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Interactions of ultracold atoms with Rashba spin-orbit coupling, currently being studied with
simulated (artificial) gauge fields, have non-trivial ultraviolet and infrared behavior. Examining the
ultraviolet structure of the Bethe-Salpeter equation, we show that the linear ultraviolet divergence in
the bare interaction can be renormalized as usual in terms of low-energy scattering lengths, and that
for both bosons and fermions ultraviolet logarithmic divergences are absent. Calculating the leading
order effective interaction with full dependence on the spin-orbit coupling strength and the center-of-
mass momentum of the colliding pair, we elucidate the relation between mean-field interactions and
physical three dimensional scattering lengths. As a consequence of infrared logarithmic divergences
in the two particle propagator, the effective interaction vanishes as the center-of-mass momentum
approaches zero.

PACS numbers:

I. INTRODUCTION

Artificial gauge fields in neutral ultracold atomic sys-
tems hold the prospect, both theoretically and experi-
mentally, of realizing and exploring a wide variety of new
physical systems [1]. Besides simulated Abelian gauge
fields which give rise to analogs of conventional magnetic
fields, artificial non-Abelian gauge fields, with potential
applications to quantum chromodynamics, have been the
subject of intense study [2–18]. Certain non-Abelian
gauge fields are equivalent to Rashba-Dresselhaus spin-
orbit interactions [19, 20]; the first experimental realiza-
tion of such a spin-orbit coupled ultracold system was
reported in [21]. Striped phases and topologically non-
trivial states have been predicted, within mean-field the-
ory, in atomic bosonic systems with a Rashba-type spin-
orbit coupling [6, 8].
A Rashba spin-orbit interaction, κp⊥ · σ, with κ the

Rashba coupling and p⊥ = (px, py, 0), leads to two non-
quadratic branches in the single particle dispersion rela-
tion (see Eq. (6) below). As a consequence, the effective
interactions between particles can exhibit non-trivial ul-
traviolet and infrared structure. This structure is in con-
trast to usual dilute three-dimensional ultracold atomic
systems where mean-field interactions are proportional
to three dimensional scattering lengths. Our purpose
in this paper is to elucidate the ultraviolet and infrared
structure of the effective interactions in ultracold atomic
systems with Rashba spin-orbit coupling, and their re-
lation to physically observable scattering lengths, which
is needed to analyze such systems both theoretically and
experimentally.
The ultraviolet and infrared problems have been con-

sidered earlier. Yang and Sachdev [22] analyzed a con-
densed matter system with one branch with a disper-
sion relation similar to the lower energy branch with
a Rashba interaction, ǫ(p) = [(p − κ)2]/2m, obtaining
both ultraviolet and infrared cutoff dependent logarith-
mic contributions to the effective interaction. Similarly,
Gopalakrishnan et al. [12] have recently considered one-

loop corrections to the effective interaction in atomic sys-
tems within the lower energy branch of a Rashba interac-
tion and also obtained a logarithmic dependence on the
ultraviolet and infrared cutoffs. The arguments in [22]
and [12] are mainly in two dimensions, but a similar ar-
gument applied to three dimensions with one branch of
dispersion leads to the logarithmic dependence on the ul-
traviolet cutoff as well. The essential argument is that
with a single branch, the two particle Green’s function in
the t-matrix equation has the ultraviolet behavior
∫ Λ d3k

(2π)3
m

k2z + (|k⊥| − κ)2
→ m

2π2

(

Λ +
πκ

2
lnΛ + · · ·

)

,

(1)

where Λ is the ultraviolet momentum cutoff. We show
here that with the doubly branched dispersion taken into
account logarithmic ultraviolet divergences in fact are ab-
sent in three dimensions so that the linear ultraviolet
divergence in two-particle scattering can be nicely renor-
malized away as usual, and the effective interaction de-
pends solely on low energy scattering lengths. Similarly,
logarithmic ultraviolet divergences do not appear in the
gap equation for fermions in paired states, and linear
divergences can again be renormalized away in favor of
scattering lengths, as discussed in [13–18, 23].
Even though after renormalization the effective inter-

action becomes free of ultraviolet divergences, the full re-
lation of the effective interactions in systems with Rashba
spin-orbit coupling to physically observable scattering
lengths has interesting structure, owing in part to an in-
frared logarithmic divergence in the two particle propa-
gator entering the t-matrix when the pair center-of-mass
momentum, q, goes to zero. In essence,
∫

0

d3k

(2π)3
2m

(|k⊥ + q/2| − κ)2 + (| − k⊥ + q/2| − κ)2 + 2k2z

→ −mκ

2π
ln q. (2)

As a consequence the effective two-particle interaction
vanishes as q → 0. This infrared divergence, which can be
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obtained within a single branch model as in [12, 22], is a
result of an infinity of pairs of zero energy states with zero
center-of-mass momentum. We construct here the full
solution of the two-particle Bethe-Salpeter equation for
the t-matrix for fermions, and an approximate t-matrix
for bosons valid when the free space three-dimensional
scattering lengths are small, including exactly the two
branches of the single particle dispersion relation and the
infrared structure.

II. PARTICLES WITH RASHBA INTERACTION

We consider both bosons and fermions in three di-
mensions with two internal states a and b, and with a
symmetric Rashba spin-orbit interaction described by the
Hamiltonian,

H =
∑

p

(

a†
p

b†
p

)

[

p2 + κ2

2m
I +

κ

m
(σxpx + σypy)

](

ap
bp

)

+
1

2V

∑

p1+p2=p3+p4

(

gaaa
†
p4
a†
p3
ap2

ap1

+gbbb
†
p4
b†
p3
bp2

bp1
+ 2gab a†

p4
b†
p3
bp2

ap1

)

. (3)

Here m is the atomic mass, V is the volume of the sys-
tem, ap annihilates an atom in internal state a with mo-
mentum p, and bp annihilates an atom in state b with
momentum p; the σx and σy are the usual Pauli matrices
between the internal states, and I is the two-by-two iden-
tity matrix. We take the coupling κ to be positive. The
gaa, gbb, and gab are the bare s-wave couplings between
a-a, b-b, and a-b particles; for fermions, gaa, gbb are not
present.

The single particle part of the Hamiltonian can be di-
agonalized by introducing operators αp and βp by

(

αp

βp

)

=
1√
2

(

1 −e−iφ

1 e−iφ

)(

ap
bp

)

, (4)

where φ is the angle of p in the x-y plane; the Hamilto-
nian becomes

H =
∑

p

(

ǫ−(p)α
†
p
αp + ǫ+(p)β

†
p
βp

)

+Hint. (5)

The single-particle spectrum has two branches

ǫ±(p) =
(p⊥ ± κ)2 + p2z

2m
, (6)

with the lower branch ǫ−(p) having degenerate single-
particle ground states on the circle p⊥ = κ.

The interaction part of the Hamiltonian, Hint, in the

α-β basis becomes

Hint =
1

V

∑

p1+p2=p3+p4

[

V(1)
φ1,φ2;φ3,φ4

(

α†
p4
α†
p3
αp2

αp1
+ β†

p4
β†
p3
βp2

βp1

)

/2

+ V(2)
φ1,φ2;φ3,φ4

(

β†
p4
β†
p3
αp2

αp1
+ α†

p4
α†
p3
βp2

βp1

)

/2

+ V(3)
φ1,φ2;φ3,φ4

(

α†
p4
β†
p3
βp2

βp1
+ β†

p4
α†
p3
αp2

αp1

)

/
√
2

+ V(4)
φ1,φ2;φ3,φ4

(

α†
p4
α†
p3
βp2

αp1
+ β†

p4
β†
p3
αp2

βp1

)

/
√
2

+V(5)
φ1,φ2;φ3,φ4

α†
p4
β†
p3
βp2

αp1

]

, (7)

where φi is the angle of pi in the x-y plane, and where

V(1)
φ1,φ2;φ3,φ4

= A+ ± gab
8

(

eiφ1 ± eiφ2

) (

e−iφ3 ± e−iφ4

)

V(2)
φ1,φ2;φ3,φ4

= A+ ∓ gab
8

(

eiφ1 ± eiφ2

) (

e−iφ3 ± e−iφ4

)

V(3)
φ1,φ2;φ3,φ4

=
√
2A− ± gab

4
√
2

(

eiφ1 ± eiφ2

) (

e−iφ3 ∓ e−iφ4

)

V(4)
φ1,φ2;φ3,φ4

=
√
2A− ± gab

4
√
2

(

eiφ1 ∓ eiφ2

) (

e−iφ3 ± e−iφ4

)

V(5)
φ1,φ2;φ3,φ4

= 2A+ ∓ gab
4

(

eiφ1 ∓ eiφ2

) (

e−iφ3 ∓ e−iφ4

)

,

(8)

with

A± =
(

gaa ± gbbe
i(φ1+φ2−φ3−φ4)

)

/4, (9)

where the upper signs are for bosons and the lower signs
are for fermions in Eq. (8). The denominators

√
2 and 2

in Eq. (7) are chosen so that the vertices in the Feynman
rules are just the V(i)s.

III. T-MATRIX

To obtain the low energy effective interaction, we con-
struct the t-matrix describing the collision of two atoms
in the α-branch with incoming momenta q/2 + p and
q/2 − p and outgoing momenta q/2 + p′ and q/2 − p′.
The momentum of each particle is on the degenerate
ground state circle. The single particle propagators are
1/(ω − ǫ±(p)), and characteristically, the interactions in
the α-β basis are dependent on angle. The t-matrix is
the sum of ladder diagrams, Fig. 1. We denote the mo-
menta of particles in the intermediate off-shell states by
q/2 + k and q/2 − k, and label angles of the momenta
φi as in the figure. The Bethe-Salpeter equation for the
zero-energy vertex function Γαα

αα with incoming and out-
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going α-α particles is

Γαα
αα(p,p

′;q) = V(1)
φ1,φ2;φ3,φ4

−
∫

d3k

(2π)3

[

V(1)
φ1,φ2;φ5,φ6

Γαα
αα(k,p

′;q)

ǫ−(
q

2 − k) + ǫ−(
q

2 + k)

+
V(2)
φ1,φ2;φ5,φ6

Γαα
ββ (k,p

′;q)

ǫ+(
q

2 − k) + ǫ+(
q

2 + k)
±

V(3)
φ1,φ2;φ6,φ5

Γαα
αβ(k,p

′;q)

ǫ+(
q

2 − k) + ǫ−(
q

2 + k)
] ,

(10)

where Γαα
ββ is the t-matrix for incoming β-β particles col-

liding and becoming α-α particles, Γαα
αβ is the t-matrix for

incoming α-β colliding and becoming α-α particles, and
5 and 6 label the intermediate states. The Γαα

ββ and Γαα
αβ

obey similar Bethe-Salpeter equations. We note that p

and p′ dependences of Γ(p,p′;q) are only through the
angles φi. Counting powers in a term-by-term expansion
of the t-matrix, one finds that the kernels are linearly di-
vergent in the ultraviolet in each order in the expansion,
since the denominators have two powers of k while the
integral is over three dimensions.

Γq

2
+ p

q

2
− p

q

2
− p

′

q

2
+ p

′ =

+
q

2
+ k

q

2
− k

+

+ + · · ·

φ1

φ2 φ3

φ4

φ5

φ6

FIG. 1: The scattering t-matrix for two particles in the α-
branch. The solid lines denote particles in α-branch, and the
dashed lines are particles in the β-branch. The φi are the
angles of the corresponding momenta in the x-y plane.

We first show that there is no ultraviolet logarith-
mic divergence in the t-matrix. For fermions the
Bethe-Salpeter equation for Γαα

ββ (p,p
′;q) implies that

Γαα
αα(p,p

′;q) = −Γαα
ββ (p,p

′;q). Also, since V(1)
φ1,φ2;φ5,φ6

=

−V(2)
φ1,φ2;φ5,φ6

, the numerators of the first two terms in

(10) are equal, and depend on k only through the angles
of q/2 ± k. The first two terms when combined have a
linear but no logarithmic divergence. The denominator
in the third term is explicitly a function of k2⊥ and k2z
for large k and thus the integral also does not contain an
ultraviolet logarithmic divergence. The entire integral in
Eq. (10) has only a linear divergence.
For bosons, we note that for large k, φ6 ∼ φk and φ5 ∼

φk +π, where φk is the angle of k in the x-y plane; hence

eiφ5 + eiφ6 = O(k−1), and V(1)
φ1,φ2;φ5,φ6

= V(2)
φ1,φ2;φ5,φ6

to

leading order. Also, the Bethe-Salpeter equations for
Γαα
αα(k,p

′;q) and Γαα
ββ (k,p

′;q) are the same to leading
order when k is large. Thus the same mechanism as for
fermions leads to a cancellation of the logarithmic diver-
gences, leaving only with the linear divergence, on which
we now focus.
Looking at the Bethe-Salpeter equation as a pertur-

bation series we see that in the intermediate processes,
to leading order in 1/k2 the coupling gbb appears in the
vertices multiplied by a factor of e2iφk and the coupling
gab by eiφk , while the coupling gaa is not multiplied by
a phase factor. This implies that in integration over in-
termediate momenta, cross terms between different cou-
plings do not lead to linear divergences due to the phase
integrals, whereas the phase factors in terms with the
same couplings are cancelled and form geometric series.
For bosons, we obtain an approximate effective interac-

tion by adding linearly divergent terms, which yield the
leading order terms in the physical scattering lengths,
aij , times κ. The higher order terms for bosons include
cross terms between different scattering lengths, which
do not suffer from ultraviolet divergences. The linear
divergences sum to give the effective boson interaction:

Γαα
αα(p,p

′;q)

∼πaaa
m

1

1 + aaaκf(q̃/2)
+

πabb
m

ei(φ1+φ2−φ3−φ4)

1 + abbκf(q̃/2)

+
πaab
2m

(eiφ1 + eiφ2)(e−iφ3 + e−iφ4)

1 + aabκ(f(q̃/2)− g(q̃/2))
, (11)

where

m

4πaij
=

1

gij
+

mΛ

2π2
(12)

defines the three physical three-dimensional scattering
lengths, aaa, abb, and aab, in the absence of spin-orbit
coupling in terms of the bare couplings and the ultravio-
let cutoff Λ. The functions f(q̃/2) and g(q̃/2) are

f(q̃/2) ≡ π

mκ

∫

d3k

(2π)3

[

1

ǫ−(
q

2 + k) + ǫ−(
q

2 − k)
+

1

ǫ+(
q

2 + k) + ǫ+(
q

2 − k)
+

2

ǫ−(
q

2 + k) + ǫ+(
q

2 − k)
− 4m

k2

]

g(q̃/2) ≡ − π

mκ

∫

d3k

(2π)3

[

cos(φ5 − φ6)

ǫ−(
q

2 + k) + ǫ−(
q

2 − k)

+
cos(φ5 − φ6)

ǫ+(
q

2 + k) + ǫ+(
q

2 − k)
− 2 cos(φ5 − φ6)

ǫ−(
q

2 + k) + ǫ+(
q

2 − k)

]

,

(13)

where q̃ ≡ q/κ. When the colliding particles have zero en-
ergy, the center of mass momentum q can be at most 2κ,
which gives the restriction 0 ≤ q̃/2 ≤ 1. The functions
f(q̃/2) and g(q̃/2), which do not diverge in the ultravio-
let, are plotted in Fig. 2. The effective interaction (11)
is free of ultraviolet divergence.
For fermions, where aaa = abb = 0, no cross terms

exist and the geometric series obtained by adding linearly
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FIG. 2: The center-of-mass momentum dependence of f(x)
(solid line) and g(x) (dashed line) entering the renormalized
interaction, Eq. (11).

divergent terms is an exact solution of the Bethe-Salpeter
equation:

Γαα
αα(p,p

′;q) = −πaab
2m

(eiφ1 − eiφ2)(e−iφ3 − e−iφ4)

1 + aabκ(f(q̃/2) + g(q̃/2))
.

(14)

Both functions f(q̃/2) and g(q̃/2) diverge logarithmi-
cally at q = 0, as noted earlier in Eq. (2), leading
to the logarithmic vanishing of the effective interaction
as q → 0, in agreement with the result obtained by
Gopalakrishnan et al. [12]. This infrared divergence
arises from the existence of infinitely many pairs of zero
energy single particle states with q = 0, which add up to
give an infrared divergence in the two particle propaga-
tor in the t-matrix. For q 6= 0, there is only one pair of
zero energy states, and thus no infrared divergence.
The result derived here implies that, when the spin-

orbit coupling is small (aijκ ≪ 1), the effective interac-

tion at q away from 0 is essentially given by replacing the
bare couplings by scattering lengths: gij → 4πaij/m, but
around q ∼ 0 the effective interaction essentially depends
on the center-of-mass momentum and vanishes with an
inverse logarithm as q → 0. For stronger spin-orbit cou-
pling (larger aijκ < 1), the center-of-mass dependence of
the effective interaction comes into play for a large range
of q̃. For bosons with even stronger spin-orbit coupling
(aijκ >∼ 1), we need to include higher order terms in the
t-matrix beyond those included in Eq. (11) to obtain the
effective interaction.

The gap equation for fermion pairing of a-fermions
with b-fermions in a singlet channel has a structure sim-
ilar to the first two terms in Eq. (10), which, with the
two terms combined, contain only a linear and not a log-
arithmic divergence [13–18, 23]. The linear divergence
can renormalized away in favor of the three-dimensional
scattering length, a procedure requiring the existence of
two dispersion branches. Studies with only one branch
of the dispersion relation yields, as noted, logarithmic ul-
traviolet divergences in the effective interaction[12, 22].
The implications of the effective interaction derived

here for the ground state and the finite temperature prop-
erties of many-body Bose and Fermi systems will be dis-
cussed in a future publication.
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