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We consider the one dimensional expansion of a system of interacting bosons, starting from a
regular array. Without interactions the familiar Hanbury Brown and Twiss effect for bosons gives
rise to a series of peaks in the density-density correlations of the expanded system. Infinitely
repulsive particles likewise give a series of dips, a signature of the underlying description in terms of
free fermions. In the intermediate case of finite interaction the noise correlations consist of a set of
Fano resonance lineshapes, with an asymmetry parameter determined by the scattering phase shift
of a pair of particles, and a width depending on the initial momentum spread of the particles.

The Hanbury Brown and Twiss (HBT) effect [1] is a
fundamental signature of quantum statistics appearing in
quantum optics, atomic and mesoscopic physics, and nu-
clear collisions [2–6]. It is most dramatically manifested
as an interference effect in the intensity correlations due
to two or more incoherent sources, with a sign depend-
ing on the statistics of particles: positive correlations for
bosons; negative for fermions. In Ref. [7] it was pointed
out that the time-of-flight images ubiquitous in ultracold
atomic physics contain such noise signals. After this real-
ization noise correlations following expansion were used
to characterize many-body states in a number of ground-
breaking experiments [8–10].

In most known instances of the HBT effect interactions
between particles do not play a significant role once ex-
pansion begins (or after particles leave the sources), ei-
ther because these effects are weak or due to the spa-
tial separation of the sources. In this paper we consider
the one-dimensional expansion of a system of particles,
where strong interaction effects are unavoidable. Indeed,
in 1D the paths giving rise to the HBT effect must cross.
Note that many works assume interactions are ‘switched
off’ before expansion – see e.g. Ref. [11] – a technically
difficult procedure involving rapidly changing scattering
lengths near a Feshbach resonance.

The situation that we will consider is illustrated in
Fig. 1. Particles are initially confined to a regular 1D
lattice of spacing ∆, with one particle per site. At time
t = 0 the lattice potential is removed, though the po-
tential restricting the particles’ motion to one dimension
remains. We are concerned with the density correlations
present after some time t, when the system has expanded
to many times its original size (analogous to the ‘far field’
limit in optics). Thus we have in mind a 1D version of the
experiment of Ref. [9], in which noise correlations were
measured in the expansion of a 3D atomic Mott insulat-
ing state from an optical lattice. A recent experiment
demonstrated the preparation of such a 1D state in a
slightly different context [12].

If we restrict ourselves to the (physically realistic) case
of δ-function interactions, the result in the impenetrable
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FIG. 1. (Color online) 1D expansion of atoms from an optical
lattice of spacing ∆. The spread of the initial wavepackets is
`. Noise correlations will be present in an absorption image
of the expanded cloud.

limit of infinite repulsion can be obtained immediately.
In this case the system can be mapped (as far as any
observable involving density is concerned) to a system
of noninteracting fermions [13]. Thus the HBT effect in
this limit will be that of free fermions. The aim of this
paper is to describe the crossover from the bosonic to the
fermionic HBT effect as interactions increase and identify
signatures not present in either limit.

To introduce some ideas and notation we briefly de-
scribe the familiar HBT effect in this setting. We as-
sume Gaussian initial wavefunctions corresponding to
harmonic oscillator length ` =

√
~/mω, ϕα(y) =

1
(π`2)1/4

exp
[
− (y−α∆)2

2`2

]
. The overlap e−∆2/4`2 between

neighboring sites is assumed to be negligible. After a
period t of free evolution these wavefunctions have the
form

ϕα(x; t� `2)→
√

`

i
√
πt

exp

[(
i

2t
− `2

2t2

)
(x− α∆)

2

]
.

(1)
(Where we have set ~ = m = 1) If we con-
sider a pair of identical particles on sites α and α +
1, the two-particle wavefunction is Ψ2(x1, x2; t) =



2

1√
2

[ϕα(x1; t)ϕα+1(x2; t)± ϕα(x2; t)ϕα+1(x1; t)], with ±
for bosons and fermions respectively. The corresponding
probability density is then

|Ψ2(x1, x2; t)|2 → `2

πt2
e−`

2(ξ21+ξ22) [1± cos ([ξ1 − ξ2] ∆)] ,

(2)

where the variables ξ1,2 = x1,2/t correspond to the ve-
locities of the two particles. The oscillatory second term
describes the HBT effect, with a sign dependent on the
statistics of the particles. For an array of N particles
the density-density correlation function develops peaks
due to the contributions of higher harmonics arising from
pairs of particles separated by multiples of ∆

C(x1, x2; t) ≡
∫
dx3 · · · dxN |ΨN (x1, x2, . . . , xN ; t)|2.

→ `2

πt2
e−`

2(ξ21+ξ22)

[
1± 2π

N

∞∑

n=−∞
δ(∆ [ξ1 − ξ2]− 2πn)

]

(3)

In a trajectory picture the HBT effect arises as a cross-
term between trajectories that do and do not exchange
pairs of particles (see Fig. 3, bottom)

We turn now to the central subject of this paper: the
HBT effect in the presence of interactions between the
particles. We assume that the evolution of the system
for t > 0 is governed by the N -particle Hamiltonian

H = −1

2

N∑

i=1

∂2

∂x2
i

+ c
∑

i<j

δ(xi − xj). (4)

The c→ 0 and c→∞ limits can be described in terms of
free bosons and free fermions, respectively. The density-
density correlations reflect this, corresponding to the plus
sign in Eq. (3) in the former case and the minus sign
in the latter. Our main result is Eq. (16) below, valid
when e−2c∆ � 1. We find that in the crossover regime
the density-density correlations consist not of a series of
symmetric peaks or dips but rather of Fano lineshapes
(see Fig. 2)

[qnΓn/2 + (ε− ηn)]
2

Γ2
n/4 + (ε− ηn)

2 (5)

where ε = ∆ (ξ1 − ξ2) − 2πn represents the deviation
from the nth peak. Γn and ηn are defined below Eq. (16),
while the asymmetry parameter qn is expressed in terms
of the two particle scattering matrix

S(k) = −c− ik
c+ ik

, (6)

by the relation

argS(2πn/∆) = 2qn/(q
2
n − 1). (7)

2

1p
2

['↵(x1; t)'↵+1(x2; t) ± '↵(x2; t)'↵+1(x1; t)], with ±
for bosons and fermions respectively. The corresponding
probability density is then

| 2(x1, x2; t)|2 ! `2

⇡t2
e�`2(⇠2

1+⇠2
2) [1 ± cos ([⇠1 � ⇠2] �)] ,

(2)

where the variables ⇠1,2 = x1,2/t correspond to the ve-
locities of the two particles. The oscillatory second term
describes the HBT e↵ect, with a sign dependent on the
statistics of the particles. For an array of N particles
the density-density correlation function develops peaks
due to the contributions of higher harmonics arising from
pairs of particles separated by multiples of �

C(x1, x2; t) ⌘
Z

dx3 · · · dxN | N (x1, x2, . . . , xN ; t)|2.
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N
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In a trajectory picture the HBT e↵ect arises as a cross-
term between trajectories that do and do not exchange
pairs of particles (see Fig. 3, bottom)

We turn now to the central subject of this paper: the
HBT e↵ect in the presence of interactions between the
particles. We assume that the evolution of the system
for t > 0 is governed by the N -particle Hamiltonian

H = �1

2

NX

i=1

@2

@x2
i

+ c
X

i<j

�(xi � xj). (4)

The c ! 0 and c ! 1 limits can be described in terms of
free bosons and free fermions, respectively. The density-
density correlations reflect this, corresponding to the plus
sign in Eq. (3) in the former case and the minus sign
in the latter. Our main result is Eq. (16) below, valid
when e�2c� ⌧ 1. We find that in the crossover regime
the density-density correlations consist not of a series of
symmetric peaks or dips but rather of Fano lineshapes
(see Fig. 2)
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where " = �(⇠1 � ⇠2) � 2⇡n represents the deviation
from the nth peak. �n and ⌘n are defined below Eq. (16),

while the asymmetry parameter qn is expressed in terms
of the two particle scattering matrix

S(k) = �c � ik

c + ik
, (6)

by the relation

arg S(2⇡n/�) = 2qn/(q2
n � 1). (7)
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FIG. 2. (Color online) (Top) Normalized correlation func-

tion N
⇣

C(x1,x2;t)
C(0,0;t)

� 1
⌘

from Eq. (16) for c� = 2, `/� = 0.2.

(Bottom) A slice with x1 = �x2 for the same parameters,
showing the evolution of the Fano asymmetry between suc-
cessive peaks.

This illustrates the evolution from qn = 1 for free bosons
(resonance lineshape) to qn ! 0 as c ! 1 (antireso-
nance). The asymmetry of the lineshape is the first qual-
itative feature of the crossover regime. The second is the
finite width �n, which vanishes in the two limits.

The surprising simplicity of our result is a consequence
of the integrability of the Hamiltonian Eq. (4) [14]. The
N -particle scattering it describes is nondi↵ractive, con-
sisting of pairwise scattering that either preserves or ex-
changes the momenta of the scattering particles. A re-
markable consequence is that the time dependence of the
N -particle propagator describing the amplitude for par-
ticles at y1, . . . , yN to arrive at x1, . . . xN after time t can
be written explicitly for c > 0 as [15]

FIG. 2. (Color online) (Top) Normalized correlation func-

tion N
(
C(x1,x2;t)
C(0,0;t)

− 1
)

from Eq. (16) for c∆ = 2, `/∆ = 0.2.

(Bottom) A slice with x1 = −x2 for the same parameters,
showing the evolution of the Fano asymmetry between suc-
cessive peaks.

This illustrates the evolution from qn =∞ for free bosons
(resonance lineshape) to qn → 0 as c → ∞ (antireso-
nance). The asymmetry of the lineshape is the first qual-
itative feature of the crossover regime. The second is the
finite width Γn, which vanishes in the two limits.

The surprising simplicity of our result is a consequence
of the integrability of the Hamiltonian Eq. (4) [14]. The
N -particle scattering it describes is nondiffractive, con-
sisting of pairwise scattering that either preserves or ex-
changes the momenta of the scattering particles. It was
realized only recently that this allows the time depen-
dence of the N -particle propagator describing the am-
plitude for particles at y1, . . . , yN to arrive at x1, . . . xN
after time t to be written explicitly for c > 0 as [15]
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GN (x1, x2, . . . , xN |y1, y2, . . . , yN ; t) =
∑

σ∈SN

∫
· · ·
∫
Aσ

N∏

j=1

eikσ(j)(xj−yσ(j))e−
it
2

∑
j k

2
j
dk1

2π
· · · dkN

2π
(8)

where SN denotes the symmetric group of degree N , and

Aσ =
∏{

S(kσ(α) − kσ(β)) : xα < xβ but yσ(α) > yσ(β)

}
.

(9)
We note parenthetically that the propagator in the at-
tractive (c < 0) case is considerably more complicated
due to the presence of bound states and was found in a
recent preprint [16].

To verify the remarkable formula Eq. (8) one should
first observe that it satisfies the boundary condition(

∂
∂xi
− ∂

∂xj

)
GN |xi=xj = cGN |xi=xj imposed by the in-

teraction. Next we must check that the initial condition
GN (x|y; 0) =

∑
σ

∏
i δ(xi− yσ(j)) is obeyed. This follows

from the fact that the integral

∫
· · ·
∫
Aσ

N∏

j=1

eikσ(j)(xj−yσ(j))
dk1

2π
· · · dkN

2π
(10)

is nonzero only for Aσ = 1 i.e. when the {xi} are in the
same order as the {yi}. This in turn is a consequence of
the following Golden Rule that we will use repeatedly for
integrals of this type : a particle moving to the left (right)
must be overtaken by another particle moving to the left
(right). In the present case the Golden Rule restricts us
to Aσ = 1, from which the product of δ-functions follows.

To understand the origin of the Golden Rule, consider
the integral over kσ(j) in Eq. (10). The result can be
viewed as the Fourier transform of the product of factors
in Aσ involving kσ(j), evaluated at xj − yσ(j), which is
thus the convolution of the Fourier transforms of these
factors. Because S(k) is holomorphic in the lower half
plane for c > 0, its Fourier transform is supported in
[0,∞). Thus for xj−yσ(j) > 0 we must have at least one
factor S(kσ(j)−kσ(i)) where kσ(j) appears first (particle is
overtaken moving to the right). Likewise for xj−yσ(j) <
0 we must have at least one factor S(kσ(k)−kσ(j)) where
kσ(j) appears second (particle is overtaken moving to the
left).

The time evolution of our array can be found by
convolving the propagator with the Gaussian initial
wavepackets

ΨN (x; t) =
1√
N !

∫
GN (x,y; t)

∏

j

ϕj(yj)dy (11)

The utility of this expression would seem to be hampered
by the momentum integrals and the sum over permuta-
tions in Eq. (8). However, the former may be evaluated
in the stationary phase approximation at long times

GN (x|y; t)→
(

1

2πit

)N/2 ∑

σ∈SN
A′σ

N∏

j=1

ei(
t
2 ξ

2
j−ξjyσ(j)),

(12)
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FIG. 3. (Top) Diagram representing a term that survives
integration over xj , j 6= 1, 2. At the top are the positions�
y�1(i)

 
, and at the bottom are

�
ỹ�2(i)

 
. The thick red lines

correspond to the two coordinates x1 and x2 that are not inte-
grated over in the two-body density matrix Eq. (3). (Bottom)
Usual contribution to the noninteracting HBT e↵ect.
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Y�
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⇣

@
@xi

� @
@xj

⌘
GN |xi=xj

=
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NY
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eik�(j)(xj�y�(j))
dk1

2⇡
· · · dkN
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is nonzero only for A� = 1 i.e. when the {xi} are in the

same order as the {yi}. This in turn is a consequence
of the following Golden Rule that we will use repeatedly
for integrals of this type [19] : a particle moving to the
left (right) must be overtaken by another particle moving
to the left (right). In the present case the Golden Rule
restricts us to A� = 1, from which the product of �-
functions follows.

To understand the origin of the Golden Rule, consider
the integral over k�(j) in Eq. (10). The result can be
viewed as the Fourier transform of the product of factors
in A� involving k�(j), evaluated at xj � y�(j), which is
thus the convolution of the Fourier transforms of these
factors. Because S(k) is holomorphic in the lower half
plane for c > 0, its Fourier transform is supported in
[0,1). Thus for xj �y�(j) > 0 we must have at least one
factor S(k�(j)�k�(i)) where k�(j) appears first (particle is
overtaken moving to the right). Likewise for xj �y�(j) <
0 we must have at least one factor S(k�(k) �k�(j)) where
k�(j) appears second (particle is overtaken moving to the
left).

The time evolution of our array can be found by
convolving the propagator with the Gaussian initial
wavepackets

 N (x; t) =
1p
N !

Z
GN (x,y; t)

Y

j

'j(yj)dy (11)

The utility of this expression would seem to be hampered
by the momentum integrals and the sum over permuta-
tions in Eq. (8). However, the former may be evaluated
in the stationary phase approximation at long times
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2 ⇠

2
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(12)
where again we have used the variables ⇠j = xj/t, and
the stationary phase integral assumes that these are order
one in the long time limit. In the above A0

� denotes

A0
� =

Y�
S(⇠↵ � ⇠�) : x↵ < x� but y�(↵) > y�(�)

 
.

(13)
To evaluate the probability distribution we require the
‘forward and back’ propagator
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N (x|ỹ; t) !
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1
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In this expression the scattering phases have the explicit form
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FIG. 3. (Color online) (Top) Diagram representing a term
that survives integration over xj , j 6= 1, 2. At the top are
the positions

{
yσ1(i)

}
, and at the bottom are

{
ỹσ2(i)

}
. The

thick red lines correspond to the two coordinates x1 and x2

that are not integrated over in the two-body density matrix
Eq. (3). (Bottom) Usual contribution to the noninteracting
HBT effect.

where again we have used the variables ξj = xj/t, and
the stationary phase integral assumes that these are order
one in the long time limit. In the above A′σ denotes

A′σ =
∏{

S(ξα − ξβ) : xα < xβ but yσ(α) > yσ(β)

}
.

(13)
To evaluate the probability distribution we require the
‘forward and back’ propagator

GN (x|y; t)G∗N (x|ỹ; t)→
(

1

2πt

)N ∑

σ1,σ2∈SN
A′σ1

A′∗σ2

∏

j

e−iξj(yσ1(j)−ỹσ2(j)). (14)

In this expression the scattering phases have the explicit
form

A′σ1
A′∗σ2

=
∏
{S(ξα − ξβ) : σ1(α) > σ1(β), σ2(α) < σ2(β)} ,

(15)
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Unlike the individual A′σ, we see that the form of the
product does not depend upon the ordering of the {xj}.
Since we need to integrate over all but two of the {xj}
to find the density correlation function (see Eq. (3)), this
fact is tremendously useful, as it tells us that the integrals
have the same form as Eq. (10), and allows us to apply the
Golden Rule. The only non-trivial terms (i.e. without
σ1(α) = σ2(α) for all α) are of the form illustrated in
Fig. 3 (top). x1 and x2 are exempted from the Golden
Rule and correspond to the only particles not overtaken.
Thus we must have σ1(1) = σ2(2) and σ2(1) = σ1(2)

Despite this simplification there would still seem to be
a great many terms to sum in Eq. (14). We will now show
that the remaining terms can be grouped according to the
order of their contribution in the parameter e−2c∆, with
the lower powers amenable to explicit evaluation. Since
the parameter c∆ is the same as the usual Lieb–Liniger
parameter γ ≡ c/n, with the density n = ∆−1, the use
of e−2c∆ as a small parameter is not too restrictive.

Let us first consider the terms that give rise to the
usual HBT effect in the case of noninteracting particles
(Fig. 3, bottom). Each of the xα with σ1(α) = σ2(α)
lying between σ1(1) = σ2(2) and σ2(1) = σ1(2) brings
a factor S(ξ2 − ξα)S(ξα − ξ1) if σ1(1) < σ1(2) and
S(ξ1 − ξα)S(ξα − ξ2) if σ1(2) < σ1(1). After integrating
over the {xα : α 6= 1, 2} and convolving with the Gaus-
sian wavepackets Eq. (11), we can sum all such contribu-
tions in a geometric series to give

C(x1, x2 : t)→ `2

πt2
e−`

2(ξ21+ξ22)

×
[
1 +

2

N
Re

(
S(ξ2 − ξ1)ei∆(ξ1−ξ2)

1− ei∆(ξ1−ξ2)ζ(ξ1, ξ2)

)]
, (16)

which generalizes Eq. (3) to the interacting case. In
Eq. (16) we have defined the function

ζ(ξ1, ξ2) = 1− 2
√
πc`S(ξ2 − ξ1 − ic)

×
[
e`

2(c−iξ1)2erfc(` [c− iξ1]) + e`
2(c+iξ2)2erfc(` [c+ iξ2])

]
,

where erfc(x) is the complementary error function

erfc(x) = 2√
π

∫∞
x
e−t

2

dt. Eq. (16) is shown in Fig. 2

In the limit that ζ(ξ1, ξ2) is close to unity, Eq. (16) can
be interpreted as a series of Fano lineshapes Eq. (5) with
ηn = −Im ζ, Γn = 2(1 − Re ζ) > 0, and qn as given in
Eq. (7). Fig. 2 (bottom) illustrates the evolution of qn
between successive peaks from smaller (close to antires-
onance) to larger values.

The physical origin of the asymmetry qn lies in the
scattering phase of particles 1 and 2 with each other,
while the width Γn arises from the collisions of these par-
ticles with those that they pass, whose momentum has

a Gaussian distribution and gives rise to a distribution
of scattering phases. Γn vanishes in the limits c → 0
and c → ∞, but also when ` → 0. In the last case this
is a consequence of the typical momenta of the particles

FIG. 4. (Color online) Simplest ‘new’ contribution, smaller
by e−2c∆.

becoming large (except for particles 1 and 2 whose mo-
menta are fixed by x1 and x2) and the scattering phase
for their collisions approaching zero (see Eq. (6)).

Let us now show that the remaining contributions are
small in the parameter e−2c∆. Consider the first ‘non
HBT’ diagram shown in Fig. 4. Evaluating this diagram
gives the contribution

16c2`4

t2
e−2c∆e4i∆(ξ1−ξ2)e−`

2(ξ21+ξ22)

× exp
[
`2((c− iξ1)2 + (c+ iξ2)2)

]

× S(ξ2 − ξ1)S(ξ2 − ξ1 − ic)2S(ξ2 − ξ1 − 2ic) (17)

where, as always, we ignore the overlap e−∆2/4`2 between
neighboring sites. The two exponential factors e−c∆ arise
from the pole in the upper half plane of x3 coming from
the S(ξ3− ξ1) factor, and from the pole in the lower half
plane of x4 coming from the S(ξ2−ξ4) factor. In the same
way, one can show that the power of e−c∆ appearing in a
contribution is at least twice the total number of moves
to the right (or to the left).

In conclusion, we have shown that the HBT effect of
interacting particles in one dimension has a number of
interesting features that distinguish it from the nonin-
teracting problem, most notably an asymmetry and fi-
nite width in the peaks of the density-density correlation
function of the expanded system. The calculation hinges
upon the integrability of the 1D Bose gas, and indeed
appears to depend essentially upon c > 0 for the form of
the propagator Eq. (8) to be valid.
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