∞

−∞

dx

[

|ψ1|4 + |ψ2|4 + 4|ψ1|2|ψ2|2

+

{

2
(

|ψ1|2 + |ψ2|2
)

ψ∗

1ψ2e
i∆kx + (ψ∗

1ψ2)
2
e2i∆kx

+ c.c.

}]

(16)

Here we will make a crucial approximation. This ap-
proximation will be tested by comparison of the velocity
kicks predicted here with those determined by numerical
solution of the GP equation and will be used again in
deriving a two–cloud LVM model.

We assume here that ∆k is large enough so that all of
the integrals containing exponentials such as exp(±i∆kx)
and exp(±2i∆kx) in Eq. (16) can be neglected. This is
equivalent to assuming that the wavelength of the Bragg
pulse light is small compared to the size of the conden-
sate. Hence terms having these exponentials oscillate
rapidly and the integrals containing them approximately
average to zero. The result of this approximation is that
all of the terms inside the curly braces in Eq. (16) can be
neglected and we can write

Uint ≈ g
2N(N − 1)

∫ ∞

−∞

dx
(

|ψ1|4 + |ψ2|4 + 4|ψ1|2|ψ2|2
)

≡ Uself,1 + Uself,2 + Urep. (17)

This last expression suggests a picture of the evolution
of fast and slow clouds during separation. This picture
depends on two assumptions: (1) the separating clouds
do not distort significantly so that the form of the wave
function in Eq. (15) is maintained and, (2) the wavevec-
tor, ∆k, is large enough so that the approximation in Eq.
(17) is valid. In this case, the fast/slow cloud evolution
during separation divides into three categories: (1) self
interaction of the fast cloud, (2) self interaction of the
slow cloud, and (3) fast/slow cloud interaction. The en-
ergy available for this last interaction is suggested by the

above equation:

Urep = 1
2gN(N − 1)

∫ ∞

−∞

4|ψ1|2|ψ2|2dx

≈ 1
2gN

2

∫ ∞

−∞

|ψ|4dx = 2
3Uint. (18)

Here we assume that N ≫ 1 and that ψ1 ≈ ψ2 ≈ ψ/
√
2

where ψ is the (unit norm) condensate wave function
before application of the Bragg pulse as in Eqs. (1) and
(2).
This fact also leads to the last equality because, from

Eq. (17), it is clear that the total energy of interaction
is one part self interaction of cloud 1, one part self in-
teraction of cloud 2, and 4 parts cloud–cloud interaction.
The self interaction terms, according to our picture, are
energies available for expansion while the cloud–cloud in-
teraction either distorts the cloud shapes and/or changes
the velocities of their centers–of–mass. We assume no
distortion so all of this energy is assumed available for
giving the clouds a velocity kick. We can now derive this
kick by substituting the approximate expression for Urep

into Eq. (13) and canceling common factors of N/2:

gN

∫ ∞

−∞

|ψ|4dx = 1
2m (vL + δv)

2
+ 1

2m(δv)2

− 1
2mv

2
L

ḡN

∫ ∞

−∞

|ψ̄|4dx̄ = 1
4 (v̄L + δv̄)

2
+ 1

4 (δv̄)
2

− 1
4 v̄

2
L, (19)

where in second line above we have converted back to
scaled units. Thus we can now write an expression for
the velocity kick:

δv̄ =
[

1
4 v̄

2
L + 2ūsp

]1/2 − 1
2 v̄L, (20)

where

ūsp ≡ ḡN

∫ ∞

−∞

|ψ̄|4dx̄ (21)

and v̄L = 2∆k̄. We can think of the separating clouds
being pushed apart by a spring in between them and ūsp
is the initial energy stored in the spring.
The comparison of values of δv̄ predicted by the above

model with those determined from numerical solution of
the GP equation are shown in Fig. 3. The discrete points
are the numerically determined values and the remaining
three curves are computed via Eq. (20) where ūsp has
been calculated using three expressions for ψ, the initial
state condensate wave function. These three versions of
ψ were (1) the exact initial state from the GP simula-
tion (solid curve), (2) an LVM gaussian cloud where the
gaussian width was the stationary value for a 1D conden-
sate confined in the initial harmonic trap (dashed line),
and (3) the Thomas–Fermi–approximate solution of the
GP equation for the trapped condensate (dotted line).
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All three expressions, as can be seen from the graph,
gave good estimates. We found that using the exact GP
initial state gave near–perfect agreement (to four deci-
mal places) with the kick determined from numerical GP.
The LVM gaussian performed very well for small ḡN and
less well for large while the Thomas–Fermi works well for
large ḡN and less well for small.
This agreement between the numerically determined

kicks and the estimates from our heuristic model lends
support to our picture of the effect of cloud/cloud inter-
action during separation. We will use this in what follows
to develop a two–cloud LVM technique for modeling a full
Bragg interferometer.

V. TWO–CLOUD LVM MODEL

In this section we present a two–cloud LVM model to
approximate the evolution of the condensate wave func-
tion following a π/2 Bragg pulse. The presence of two
clouds will enable the model to account for cloud–cloud
interactions and should be able to predict the velocity
kick accurately. Below we present both 1D and 3D ver-
sions of this model. This will enable us to make quanti-
tative comparisons of our model with the results of 1D
GP simulations of the entire π/2–π–π/2 interferometer.
The 3D model will be useful for assessment of real–world
AI designs. In addition, we also present comparisons of
our 3D two–cloud model with the results of the original
NIST experiment.

A. 1D two–cloud LVM

The trial wave function for the 1D two–cloud LVM
model is taken to be a sum of two 1D gaussian wavepack-
ets where one of them is boosted to a velocity of v̄L =
2∆k̄:

Ψ̄(x̄, t̄) =
Ā1D(t̄)√

2

(

ef1(x̄,t̄) + ei∆k̄x̄ef2(x̄,t̄)
)

(22)

where

fj(x̄, t̄) ≡ − (x̄− x̄j(t̄))
2

2w̄2(t̄)
+ iᾱj(t̄)x+ iβ̄(t̄)x2 (23)

where j = 1, 2. We note here that both the slow cloud
(cloud 1) and the fast cloud share the same width, w̄, and
quadratic phase curvature, β̄ but have differing centers
and linear phase coefficients. This assumption is borne
out in multiple GP simulations as can be seen, for ex-
ample, in Fig. 2. Imposing the normalization condition
yields the following constraint: |Ā1D|2w̄π1/2 = 1 where

all terms containing exponentials such as e±i∆k̄x̄ were
neglected.
Carrying out the procedure described in Section IIIA,

we calculate the LVM Lagrangian by inserting the trial

wave function into the Lagrangian density and integrat-
ing. If we neglect rapidly oscillating terms and impose
the normalization constraint we obtain the following re-
sult.

L̄1D = 1
2
˙̄α1x̄1 +

1
2
˙̄α2x̄2 +

1
2
˙̄β
(

x̄21 + x̄22 + w̄2
)

+ 1
2w̄2 + 1

2

(

ᾱ1 + 2β̄x̄1
)2

+ 1
2

(

ᾱ2 + 2β̄x̄2
)2

+ (∆k̄)
(

ᾱ2 + 2β̄x̄2
)

+ 1
2

(

∆k̄
)2

+ 2β̄2w̄2

+ 1
8γ

2
(

x̄21 + x̄22 + w̄2
)

+
(

ḡN

4(2π)1/2w̄

)(

1 + 2 e−(x̄1−x̄2)
2/2w̄2

)

, (24)

where γ = ω/ω0 is the ratio of the actual trap frequency
to the frequency used to define the length unit.
We find the equations of motion using the ordinary

Euler–Lagrange equations (see Eq. (7)). After some re-
arrangement these equations can be expressed as follows:

¨̄x1 + γ2x̄1 = F
(1D)
12 (x̄1, x̄2, w̄)

¨̄x2 + γ2x̄2 = −F (1D)
12 (x̄1, x̄2, w̄)

¨̄w + γ2w̄ = F (1D)
w (x̄1, x̄2, w̄) (25)

where

F
(1D)
12 (x̄1, x̄2, w̄) ≡

(

2ḡN

(2π)1/2w̄3

)

(x̄1 − x̄2) e
−(x̄1−x̄2)

2/2w̄2

(26)
and

F (1D)
w (x̄1, x̄2, w̄) ≡ 4

w̄3 +
(

ḡN

(2π)1/2w̄2

)

×
[

1 + 2
(

1− (x̄1−x̄2)
2

w̄2

)

e−(x̄1−x̄2)
2/2w̄2

]

(27)

where F
(1D)
12 can be thought of as the “force” of repulsion

between the separating clouds and F
(1D)
w roughly thought

of as the “force” causing the width to change.
The above equations constitute a closed system of

equations to be solved for x̄1, ˙̄x1, x̄2 , ˙̄x1, w̄, and ˙̄w.
Once these equations are solved, the remaining parame-
ters appearing in the trial wave function can be obtained
as follows.

β̄ = ˙̄w
4w̄

ᾱ1 = 1
2
˙̄x1 − 2β̄x̄1

ᾱ2 = 1
2
˙̄x2 − 2β̄x̄2 −∆k̄ (28)

The above system of equations have some interesting
properties that are analogous to those for Newton’s sec-
ond law. For example, if we introduce the center of mass
of the two–cloud system, x̄cm ≡ (x̄1 + x̄2)/2, and the rel-
ative coordinate, x̄rel ≡ x̄1 − x̄2 we find their equations
of motion by adding and subtracting the first two of Eqs.
(25) respectively. They are

¨̄xcm + γ2x̄cm = 0

¨̄xrel + γ2x̄rel = 2F
(1D)
12 (x̄1, x̄2, w̄) ≡ 2F

(1D)
12 (x̄rel, w̄)

(29)
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FIG. 4: (color online) These plots show a comparison of
the interference patterns resulting from a π/2–π–π/2 Bragg
AI computed by the GP equation (dashed line) and by the
Bragg prototyper method. The interferometer times were
(in scaled time units) T0 = 1, T1 = 4, T2 variable, and
T3 = 13.4. The times for T2 are (clockwise from upper
left) T2 = 3.6, 3.8, 4.25, 4.5 scaled time units. The interac-
tion strength for all runs was ḡN = 10 scaled units.

where, in the last equality, we noted that F
(1D)
12 only

depends on the relative coordinate and the width. The
first of the above equations can be solved immediately by
inspection and is equivalent to the classical result that the
CM motion of a system only depends on external forces.
This reduces the total number of equations that must be
solved numerically to the equation for w̄ in Eqs. (25) and
the equation for x̄rel above.
There is also a conserved “energy” that can be written

as

Ē1D = 1
2
˙̄x21 +

1
2
˙̄x22 +

1
2
˙̄w2 + Ū1D(x̄1, x̄2, w̄) (30)

where the “potential energy” Ū1D is given by

Ū1D(x̄1, x̄2, w̄) = 1
2γ

2x̄21 +
1
2γ

2x̄22 +
1
2γ

2w̄2 + 2
w̄2

+
(

ḡN

(2π)1/2w̄

)(

1 + 2 e−(x̄1−x̄2)
2/2w̄2

)

.

(31)

Equations (25) can all be written as the second time
derivative of each coordinate equals the negative partial
derivative of the above potential energy with respect to
the corresponding coordinate (e.g., ¨̄x1 = −∂Ū1D/∂x̄1).
This constant of the motion can be used to estimate the
velocity kick and is also useful as a check on numerics.
Equations (25) and (28) can be used with the rest of

the Bragg prototyper model to simulate Bragg AI be-
havior. We have used this 1D Bragg prototyper model
to predict the results of a π/2–π–π/2 Bragg AI and have
also simulated such an AI with the 1D GP equation. In
these runs, the condensate was released from the trap and

allowed to expand for T0 = 1 scaled time unit. The π/2
Bragg pulse was then applied and, after a time interval
T2 = 4 scaled units, a π pulse was applied followed by a
variable time interval, T2, at which time the final Bragg
pulse was turned on. The clouds were allowed to evolve
for an additional T3 = 13.4 time units. Figure 4 shows
the comparison of the interference patterns predicted by
the Bragg prototyper model and by the GP equation.
Each graph corresponds to a different value of T2. In the
figure, the values were (clockwise from upper left panel)
T2 = 3.6, 3.8, 4.25, 4.5 time units.
The GP equation was solved using a Crank–Nicolson

algorithm on a space grid of width L̄ = 800 length units
and divided into Nx = 32768 space steps over a total time
of t̄max = 22 scaled time units using Nt = 1200000 time
steps. The initial state was computed by integrating the
GP equation in imaginary time with the trap on. The
time needed to obtain fully converged final interference
patterns was about five hours of run time on a commodity
laptop. The time required to obtain the model results on
the same computer was about 1 second, approximately
18,000 times faster. We expect that the speedup factor
for 3D solutions to be 2–3 orders–of–magnitude greater.
This makes our model an essential tool for assessment
of more complicated atom interferometers which result
from new AI designs inspired by quantum information
science.
It is easy to see that the Bragg prototyper model re-

produces the number and spacing of the GP–equation
interference fringes in all cases. The major difference is
that the width and height of the GP fringes are wider and
shorter, respectively, than those in the LVM pattern. It
is likely that the area under the curve in corresponding
GP and LVM fringes is the same. This would make wider
fringes lower and would imply that the number of atoms
in each GP fringe was approximately equal to the number
of atoms in the corresponding LVM fringe.

B. 3D two–cloud LVM

We also derived a 3D version of the two–cloud LVM
model. The derivation is a straightforward generalization
of the 1D version with all of the same assumptions and
approximations. We include the highlights of its deriva-
tion for completeness.
The trial wavefunction for the 3D two–cloud LVM

model is a sum of two 3D gaussians:

Ψ(r̄, t̄) =
Ā3D√

2

(

eF1(r̄,t̄) + ei∆k̄·r̄eF2(r̄,t̄)
)

(32)

where

Fj(r̄, t̄) =
∑

η=x,y,z

(

− (η̄ − η̄j)
2

2w̄2
η

+ i
(

ᾱjη η̄ + β̄ηη̄
2
)

)

(33)

and j = 1, 2. In three dimensions we allow for the pos-
sibility of differing widths, w̄η, η = x, y, z along the
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FIG. 5: (color online) This figure exhibits a comparison of the results of the 3D two–cloud Bragg AI model with the experimental
results given in Fig. 2 of Ref. [30] where the NIST experiment discussed earlier in the text was described. In that experiment,
the evolving phase of a Bose–Einstein condensate wave function was probed using a π/2–π–π/2 Bragg interferometer. (a)
Interference patterns obtained for interferometer runs (top row experiment, bottom row theory) where T0 = 4 ms, T1 = 1
ms, T3 = 2 ms, and T2 was varied so that the cloud–center spacings (δx) at the last Bragg pulse were the values given in the
figure; (b) A quantitative comparison of the case for δx = 11µm (second from right end in panel (a)). The theory curve was
normalized to match the highest experimental peak.

three axes, however we assume that these widths are the
same for both clouds. This holds for the correspond-
ing phase curvature coefficients β̄η, η = x, y, z as well.
It is straightforward to calculate the normalization con-
straint as |Ā3D|2w̄xw̄yw̄yπ

1/2 = 1. We note again that
it was necessary to neglect rapidly oscillating terms that
contained exponentials such as e±i∆k̄·r̄ to arrive at this
result.
The Lagrangian for this trial wave function thus be-

comes

L̄3D =
∑

η=x,y,z

{

1
2
˙̄α1η η̄1 +

1
2
˙̄α2η η̄2 +

1
2
˙̄βη
(

η̄21 + η̄22 + w̄2
η

)

+ 1
2

(

ᾱ1η + 2β̄ηη̄1
)2

+ 1
2

(

ᾱ2η + 2β̄ηη̄2 +∆k̄η
)2

+ 1
2w̄2

η
+ 2β̄2

ηw̄
2
η +

1
8γ

2
η

(

η̄21 + η̄22 + w̄2
η

)

}

+
(

ḡN

4(2π)3/2w̄xw̄yw̄z

)

(

1 + 2 e
−

∑
η=x,y,z

(η̄1−η̄2)
2

2w̄2
η

)

(34)

where γη ≡ ωη/ω̄ and ω̄ is the geometric average of the
three trap frequencies that is used in the definition of the
3D length unit.
The equations of motion that arise from the above La-

grangian are

¨̄η1 + γ2η η̄1 = F
(3D)
12η (r̄1, r̄2, w̄)

¨̄η2 + γ2η η̄2 = −F (3D)
12η (r̄1, r̄2, w̄)

¨̄wη + γ2ηw̄η = F (3D)
wη (r̄1, r̄2, w̄) η = x, y, z. (35)

where r̄j ≡ (x̄j , ȳj, z̄j) with j = 1, 2 and w̄ ≡ (w̄x, w̄y, w̄z)
and where the “force” terms on the right–hand–sides

above are given by

F
(3D)
12η (r̄1, r̄2, w̄) =

(

2ḡN

(2π)3/2w̄xw̄yw̄zw̄η

)(

η̄1−η̄2

w̄η

)

× e
−

∑
η=x,y,z

(η̄1−η̄2)
2

2w̄2
η

F (3D)
wη (r̄1, r̄2, w̄) = 4

w̄3
η
+
(

ḡN

(2π)3/2w̄xw̄yw̄zw̄η

)

[

1 +

2 ×
(

1− (η̄1−η̄2)
2

w̄2
η

)

e
−

∑
η=x,y,z

(η̄1−η̄2)
2

2w̄2
η

]

(36)

The rest of the equations connect the widths, and CM
positions and velocities to the parameters that actually
appear in the trial wave function. These are

β̄η =
˙̄wη

4w̄η

ᾱ1η = 1
2
˙̄η1 − 2β̄ηη̄1

ᾱ2η = 1
2
˙̄η2 − 2β̄ηη̄2 −∆k̄η

η = x, y, z. (37)

The 3D version of the 2–cloud model shares some of the
properties associated with the 1D version. These include
(1) the motion of the CM, r̄cm = (r̄1 + r̄2)/2 is governed
only by the trapping force and, (2) there is a conserved
energy given by

Ē3D = 1
2

∑

η=x,y,z

{

˙̄η21 + ˙̄η22 + ˙̄w2
η

}

+ Ū3D(r̄1, r̄2, w̄) (38)
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FIG. 6: (color online) (a) The spatial fringe frequency versus the cloud separation at the instant the final π/2 pulse is applied.
The data is taken from Fig. 3 of Ref. [30]. The steeper line corresponds to T0 = 4 ms, and the other line to T0 = 1 ms. (b) The
relative velocity between interfering clouds versus T , the interferometer time. Data is taken from Fig. 5 of the cited paper. (c)
An interference pattern comparison between 3D one-cloud LVM (bottom), experiment (middle), and 3D two-cloud LVM (top),
with the trap on during all the steps of the interferometer and T = 1 ms.

where

Ū3D(r̄1, r̄2, w̄) =
∑

η=x,y,z

{

1
2γ

2
η

(

η̄21 + η̄22 + w̄2
η

)

+ 2
w̄2

η

}

+
(

ḡN

(2π)3/2w̄xw̄yw̄z

)

×
(

1 + 2 e
−

∑
η=x,y,z

(η̄1−η̄2)
2

2w̄2
η

)

.

(39)

These equations can now be used as a part of the two–
gaussian–cloud LVM method to predict the behavior of
atom interferometers. We have applied this model to the
NIST experiment described earlier and detailed in Ref.
[30]. Figure 5(a) shows interference patterns obtained
in the experiment (top row) compared with the model.
The timings of interferometer runs that produced these
patterns were T0 = 4 ms, T1 = 1 ms, and T3 = 2 ms. The
values of T2 were varied so that the spacing of the cloud
centers, at the moment the final Bragg pulse is applied,
δx, was as shown in Fig. 5(a).
We see that there is good agreement with the ex-

perimental patterns in terms of number and spacing of
fringes. Figure 5(b) shows a more quantitative compari-
son for the case of δx = 11µm. The data was taken from
Fig. 2 of Ref. [30] and the theory is the result of the 3D
two–cloud Bragg AI prototyper. All of these experiments
were carried out with the trapping potential turned off.
Since the kick is included naturally in our model, there
was no need to add a velocity kick correction to achieve
this level of agreement as there was for the one–cloud
model.
In the NIST experiment, the spatial fringe frequency,

κ, at the last Bragg pulse was measured as a function
of δx for the trap off case. The comparison of these re-
sults with the 3D two-cloud LVM is shown in Fig. 6(a)

where the data is taken from Fig. 3 of Ref. [30]. In
our LVM method, the atom density at the time of the
last pulse oscillates as cos((α2x − α1x)x). Thus we have
κLVM = α2x−α1x evaluated at the time of the last pulse.
The above comparison shows excellent agreement with
experiment. The relative velocity between the clouds in
a given pair was also measured for different values of
T1 = T2 ≡ T when the trap was left on. The data from
Fig. 5(b) of Ref. [30] is shown in Fig. 6(b) along with
the results of the LVM for the relative velocity versus T .
Again we find good agreement with the experiment.
The Fig. 6(c) shows a comparison of the 3D one-cloud

LVM (bottom), 3D two-cloud LVM (top), and experi-
ment (middle), for the interference pattern resulting from
an interferometer run in which the trap was on and T = 1
ms. Although the one–cloud and two–cloud LVM inter-
ference patterns are both qualitatively similar to the ex-
perimental one, it is clear that the two–cloud pattern
agrees better. Thus the apparent agreement between the
one–cloud LVM and experiment presented in Ref. [30] in
the trap–on case without the correction was fortuitous.

VI. DISCUSSION

In this paper we have presented a method suitable for
rapid estimation of interference patterns deriving from
ultra–cold Bragg atom interferometers. The method
achieves this by representing the condensate wave func-
tion as a superposition of fast and slow gaussian clouds
and then modeling the changes caused by (1) Bragg π/2
and π pulses and (2) by approximating the GP–equation
evolution of the wave function during the intervals be-
tween the pulses. Thus, by following the sequence of
Bragg pulses and intervals that occur in a particular
Bragg AI, it is possible to approximate rapidly the final



11

condensate wave function and thus calculate the expected
interference pattern.

In this model, Bragg pulses are assumed to change
the wave function by instantaneous shifts in momentum
space while rapid estimation of the effect of GP evolu-
tion is approximated using an LVM technique. We have
validated the 1D version of this method by comparing its
results with 1D numerical simulations of Mach–Zehnder–
type atom interferometers using the GP equation. The
3D version was validated by comparison with experimen-
tal results presented in Ref. [30]. We found that the
method provides good agreement with interference pat-
terns in both the 1D and 3D cases as regards the number
and spacing of fringes. In the 1D case, we found that our
model obtained the final interference patterns at least
10,000 times faster than direct GP–equation simulation
on the same computer. We expect this factor to be sev-
eral orders–of–magnitude greater for the 3D case.

While the comparison of the results of the method with
1D GP simulations and with 3D experiment is quite good,
there are some differences. In the 1D case, we found
that it was necessary to shift our interference patterns
over to line up fringe locations with the GP results. The
shifts were small; they were at most 10 scaled length units
which was a small difference compared to the width of a
fringe. We did not have enough information about the
experiment to determine if this was necessary in the 3D
case. Also, as can be seen in Fig. 4(a), the fringe heights
differ from the GP pattern. This difference is also present
in the 3D comparison.

There are several possible reasons for these differences.
First, our model tacitly assumes that separating clouds
are not distorted by their mutual interaction since we
model them as gaussians. In the 1D case, this assumption
holds reasonably but not perfectly well over the range of
ḡN considered. GP simulations with larger and larger
ḡN values show that clouds become more and more dis-
torted as the interaction strength increases. Thus some
of the energy available for repulsion can be diverted from
changing the CM velocity into cloud distortion.

Another reason for the difference may lie in our treat-
ment of interacting clouds between the final Bragg pulse
(which creates two fast and two slow clouds) and the time
that an image is taken. During this interval, we use the
two–cloud model to propagate each fast/slow pair sep-
arately and combine them at the end. This neglected
the interaction of the overlapping clouds (the two fast
clouds overlap and the two slow clouds overlap) as the
two cloud pairs move apart. In fact, the T3 interval is
usually longer than all of the other intervals combined so
there is ample opportunity for the two clouds in a pair
to repel each other. This could be accounted for in a
four–cloud model.

We also presented a study of the extra velocity kick
that the slow and fast clouds receive when a π/2 Bragg
pulse is applied to a condensate. When the condensate
splits, the two clouds push against each other as they
separate. This causes the fast cloud to acquire an extra

velocity, δv̄, in addition to the velocity, v̄L, imparted by
the light. The slow cloud recoils at velocity δv̄ due to
conservation of momentum. This study was conducted
in 1D where the evolution of the condensate was sim-
ulated with the GP equation and the value of δv̄ was
determined directly from the simulation as a function of
the interaction strength ḡN . The values of ḡN ranged
from non–interacting up to well into the Thomas–Fermi
regime.

We found that these velocity kicks could be precisely
predicted by setting the energy available for repulsion
equal to the total kinetic energy of the interacting system
minus the kinetic energy of the non–interacting system.
We approximated the energy available for repulsion from
the expression for the total interaction energy by neglect-
ing rapidly oscillating terms involving the wavevector of
the Bragg pulse light. The success of this procedure in re-
producing the velocity kicks reinforces the picture of the
interaction energy being partitioned into self–interaction
energy of individual clouds and energy for cloud–cloud
interaction. And furthermore, that the cloud–cloud in-
teraction only produces a CM velocity change.

It is also important to mention that there are some
phenomena that occur in Bragg atom interferometers
that the model described in this paper might be mod-
ified to handle. Bragg processes often result in elastic
scattering into intially unoccupied transverse momentum
modes [36]. While these processes are not treated by
the GP equation, it is possible to modify the effect of a
pulse in these cases by adding clouds that occupy these
momentum modes and neglecting their interaction with
the mother condensate during separation. These modi-
fications may also address other wave mixing processes
that sometimes occur. Stray light can also cause prob-
lems for Bragg atom interferometers especially for con-
densates trapped near an atom chip. The major effect of
stray light in these cases is to change the internal energy
state of the atom. The model described above can be
generalized to account for multiple internal levels of the
atoms.

Another difficulty for Bragg interferometers is imper-
fections in the Bragg pulse wavefront which causes the
laser intensity to vary across the condensate. In this case,
different condensate atoms experience different pulse ar-
eas which causes the “angle” of the Bragg pulse to vary.
That is, not all atoms will experience either a π or π/2
pulse. Our model can also be generalized to handle Bragg
pulses of arbitrary angle. These “angle” errors in the
pulses are analogous to imperfections in the thickness of
the blades in a neutron interferometer. Such errors can
be addressed by a new AI design that implements this
QIS idea of the “power of one qubit” [37]. The imple-
mentation of this idea for Bragg interferometers will be
the subject of a forthcoming article.

Atom interferometry with Bose–Einstein condensates
hold the promise for applications in ultra–sensitive navi-
gation and precision metrology. We noted earlier the idea
that, because of the connection between quantum algo-



12

rithms and multi–particle interferometers, there is great
potential for using the advances in QIS to inspire ad-
vances in precision interferometer designs. The Bragg AI
prototyping method presented here represents a new tool
for the rapid assessment of new Bragg AI designs. In the
future we intend to apply our tool to design AIs that use
QIS ideas for decoherence avoidance (e.g., decoherence–
free subspaces, [38]) and minimization (e.g., the power of
one qubit,[37]).
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[23] D. Döring, G. McDonald, J. E. Debs, C. Figl, P. A. Altin,

H.-A. Bachor, N. P. Robins, and J. D. Close, Phys. Rev.
A 81, 043633 (2010).

[24] M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman,
L. E. Sadler, and D. M. Stamper-Kurn, Phys. Rev. Lett.
98, 200801 (2007).

[25] J. H. T. Burke, B. Deissler, K. J. Hughes, and C. A.
Sackett, Phys. Rev. A 78, 023619 (2008).

[26] M. Olshanii and V. Dunjko (2005), arXiv:cond-
mat/0505358.

[27] J. A. Stickney, R. P. Kafle, D. Z. Anderson, and A. A.
Zozulya, Phys. Rev. A 77, 043604 (2008).

[28] J. Debs, P. Altin, T. Barter, D. Döring, G. Dennis,
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