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We investigate one dimensional SU(N) Hubbard chains at zero temperature, which can be em-
ulated with ultracold alkaline earth atoms, by using the density matrix renormalization group
(DMRG), Bethe ansatz (BA), and bosonization. We compute experimental observables and use
the DMRG to benchmark the accuracy of the Bethe ansatz for N > 2 where the BA is only ap-
proximate. In the worst case, we find a relative error ε . 4% in the BA ground state energy for
N ≤ 4 at filling 1/N , which is due to the fact that BA improperly treats the triply and higher
occupied states. Using the DMRG for N ≤ 4 and the BA for large N , we determine the regimes of
validity of strong- and weak-coupling perturbation theory for all values of N and in particular, the
parameter range in which the system is well described by a SU(N) Heisenberg model at filling 1/N .
We find this depends only weakly on N . We investigate the Berezinskii-Kosterlitz-Thouless phase
transition from a Luttinger liquid to a Mott-insulator by computing the fidelity susceptibility and
the Luttinger parameter Kρ at 1/N filling. The numerical findings give strong evidence that the
fidelity susceptibility develops a minimum at a critical interaction strength which is found to occur
at a finite positive value for N > 2.

PACS numbers: 67.85.-d, 37.10.Jk, 71.10.Fd, 03.75.Ss

I. INTRODUCTION

The SU(N) Hubbard model describes N -flavor
fermions hopping on a lattice with flavor-independent on-
site interactions. The model is a generalization of the
conventional SU(2) Hubbard model introduced in the
1960s for the theoretical description of itinerant ferro-
magnets in spin 1/2 systems [1–3]. It has attracted con-
siderable theoretical attention in recent years [4–33]. In
the strong interacting regime and at 1/N filling (one par-
ticle per site), the low energy physics of the SU(N) Hub-
bard model is captured by an effective SU(N) Heisen-
berg model in which the charge degrees of freedom is
frozen and only the spin degrees of freedom are al-
lowed to fluctuate. There is a long history of studies of
SU(N) spin systems [4, 34–37]. Their initial motivation
was to better understand the usual SU(2) antiferromag-
nets since SU(N) spins are analytically tractable in the
large-N limit. These studies have found rich phase dia-
grams [34, 38–52], exhibiting antiferromagnetic ordering,
valence-bond solids and in 1D exotic spin-nematic phases
[53–61] and generalizations of the AKLT state [37, 62–
70], among others. However, as no exact SU(N) models
have existed in nature, these predictions were considered
as a theoretical playground.

The recent discovery that the SU(N) Hubbard model
describes ultracold gases of alkaline earth atoms on opti-
cal lattices [71–74] brings these considerations into a new
perspective and has spurred theoretical and experimen-
tal interest. Having in mind this specific experimental
implementation, exotic new phases – such as chiral spin
liquids [75, 76] – have been predicted [67] which can be
of relevance for the realization of topological quantum
computers [77, 78].

A first step towards the experimental observation of
the rich spin physics in ultracold alkaline earth atoms is
the precise knowledge of the parameter regime in which
the SU(N) Heisenberg model describes the low energy
physics of the full SU(N) Hubbard model. In this pa-
per, we address this question. By combining numeri-
cal density matrix renormalization group (DMRG) [79–
82] simulations with Bethe ansatz (BA), we are able to
predict the onset of the validity of the spin-models for
all values of N . We pursue three main purposes with
this paper. Firstly, we address the mainly theoretical as-
pects of the validity of the approximate BA for N > 2.
Secondly, using quantum information measures we deter-
mine the value of the critical interaction Uc at which the
Mott transition [83] takes place. Thirdly, we use these
insights to provide predictions of the minimal value of
Us at which the atoms behave as spin systems. Those
predictions are relevant for ongoing experiments with ul-
tracold alkaline earth atoms. We also discuss numerical
results for the on-site occupancies, the various correlation
functions, momentum distributions, and their structure
factors which can be accessed in current experiments.

We present these results as follows. In Sec. II, we intro-
duce the SU(N) Hubbard model and the SU(N) Heisen-
berg model and discuss their realization in ultracold al-
kaline earth atoms on optical lattices. We also describe
the methods we use to study these models, and their
connection to experimentally relevant observables. We
discuss in Sec. II C the BA treatment of the SU(N) Hub-
bard chains for N ≥ 2, and in Sec. II F the properties of
the fidelity susceptibility χ(U) in the vicinity of a quan-
tum critical point. In Sec. III, we compare the BA and
DMRG results for the ground state energy per site in the
thermodynamic limit and discuss the relative error of the
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BA results as a function of U . In Sec. IV we address the
Mott transition using our results for the fidelity suscep-
tibility. Based on the results of these sections, we turn
to experimentally relevant aspects in Sec. V. In particu-
lar, we identify Us & 12t for all values of N by compar-
ing energies and spin correlation functions of the Hub-
bard and Heisenberg systems in Secs. V A and V C. In
Secs. V C and V D, we present our DMRG results for the
on-site occupancies, and the correlation functions and
their structure factors and discuss possibilities to access
these quantities in experiments. Section VI summarizes
our findings.

II. MODELS, EXPERIMENTAL REALIZATION,
METHODS AND OBSERVABLES

A. Models

We treat the 1D fermionic SU(N) Hubbard model de-
scribed by the Hamiltonian

H = −t
∑
〈ij〉, α

(f†α,ifα,j + h.c.) +
U

2

∑
i,α6=α′

f†α,if
†
α′,ifα′,ifα,i

(1)
using Bethe ansatz and DMRG. The fermionic opera-

tor fα,i (f†α,i) destroys (creates) a particle of flavor α on

lattice site i, with α = 1, . . . , N , and
∑
〈i,j〉 denotes a

sum over nearest neighbor sites i and j. In the limit of
large U/t, the effective model obtained by second order
degenerate perturbation theory is the SU(N) Heisenberg
model

H =
2t2

U

∑
〈ij〉,αβ

Sβα(i)Sαβ (j), (2)

with the spin operators Sβα(i) = f†α,ifβ,i which satisfy the

SU(N) algebra [Sβα(i), Sδγ(j)] = δij(δβγS
δ
α − δαδS

γ
β ) and

hence form the generators of the SU(N) symmetry. We
consider the deep Mott insulator (MI) state, in which
the system satisfies the local constraint of having one

particle per site,
∑
α f
†
α,ifα,i = 1, so that the spin on

each site transforms in the fundamental representation of
SU(N). Thus the number of sites needed to form a singlet
is N , leading to rich and exotic behavior [37, 84, 85]. In
Ref. 67 it was shown that on a square lattice, besides the
expected antiferromagnetic phase, there are valence bond
solids, and – most interestingly – topologically ordered
chiral spin liquids.

B. Experimental Realization in Systems of
Alkaline Earth Atoms

Alkaline earth atoms belong to the second column of
the periodic table and have two-outer valence electrons.

These and other atoms with similar atomic structure such
as Yb have unique atomic properties that make them at-
tractive candidates for new types of atomic clocks [86–
88], quantum simulation [71, 73] and quantum informa-
tion applications [89–91]. In their ground state, 1S0, the
electronic degrees of freedom have neither spin nor or-
bital angular momentum (J = 0) and the nuclear spin
(I) is thus decoupled from the electronic state. Only
fermionic isotopes have I > 0 [92] and these are the fo-
cus of our study. This decoupling not only allows one
to independently manipulate nuclear and electronic de-
grees of freedom, but also implies that the 1S0 s-wave
scattering lengths are independent of the nuclear spin.
The nuclear-spin-dependent variation of the scattering
lengths is expected to be smaller than ∼ 10−9 [71]. This
leads to the SU(N) symmetric models treated in this pa-
per, with N ≤ 2I + 1.

A fundamental consequence of the SU(N) symmetry is
the conservation of the total number of atoms with nu-
clear spin projection α. This means that an atom with
large I, e.g. 87Sr (I = 9/2), can reproduce the dynamics
of atoms with lower I if one takes an initial state with
no population in the extra levels. This feature of SU(N)
symmetry is in stark contrast to the case of weaker SU(2)
symmetry exhibited in alkali atoms, where the depen-
dence of scattering lengths on the total spin of the two
colliding particles allows for spin changing collisions, due
to the finite hyperfine interactions.

The many-body Hamiltonian that describes cold
fermionic alkaline-earth atoms in the 1S0 state loaded
in the lowest band of an optical lattice is Eq. (1) with

t = −
∫
d3rw(r)(− ~2

2M∇
2 + V (r))w(r − r0), where r0

is the separation of two nearest neighbors, and U =
4π~2

M agg
∫
d3rw4(r), with M the mass, agg the nuclear

spin independent 1S0 scattering length and w(r) the
Wannier functions of an atom in a lattice potential V (r)
[71]. In order to allow motion only along one direction the
lattice confinement along the other two must be strong
to suppress tunneling in the course of the experiment.

C. Approximate Bethe Ansatz for N > 2

The Bethe ansatz exactly solves many models, for ex-
ample the SU(2) Heisenberg model, SU(N) continuum
fermions, and the SU(N) Heisenberg model [34, 93].
However, the SU(N) Hubbard model is not solvable with
standard Bethe ansatz techniques: since lattice sites may
be occupied by more than two particles, it is impossible
to reduce the many-particle problem to two-particle scat-
tering events. Haldane and Choy developed a “natural”
generalization of the SU(2) Hubbard model Bethe ansatz
equations to SU(N) symmetry, given in Refs. 94 and
95. The obtained solution, however only approximates
the Hubbard model, as discussed below. Appendix A
presents the details of the calculation.

As shown there, we obtain for the ground state energy
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per site

EBA = −2t

∫ k0

−k0
dk cos(k)ρc(k), (3)

with the pseudomomenta k and charge rapidity distribu-
tion ρc(k), where k0 is determined by the density via

n =

∫ k0

−k0
dk ρc(k).

In this paper we have restricted to the balanced case
with equal population of each of the N spin components,
where the Bethe ansatz equations simplify to [96]

ρc(k) =
1

2π
+ cos(k)

∫ k0

−k0
dk′ ρc(k

′)GN (sin(k)− sin(k′)),

GN (x) =
1

2π

∫
dω e−iωxe−U |ω|/4

sinh [(N − 1)Uω/4]

sinh (NUω/4)
(4)

Even though we work with a balanced gas, for our pur-
poses it is equally convenient to simply solve the equa-
tions Eq. (A3) numerically, as described in Appendix A.

While there have been numerous theoretical studies of
this approximate Bethe ansatz [94–100], no precise quan-
tification of its accuracy was available. In Sec. III we
provide such a quantification by comparing to numerical
DMRG results.

Haldane and Choy have argued that the Schrödinger
equation is exactly satisfied only for configurations where
less than three particles occupy a site [97]. This is the
reason the BA is approximate.

The simplest quantification of the approximate nature
of the SU(N) Bethe ansatz solution is found by consider-
ing the SU(N) Hubbard model’s three particle problem.
In particular [97], one finds that

〈x|H − E(k)|vk〉 =
U2

4t
f(k)

〈
x|P̂3|k

〉
, (5)

with

f(k) =[
cos

(
k1 + k2

2

)
cos

(
k2 + k3

2

)
cos

(
k3 + k1

2

)]−1

,

and defining the energy E(k) = −2t [cos(k1) + cos(k2)
+ cos(k3)], the three-particle per site projection opera-

tor P̂3 ≡ δx1x2δx2x3 , the state |k〉 to be the three particle
Bethe ansatz wavefunction characterized by pseudomo-
menta k1, k2, and k3, and |x〉 the state with particles at
positions x1, x2, and x3. It is illustrative here, however,
to note that even when U = 0, and thus the number of
configurations with triple or larger occupancies is large,
the approximate Bethe ansatz is nevertheless exact due
to the U2/t prefactor.

Additionally the Bethe ansatz is exact when no con-
figurations have site occupancies with greater than two
particles per site. This includes the 1/N filling U = ∞
(hard core) limit where it reproduces the exact BA so-
lution of the SU(N) Heisenberg model, and the dilute
limit 〈n〉 � 1 where it reproduces the behavior of SU(N)
δ-function interacting particles.

D. Details of the DMRG calculation

Due to the large on-site Hilbert spaces, the DMRG is
restricted to N ≤ 5. In addition, for the gapless systems
treated in the following, a large number of density-matrix
eigenstates m must be kept. We therefore treat systems
only up to L = 216 lattice sites and keep up to m = 4000
density matrix eigenstates. We discuss results obtained
with open boundary conditions (OBC) since the DMRG
is most efficient in this case.

Note that an additional restriction appears when com-
puting the fidelity susceptibility χ(U) [Eq. (13)] discussed
below. The fidelity F(U) [Eq. (12)] is very close to one,
so that 1 − F(U) ∼ 10−5. It is therefore necessary to
achieve the corresponding convergence in the energy and
a discarded weight which is significantly smaller than this
number. These requirements allow to compute χ(U) reli-
ably only for systems with up to L = 192 sites for N = 2
and L = 48 sites for N = 3, keeping up to m = 4000
and performing 10 sweeps. Additional results for larger
system sizes and for N = 4 show the same qualitative
features, but we will not use them for the finite size ex-
trapolations since the convergence of these calculations
does not match the requirements for a reliable analy-
sis of χ(U). Note that the use of non-abelian quantum
numbers [101–104] might help in future studies to realize
larger system sizes and treat larger values of N .

E. Correlation functions and their structure factors

In this section we introduce the correlation functions
which we are going to discuss in more detail in Sec. V C.
The goals are to compare the spin correlation functions of
the Heisenberg and the Hubbard systems when varying U
in order to identify the Heisenberg regime of the Hubbard
chains, and to provide the structure factors of spin and
charge correlation functions since these are accessible to
experiments as discussed below.

For the Heisenberg model, we compute directly

SH(l,m)α,β =
〈
Sβα(l)Sαβ (m)

〉
. (6)

Note that due to the SU(N) symmetry the correlation
functions along the spin quantization axis and perpendic-
ular to it are identical, so that it is sufficient to consider
only Eq. (6). The situation would, however, be different
in the presence of symmetry-breaking external fields or
population imbalance.

For the Hubbard chains, by expanding the spin opera-
tors Sβα in terms of the Fermi operators fα,i, and taking
into account the SU(N) symmetry, one finds that the spin
correlation functions and the associated structure factor
can be obtained from the difference of density correlation
functions of two identical and two different flavors of the
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particles,

S(l,m) = 〈nαl nαm〉 −
〈
nαl n

β
m

〉
S(k) =

1

L

∑
l,m

S(l,m) eik(l−m),
(7)

where nαl = f†α,lfα,l. Note that here summation over
repeated indices is not implied.

Complementary to this, density correlation functions
and their structure factors are

Nα,α(l,m) = 〈nαl nαm〉 − 〈nαl 〉 〈nαm〉

Nα,α(k) =
1

L

∑
l,m

Nα,α(l,m) eik(l−m), (8)

and

Nα,β(l,m) =
〈
nαl n

β
m

〉
− 〈nαl 〉

〈
nβm
〉

Nα,β(k) =
1

L

∑
l,m

Nα,β(l,m) eik(l−m),
(9)

for the correlations between particles of the same and
of two different species, respectively. Again, due to the
SU(N) symmetry, it is sufficient to restrict to two ob-
servables: one with α = β, and one with α 6= β (these
are otherwise independent of α and β). In addition, it
is useful to introduce the correlation function and the
structure factor of the total density,

N(l,m) =
〈
N total
l N total

m

〉
−
〈
N total
l

〉 〈
N total
m

〉
N (k) =

1

L

∑
l,m

N(l,m) eik(l−m),
(10)

with N total
i =

∑
α n

α
i . Further information is provided

by the one-particle density matrix (OPDM) and the mo-
mentum distribution function,

%α,α(l,m) =
〈
f†α,lfα,m

〉
nα(k) =

1

L

∑
l,m

%α,α(l,m)eik(l−m).
(11)

Note that due to the SU(N) symmetry %α,β(i, j) = 0 for
α 6= β so that it is sufficient to consider only %α,α(l,m).

While for the experiments on optical lattices it is pos-
sible to measure the correlation functions in real space
using in situ techniques [105–110], the structure factors
in momentum space are easier to access. In particular,
the momentum distribution function nα(k) can be ac-
cessed via time of flight measurements [111, 112], the spin
structure factor deep in the Mott insulator phase S(k) is
accessible via noise correlations in the time of flight mea-
surements [113], and the density structure factor N (k)
can be measured using Bragg scattering [112, 114, 115].
By applying a magnetic field, the nuclear spin states can
be spectroscopically distinguished in transitions to elec-
tronic excited states. The reason is that the Lande g-
factor of the excited state significantly differs from that of

the ground state (e.g. ∼ 60% for strontium, Sr [116]) and
in a biased magnetic field, the various Zeeman transitions
have different resonant frequencies, as demonstrated in
Ref. 117. Hence Bragg scattering with light with fre-
quency near a resonance for state α measures Nα,α(k).
In the balanced SU(N) gas, from the knowledge of N (k)
and Nα,α(k) one can compute Nα,β . In the more general
– possibly spin imbalanced – case (not considered in the
present manuscript), one can directly measure Nαβ . To
accomplish this, one uses probe light with a frequency ω
where more than one spin species has response. Tuning
ω tunes the relative response of the different spin flavors,
and thus tunes the correlations that are measured by the
probe, in a well-characterized way. Ref. 118 analyzes the
SU(2) case in detail.

F. Fidelity and Fidelity Susceptibility in the small
U limit

From Bethe ansatz it is well known that for N = 2
at 1/N filling there is a Berezinskii-Kosterlitz-Thouless
transition in the charge sector from a gapless metal-
lic (Luttinger liquid) phase to a gapped Mott-insulating
phase at U = 0 [83, 119, 120]. While there are strong
indications that the transition happens at a value Uc > 0
for N > 2 [5], Ref. 16 questioned this based on quantum
information measures computed from DMRG, and a sce-
nario in which Uc is either zero or very close to zero was
proposed. Here, we investigate the behavior of the sys-
tem at small values of U by computing the fidelity which
we define as the overlap between ground states at neigh-
boring points of the coupling constants (here the on-site
interaction U) [121]

F(U) = |〈ψ0(U)|ψ0(U + dU)〉| (12)

and the fidelity susceptibility

χ(U) =
2
[
1−F(U)

]
LdU2

, (13)

also known as the fidelity metric [122]. For many phase
transitions χ is expected to diverge in the thermodynamic
limit (TL), and it has been shown that it possesses a clear
signature of the critical point already for rather small sys-
tems [123–125]. However, in Ref. 126 the singular part
of the fidelity metric in the vicinity of quantum critical
points was analyzed by a general scaling argument, and
it was found that the singular part of the fidelity suscep-
tibility does not necessarily diverge at a critical point.
Instead, it can have a minimum at the critical point.
For the SU(N) Hubbard model at 1/N filling, there is
spin-charge separation and each sector is described by
a Luttinger liquid theory. For two independent theories
the fidelity factorizes and the fidelity susceptibility is ad-
ditive [125], which leads to the relation

χ(U) = χρ(U) + χσ(U) (14)



5

�

�
�

�

�

�

�
�

�
�

�

�
�

�

�

�

�

�
�

�

�

�
�

�

�

�

�
�

�
�

�

�
�

�

�

�

�
�

�
�

0 1 2 3 4
�1.0

�0.9

�0.8

�0.7

U��4t�

E
�t

n=0.5

�

�
�

�

�

�

�
�

� �

�

�

�
�

�

�

�

�
�

�
�

�

�
�

�

�

�

�
�

� �

�

�
�

�

�

�

�
�

�
�

0 1 2 3 4
�2.0

�1.5

�1.0

�0.5

0.0

U��4t�

E
�t

n=1

�

�
�

�

�

�
�
�
�

� � � � � � �

�

�
�

�

�

�

�
�
�

� � � � � � �

�

�
�

�

�

�

�
�
�
� � � � � � �

�

�
�

�

�

�

�
�
�
� � � � � � �

0 2 4 6 8 10

�0.95
�0.90
�0.85
�0.80
�0.75
�0.70
�0.65

U�t

E

� N�5

� N�4

� N�3

� N�2

FIG. 1. (Color online) Bethe ansatz results for the energies
in the thermodynamic limit for N = 2, 3, 4, 5 (from top to
bottom) for density n = 1/2 (1/(2N) filling, top) and n = 1
(1/N filling, bottom). The dashed lines indicate the weak
coupling and the strong coupling limits.

holds. Since the spin sector realizes a Luttinger liquid
for all values of U , we can safely reproduce the analysis
of Refs. 125 and 127 which leads to the relation

χσ =
1

8

(
d log

(
Kσ(U)

)
dU

)2

. (15)

Here, Kσ(U) is the spin Luttinger parameter, and due
to the SU(N) symmetry, Kσ(U) ≡ 1 for all values of
U ≥ 0 and N . In the Luttinger liquid region, Eq. (15)
holds also for the relation between χρ(U) and Kρ(U).
χ(U) computed via Eq. (13) reveals the behavior of the
charge sector and can be applied to investigate the Mott
transition. As discussed in more detail in Sec. IV, we
find numerically that χ(U) is minimized at the phase
transition.

III. COMPARISON BETWEEN BETHE
ANSATZ AND DMRG

Figure 1 shows the BA results for the ground state en-
ergy per site in the thermodynamic limit up to N = 10
for one atom per site n = 1 (1/N filling) and for half
an atom per site n = 0.5 (1/(2N) filling). Due to the
expensive numerics, we consider DMRG results only for
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FIG. 2. (Color online) Relative error between DMRG and
Bethe ansatz for N = 2, 3, 4 (from top to bottom) at densi-
ties n = 0.5 (1/(2N) filling, top) and at n = 1 (1/N filling,
bottom).

N ≤ 4 and the same values of the filling. Both DMRG
and the BA show the same qualitative behavior for all
N : for large values of U , the energy asymptotically ap-
proaches a constant, while for small values of U it is
proportional to U . This suggests the presence of two dif-
ferent regimes and a crossover region or phase transition
between them. We come back to this point in Sec. V
where we discuss in more detail the parameter regime
in which the systems behave as SU(N) Heisenberg spin
chains. Note that at 1/N filling, n = 1, upon increas-
ing N , the energies quickly approach an asymptote, so
that the curves for N = 3 and N = 4 in Fig. 1 are basi-
cally indistinguishable. This shows the particles become
effectively distinguishable quickly for density n = 1. As
discussed in Ref. 96, in the limit N →∞ a generalization
of the solution of the Lieb-Liniger equation is obtained,
so that the SU(N) Hubbard chain in this limit can be
regarded as a generalized continuum boson system.

Figure 2 presents the relative difference between the
DMRG and the BA results for the ground state energies
per site in the thermodynamic limit for N ≤ 4. We find
that the relative error for N = 4 is . 4% at 1/N filling,
n = 1, and . 0.7% at 1/(2N) filling n = 0.5. For N = 2,
the relative error is of the order of 10−4 or smaller and is
hence not visible on the scale of the plot. This is expected
since here the BA is exact, and the DMRG is known to
be capable of obtaining the ground state energy for finite
systems with a relative error of 10−6 or better [81, 128].
For N > 2, the BA becomes exact for U = 0 and in
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FIG. 3. (Color online) Triple or higher occupancy (P≥3) ver-
sus N for various densities (n = 0.4, . . . , 1.0, bottom to top
in steps of 0.2).

the limit U → ∞, as explained above in Sec. II C. We
hence expect the absolute errors to be maximal for some
intermediate value of U . As can be seen in Fig. 2, the
maximal relative error is obtained at U ≈ 3t. The upturn
at large-U is discussed below.

The fraction of sites with three or more particles per
site can be estimated in the non-interacting limit. For
densities n ≤ 2, interactions suppress the number of
triple and higher occupancies, so that the non-interacting
limit yields an upper bound to the number of such config-
urations, and thus an upper bound of the corresponding
error.

In the non-interacting limit, each of the N flavors is
independently occupied on a site with probability n/N ,
so that the probability of having m particles per site is

mCN (n/N)m(1 − n/N)N−m, with mCN = N !/[m!(N −
m)!]. Thus the probability of having three or more atoms
on a site is

P≥3(N) = 1−
2∑

m=0

mCN (n/N)m(1− n/N)N−m

= 1− (1− n/N)
N

×
[
n2(N − 2)(N − 1) + 2n(N − 2)N + 2N2

]
2(N − n)2

.(16)

This function monotonically increases with N and con-
verges to its maximum as N →∞, given explicitly by

P≥3(N =∞) = 1− e−n

2
(n2 + 2n+ 2). (17)

Fig. 3 plots the probability of triple and higher occupa-
tion P≥3(N) for N = 3 and N = ∞ as a function of N
for various densities. We see that at density n = 1, the
fraction of triple and higher occupancies for N = 3 is
P≥3(3) = 0.037 and for N =∞ is P≥3(N =∞) = 0.080.

Equation (5) suggests that the relative error is on the
order of the fraction of the triply or higher occupied sites

times U2/(4t), approximating f(k) ∼ 1, which is a typ-
ical value, although for k1 = k2 = k3 = π/2 it diverges.
For N = 4 at n = 1, the quantity P≥3[U/(4t)]2 is .003
and .03 for U = t and U = 35t, in agreement with the
results of Fig. 2 (bottom), about .005 and .04. Since this
estimate grossly overestimates fluctuations in the strong
coupling limit, we also estimate the fluctuations there
for n = 1. Second order perturbation theory in t/U gives
fluctuations to three or more particles per site with am-
plitude O

(
(t/U)2

)
, so Eq. (5) suggests an error in the

energy of the order O(t). This absolute error becomes
small in absolute terms as t → 0, but the relative error
diverges since the exact energy scales as t2/U . Fig. 2
shows this upturn at large-U of the relative error.

IV. FIDELITY SUSCEPTIBILITY AS A PROBE
FOR THE MOTT TRANSITION

In this section, we discuss the numerical results for the
fidelity and fidelity susceptibility for systems with N ≤ 4
at 1/N filling obtained via Eqs. (12) and (13). We start
by summarizing general considerations and former results
for the Hubbard chain.

A. Fidelity susceptibility at U = 0: exact results

For small values of U , the fidelity susceptibility χ(U)
[Eq. (13)] can be obtained from standard perturbation
theory. For the SU(N) Hubbard chain one obtains [122,
127]

χ(U) =
1

L

∑
n

|〈n|V |0〉|2

En − E0
(18)

V =
∑
i,α>β

ni,αni,β , (19)

where En and |n〉 are the eigenenergies and correspond-
ing excited eigenstates of the SU(N) Hubbard chain, and
E0 and |0〉 are the energy and eigenstate of the ground
state.

At the non-interacting point U = 0, the ground state
susceptibility can be computed exactly. In momentum
space, we obtain the result in the thermodynamic limit
[127],

χ(U = 0) =
N(N − 1)

2(2π)3

×
π∫
−π

π∫
−π

π∫
−π

dk dk′ dq
nk (1− nk+q)nk′ (1− nk′−q)

(εk+q − εk + εk′−q − εk′)2 ,(20)

with the single particle dispersion of non-interacting
fermions εk = −2t cos(k) and nk = Θ(εF − εk), with
εF the Fermi energy. The resulting numerical values of
χ(U = 0) for N ≤ 6 are listed in Tab. I. Note that for
N = 2 a finite value is obtained, indicating that there is
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N χ
2 1/(24π2) ≈ 0.00422172
3 0.0109003
4 0.0227492
5 0.0416842
6 0.0696197

TABLE I. Numerical values of the fidelity susceptibility χ at
U = 0 for N = 2, . . . , 6 as obtained from Eq. (20). The
N = 2 case is also shown in Ref. 129.

no divergence of χ(U) at the metal-insulator transition.
In addition, perturbation theory shows the derivative of
χ(U) at U = 0 is negative for N > 2, demonstrating that
a minimum is to be expected at some fine value of U . As
we will see next, the critical point in the Hubbard chain
is indeed characterized by such a minimum of χ(U).

B. Scaling behavior and nature of χ(U = Uc) for
SU(N) Hubbard chains at 1/N filling

Reference 127 analyzed the scaling behavior of χ for
the SU(2) Hubbard model at 1/N filling. As suggested
by the exact result at U = 0 for N = 2, χ(U) is found
not to diverge at the metal-insulator transition. Apply-
ing Ref. 126’s scaling argument to the SU(N) Hubbard
model, we find that the singular part of the fidelity sus-
ceptibility goes to zero as one approaches the critical
point: the scaling exponent of the fidelity susceptibil-
ity near the critical point is given by 2∆− 2z− 1 (∆ = 2
is the scaling dimension of the Hubbard interaction and
z = 1 is the dynamical exponent). Therefore, the sin-
gular part of the fidelity susceptibility vanishes as one
approaches the critical point. Moreover, a large scale
Quantum Monte Carlo calculation for the SU(2) model
in Ref. 129 finds that χ(U) has a local minimum at the
critical point Uc = 0. This indicates that the regular
part of the fidelity susceptibility behaves rather flat in
the vicinity of Uc = 0.

The transition for N > 2 at 1/N filling is believed to
be of the same type as for N = 2, but at a finite value of
U [5]. Hence, it is natural to expect that also for N > 2
the transition is identified by a local minimum of χ(U).
This is further corroborated by the fact that Kρ and the
coupling of umklapp terms obey similar RG flow equa-
tions (of BKT type) for any value of N , so that at 1/N
filling it follows from Eq. (15) that χ should have similar
behavior for all N near the critical point. Therefore, we
expect a minimum of χ at Uc for all values of N . Note
that the numerical computation of χ(U) is independent
from the computation of Kρ, which could show anoma-
lous behavior at U = 0 [120, 130], and also independent
from the computation of the charge gap, from which it is
difficult to obtain accurate values of Uc due to the expo-
nential behavior at the BKT-type transition.
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FIG. 4. (Color online) Finite size extrapolation of χ(U = 0)
for N = 2, 3, 4. The horizontal lines show the exact values of
Tab. I. For N = 3 and N = 4 we have not taken into account
the results for the largest system sizes (L = 96 and L = 36,
respectively) due to a discarded weight of similar order of
magnitude as 1−F(U). The black lines show a quadratic fit
for N = 2 and N = 3 and a linear fit for N = 4.

C. Numerical results

In order to identify Uc, we have computed the fidelity
F0(U) = |〈ψ0(U = 0)|ψ0(U)〉| for systems L ≤ 48, and
find no signature of a phase transition in the finite size
data. We associate this to the BKT nature of the phase
transition and expect that a discontinuity at Uc should
appear after extrapolating to the thermodynamic limit.
Due to the large numerical effort associated with such an
analysis, we refrain from doing so and focus instead on
the behavior of the fidelity susceptibility.

We start our discussion by estimating the accuracy
of our numerical results by comparing to the exact re-
sults at U = 0. In Fig. 4 we show our finite-size-scaling
analysis for χ(U) and the comparison to the exact re-
sults of Tab. I. We obtain χ(U = 0)N=2 ≈ 0.0043 (ex-
act value: χ ≈ 0.00422), χ(U = 0)N=3 ≈ 0.0112 (exact
value: χ ≈ 0.01090) and χ(U = 0)N=4 ≈ 0.02670 (exact
value: χ ≈ 0.022749). Fig. 4 also shows that for N = 3
the results for L = 96 lead to a bad extrapolation, and for
N = 4 the results for L = 36 are not accurate enough for
our considerations. We therefore restrict the finite size
scaling to N = 2 and N = 3, for which the relative error
of the numerical results at U = 0 is < 3%, and discuss
the qualitative behavior of the finite size data for N = 4.

Figure 5 shows χ(U) for systems up to L = 192 (N =
2) and L = 48 (N = 3), and the extrapolation to the
thermodynamic limit. The finite size results for N = 4
show qualitatively similar behavior. Interestingly, the
results in Fig. 5 show various similarities between N = 2
and N = 3. In particular, in the thermodynamic limit, a
minimum is obtained at Umin = 0 for N = 2 and Umin ≈
1.5t for N = 3, followed by a maximum at Umax ≈ 1.6t
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FIG. 5. (Color online) Fidelity susceptibility for different sys-
tem sizes for N = 2 and N = 3. The black continuous line
shows the value after extrapolating to the thermodynamic
limit using the system sizes shown.

for N = 2 and Umax ≈ 3.2t for N = 3. Note that the
numerical values of χ(U) at the minimum and at the
maximum for N = 2 and N = 3 are very similar to each
other. This raises the question if these values might be
universal for all values of N .

Finite size results for N = 4 for L ≤ 36 indicate sim-
ilar behavior, with Umin ≈ 2t and Umax ≈ 3.5t, but the
more difficult convergence inhibits obtaining the values
of χ(U) at the minimum and the maximum in the ther-
modynamic limit. Noteworthy is also the finding of a
universal crossing point in Fig. 5 between the minimum
and the maximum of χ(U), whose explanation lies be-
yond the scope of the present paper. We therefore leave
these issues open for future research.

The findings of Fig. 5 are interesting. As suggested by
the analysis of Sec. IV B, they support values of Uc = 0
for N = 2 (in agreement with the exact BA result), and
Uc ≈ 1.5t and Uc ≈ 2t for N = 3 and N = 4, respectively.
These values of Uc can be contrasted to the findings of
Ref. 5 in which the analysis of numerical QMC results
for the charge gap indicate Uc ≈ 2.2t for N = 3 and
Uc ≈ 2.8t for N = 4. In agreement with the conclusions
of Ref. 16, this indicates that the analysis of the charge
gap tends to overestimate the value of Uc. However, our
results for χ(U) for N = 2 and N = 3 indicate that the

dependence of Umin on the system size for this quantity
is rather weak, so that the extrapolation appears to be
well controlled. We believe therefore that the analysis
of Ref. 16 underestimates the values of Uc, and that in-
deed Uc > t for N > 2. This is further corroborated
by computing analytically χ(U) in the limit U → 0 us-
ing perturbation theory. For N > 2, we find that χ(U)
is finite and decreases with U , supporting a scenario in
which the minimum is located at a finite value of U . Note
that the values of Umin are in rough agreement with the
results of an approximate BA treatment of the metal-
insulator transition [99], which finds 2.5t . Uc . 3.5t for
N = 3, . . . ,∞, overestimating the value of Uc for N = 3.

We complement these considerations by another esti-
mate of χ(U) as obtained from Eq. (15), which relates
χ(U) to Kρ(U) for the Luttinger model. Numerically
computing the derivative of Kρ(U) shows that χ(U) has
indeed a minimum which is located at U ≈ 0 for N = 2,
U ≈ 1.1t for N = 3 and U ≈ 2.1t for N = 4. These
values are in good agreement with the values of Umin ob-
tained by directly computing χ(U), and we associate the
discrepancy to the errors in the numerical computation
of the derivative.

We finish this section by relating our findings to ongo-
ing experiments. Due to the smallness of the charge gap,
it will be difficult to precisely locate Uc in the experi-
ments. However, our analysis suggests that for all N > 2
Luttinger-liquid (LL) behavior can be addressed by the
experiments in the regime U . t, and that the transition
to a Mott-insulator takes place at some value of U . 4t
for N → ∞. This suggests that for N > 2 it should be
possible to realize the LL by tuning U to a small enough
value, but not necessarily exactly to zero. Also note that
similar considerations imply that it should be possible
to realize at finite temperatures T spin-incoherent LL
phases which we expect for ~uS/L � kB T � ~uC/L,
with uS and uC the velocity of the spin and charge exci-
tations, respectively [131], which for small U � t behave
as uS ∼ vF − U/(2π) and uC ∼ vF + U (N − 1)/(2π),
where the Fermi velocity vF = 2t sin(π/N).

In the following section we will focus on the strong cou-
pling limit of 1/N filled SU(N) Hubbard chains, which
maps to SU(N) spin chains for U large enough. From the
considerations in this section, we expect this mapping to
work for U � 4t. In the following, we provide a more
precise estimate by comparing energies and correlation
functions.

V. HEISENBERG LIMIT OF SU(N) HUBBARD
CHAINS

A. Energies

It is a priori unclear for which values of U/t the SU(N)
Hubbard model behaves as a Heisenberg model at low en-
ergies, especially in the light of the probable differences
in Uc for N = 2 and N > 2 discussed in the previous
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section. We address this by first comparing the DMRG
energies of the SU(N) Hubbard models to the expected
∼ t2/U behavior in Fig. 6 and find that, for the values of
N shown, the Heisenberg regime starts at US ≈ 11t. At
this value, the difference of the DMRG results for N = 2
to the expected t2/U behavior is ε ≈ 5×10−3. Note that
US shows a slight decrease upon increasing N indicating
that for all values of N and for U & 11t the system be-
haves as a Heisenberg chain. This is further confirmed by
BA, which shows that for N ≤ 10 the energy follows the
t2/U behavior in this regime, as shown in Fig. 7. Note,
however, that the BA shows a slight increase of US with
N . The behavior of the energies hence suggests that in
1D, for all values of N , SU(N) Heisenberg physics can be
realized in the experiments with ultracold alkaline earth
atoms for U ≥ 11t. We will further refine this in the
next section, where we compare the numerical values of
spin correlation functions of both models as a function
of U/t. Note that this numerical value of US is in good
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crossover region to the strong coupling regime (log-log scale).
The black lines are fits to a function ∼ t2/U using the last
two data points.
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for the Mott transition within the Bethe ansatz. Top: 1/(2N)
filling (n = 0.5), Bottom: 1/N filling (n = 1).

agreement with the findings of Ref. 132 for a frustrated
2D system, in which effective spin models are found to de-
scribe the SU(2) Hubbard model on the triangular lattice
for U & 10t. We therefore expect that the SU(N) Heisen-
berg model may quantitatively describe experiments with
alkaline earth atoms in optical lattices for U > US also
in higher dimensions.

B. Higher local occupancies

One specific property of the SU(N) Hubbard systems
is that each site can be populated with up to N parti-
cles. In the context of a possible realization of SU(N)
Heisenberg physics, it is therefore interesting to analyze
the strong-coupling behavior of the higher local occu-
pancies. These quantities are accessible in experiments
and can provide valuable information. More specifically,
measurements of the Pm, the number of particles on sites
with occupancy m, will allow to obtain all the moments
of the density as well as related quantities of interest such
as the photoassociation rate [133], which is ∝ 〈n(n− 1)〉
(with n =

∑
α n

α), and the rate at which atoms are lost
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from the trap, dominated by 3-body losses and hence
∝ 〈n(n − 1)(n − 2)〉. In situ single-site resolved mea-
surements directly give the parity, 〈(−1)n〉, which may
also be obtained from the Pm [106–110]. Most informa-
tively, one can use RF spectroscopy to directly measure
Pm [134], in particular by quenching the state of interest
to a deep lattice. Pm could also be measured using in-
teraction blockade in an optical superlattice [135]. More-
over, it may be possible to extend in-situ single-site res-
olution experiments capabilities to measure Pm directly
[136].

In Fig. 8 we show our DMRG results for systems with
open boundary conditions and L ≤ 24 for N ≤ 5. More
specifically, we present the average over all sites of the
double occupancy 〈D〉, the triple occupancy 〈T 〉, the
quadruple occupancy 〈Q4〉 and of the quintuple occu-
pancy 〈Q5〉, defined in Appendix B. As can be seen, the
results do not depend strongly on N . In particular in
the limit of large U/t, we observe that the results for
N = 4 and N = 5 are practically indistinguishable. In
this limit, the quantities follow a power law ∼ (U/t)η,
with exponents (obtained for N = 5) ηD ≈ −1.9, ηT ≈
−4.1, ηQ4

≈ −7.9, ηQ5
≈ −12.0 at filling n = 1/(2N)

and ηD ≈ −2.0, ηT ≈ −4.0, ηQ4
≈ −7.9, ηQ5

≈ −11.6
at filling n = 1/N . Since the double occupancy is the
largest quantity, we analyze it in more detail. The in-
sets of Fig. 8 show that the behavior at fillings 1/(2N)
and 1/N differs at small values of U/t. While 〈D〉(U)
appears to decay monotonically for all values of U/t at
filling 1/(2N), at filling 1/N we identify for the small sys-
tems a rounding or a peak for N > 2. This might be due
to the metal-insulator transition. However, the positions
of these maxima do not coincide with the minima of the
fidelity susceptibility, so that we conclude that addressing
the double occupancy in experiments with small systems
is not sufficient to locate the phase transition. This can
be understood since for the BKT transition all deriva-
tives of the energy as a function of U/t behave regularly.
According to the Hellmann-Feynman theorem, the dou-
ble occupancy is (to a good approximation for N > 2) the
first derivative of the energy with U , so that it is not ex-
pected to show singular behavior at the Mott-transition
in these systems.

However, all these quantities show a crossover to the
aforementioned power-law behavior at values of U ≈ 10t.
Toghether with the behavior of the energy, this further
supports that the minimal value of U/t for emulating
Heisenberg physics to . 1% accuracy is approximately
10. We will now turn to the behavior of the correlation
functions which further support this result.
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FIG. 8. (Color online) Site averaged double, triple, quadru-
ple and quintuple occupancies as a function of U/t for small
systems at filling (a) n = 1/(2N), and (b) n = 1/N . The
system sizes in (a) are L = 24 for N = 2, 3, 4, and L = 20
for N = 5. The system sizes in (b) are L = 20 for N = 2, 4,
L = 21 for N = 3, and L = 10 for N = 5. The black straight
lines are guide to the eyes showing the power-law behavior.
The insets show the double occupancy as a function of U/t
for the different values of N .

C. Correlation functions

1. Bosonization results for the correlation functions and
Luttinger parameters

According to Ref. 5, and in agreement with our results
for the fidelity susceptibility discussed in Sec. IV, the sys-
tem for N > 2 is in a metallic (LL) phase at small, but
finite values of U/t. Bosonization shows that at low en-
ergy the spin and charge degrees of freedom separate, and
both sectors are described by the Luttinger liquids with
corresponding Luttinger parameters Kρ (charge) and Kσ

(spin) [137]. Here, Kσ = 1 for any value of U . The lead-
ing order contributions to various correlation functions
can be obtained from standard Abelian bosonization [5].
We obtain for the density-density correlations [defined in
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Eq. (10)]

〈N total(r)N total(0)〉 = n2 − NKρ

2 (πr)
2 +A1

cos (2kF r)

r2Kρ/N+2−2/N
,

(21)
where kF = nπ/N , and n the density. For the spin-spin
correlations [Eqs. (7) and (6)] we obtain for α 6= β

〈Sβα(r)Sαβ (0)〉 = − 1

2 (πr)
2 +B1

cos (2kF r)

r2Kρ/N+2−2/N
, (22)

and for α = β,

〈Sαα(r)Sαα(0)〉 =
( n
N

)2

− (Kρ − 1) /N + 1

2 (πr)
2 +

B′1 cos (2kF r)

r2Kρ/N+2−2/N
,

(23)
Note that due to the SU(N) symmetry, Eq. (22) is, up to
a factor of 2, the same as 〈Sz(r)Sz(0)〉. Also note that
we neglect possible 4kF contributions and logarithmic
corrections in the above expressions. At U = 0, Kρ = 1,
and as the repulsive interaction U is increased, the charge
Luttinger parameter gradually decreases. As discussed in
Ref. 5, at a sufficiently large value of U = Uc, the multi-
particle umklapp scattering terms become relevant and a
charge gap opens, leading to the metal-insulator transi-
tion of the BKT type discussed in the previous sections.
In the Mott-insulating phase U > Uc, the spin correla-
tions are then simply obtained from Eqs. (22) and (23)
by setting Kρ = 0, and the density correlations decay
exponentially.

Expression (21) can be used to obtain Kρ numerically.
In the limit k → 0 the charge structure factor behaves as

N (k → 0) =
NKρ

2π
|k|; (24)

Kρ consequently can be determined by fitting the slope
of the numerically obtained N (k) in the vicinity of k = 0.

2. DMRG results

In Fig. 9 we compare DMRG results for the spin cor-
relation functions [Eq. (7)] of N = 2, 3, and 4 SU(N)
Hubbard chains at unit filling for U = 2t, 8t, 12t to the
spin correlation functions of the corresponding Heisen-
berg chains [Eq. (6)]. Already at U = 2t the Heisenberg
model reproduces the qualitative features (algebraic de-
cay and 2kF oscillations ) of the Hubbard model. How-
ever, the difference in the actual values shows that this
value of U/t is outside the quantitative regime of validity
of the Heisenberg model. For U = 8t and 12t, however,
the agreement is quantitative for the three values of N
shown. The largest difference is in the nearest-neighbor
correlations. Upon increasing N the difference decreases,
corroborated by computing the distance between the spin
correlation function of the Hubbard systems [Eq. (7)] and
of the Heisenberg systems [Eq. (6)] which we define as

d =

√∑
r

[S(r)− SH(r)]
2
. (25)
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FIG. 9. (Color online) Comparison of spin correlation func-
tions [Eqs. (7) and (6)] of the 1/N filled SU(N) Hubbard and
SU(N) Heisenberg chains at U = 2t, 8t, 12t for N = 2, 3, 4.

In Fig. 10, we see that this distance decreases with
increasing U/t and N . For U > 12t, we find d < 0.01 for
all values of N . Note that this criterion is matched for
smaller values of U/t when increasing N .

Figure 11 presents results for the spin correlation func-
tions of the SU(N) Hubbard chains at 1/2N filling. The
results show the same characteristics as at 1/N filling. In-
terestingly, although this cannot be mapped to a Heisen-
berg model, the results for U = 8t and U = 12t are very
similar to each other for the displayed values of N . This
suggests that the behavior in this region might be gov-
erned by SU(N) t−J models. These effective models cap-
ture the interplay of spin-exchange interactions expected
for large values of U/t with the electron itineracy. In the
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FIG. 10. (Color online) Distance d [Eq. (25)] between the
spin correlation functions of the 1/N filled Hubbard and of
the Heisenberg chains [Eqs. (7) and (6)] as a function of U/t
for N ≤ 4.

SU(2) case, it is known that this model possesses a rich
phase diagram with superconducting phases [138]. In the
SU(N) case, the question arises if the phase diagrams of
these models at N = 2 and N > 2 remain similar, as in
the case of unit filled Hubbard chains, or if the enhanced
symmetry might lead to unconventional phases, e.g., ex-
otic singlet-superconductivity with singlets formed by N
particles.

D. Structure factors and Luttinger parameter

Figure 12 shows our results for the various structure
factors defined in Sec. II E at U = t and U = 15t. As
expected from bosonization (see Sec. V C 1), all structure
factors show a peak or a shoulder at 2kF originating from
the oscillatory component of the correlation functions.
At U = t, the behavior of all structure factors at small
k is linear with k up to k ≈ 2kF (only Nα,β(k) shows a
nonlinear behavior). The momentum distribution func-
tion indicates the presence of a discontinuity; this is an
artifact due to the small system sizes available, and for
N > 2 one would obtain a singularity in the derivative of
n(k) at kF , according to LL theory. For N = 2, the re-
sults look similar due to the pronounced finite size effects
caused by the exponentially slow opening of the charge
gap. This is also the reason why N (k) appears to be
linear for N = 2 despite the presence of a charge gap.
Below we will exploit the fact that for U/t small enough,
N (k) behaves linearly and obtain Kρ(U) from Eq. (24).

For U = 15t, deep in the Mott-insulating phase, the
linear behavior at small k is less pronounced or absent
due to the finite charge gap, which leads to an exponen-
tial decay of the correlation functions. The most drastic
changes are seen in N (k) and n(k), which directly probe
charge degrees of freedom. In these quantities, the sin-
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FIG. 11. (Color online) Spin correlation functions [Eq. (7)]
of SU(N) Hubbard chains at half filling n = 0.5 for the same
parameters as in Fig. 9.

gularities at 2kF and kF disappear, as expected for a
Mott insulator with a large charge gap. Note that S(k)
behaves linearly in the region 0 < k < π/4, and is the
same for all values of N with a slope of 1/(2π), in agree-
ment with the bosonization result for the spin correlation
function, Eq. (22).

Fig. 13 shows our results for Kρ(U) obtained from fit-
ting the slope of N (k) at k ≈ 0. Note that for U > Uc,
formally Kρ does not enter the correlation functions [137]
and the structure factor cannot be used to determine Kρ.
However, due to the exponentially slow opening of the
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FIG. 12. (Color online) Structure factors of the various correlation functions Eqs. (7) - (11). (a) Charge structure factor
[Eq. (10)] for U = t. (b) Spin structure factor [Eq. (7)] for U = t. (c) Structure factor Nα,α(k) [Eq. (8)] for U = t. (d)
Structure factor Nα,β(k) [Eq. (9)] for U = t. (e) Momentum distribution function [Eq. (11)] for U = t. (f)-(j): the same
quantities, but for U = 15t.
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FIG. 13. (Color online) Kρ(U) as obtained for systems with
L = 48 sites via Eq. (24) for N = 2, 3, 4.

gap, when the system size is much smaller than the cor-
relation length the structure factor for the finite systems
appears to behave linearly so that we fit the slope also in
these cases. It appears that for N = 2, there seems to be
an inflection point at U = 0, which leads to a minimum of
χ(U) computed from Kρ using Eq. (15). For N > 2, sim-
ilar inflection points seem to appear at U ≈ 1.5t (N=3)
and U ≈ 2t (N=4), i.e., close to the values of Umin at
which the fidelity susceptibility χ(U) has its minimum.
Additional inflection points seem to appear at larger val-
ues of U (N = 2: U ≈ 2t; N = 3: U ≈ 4t; N = 4:
U ≈ 4t). These are in rough agreement with the position
of the maxima of χ(U) discussed in Sec. IV C.

VI. SUMMARY AND CONCLUSIONS

Using BA, bosonization, and DMRG, we have inves-
tigated SU(N) Hubbard chains and identified the region
of validity of both the strong- and weak-coupling pertur-
bative regimes. For N > 2, where the BA is known to be

an approximation, the values of the energies for N = 4
agree with the ones obtained by DMRG with a relative
error < 4%. We therefore use the BA to explore the be-
havior at large N which is difficult to access with DMRG.
In addition, by computing the fidelity susceptibility, we
have shed new light on the value of the critical interac-
tion strength Uc for the Mott transition at 1/N filling.
We identify a clear minimum in the fidelity susceptibility
in the vicinity of the putative Uc even for rather small
system sizes. Since the same behavior is obtained for
N = 2, for which Uc = 0 is known exactly, we conclude
that Uc > t for all N > 2. For experiments with N > 2,
this signifies that it should be possible to observe Lut-
tinger liquid behavior for U < t even at 1/N filling.

For large U/t, we identify that SU(N) Heisenberg mod-
els provide a very accurate (. 1% error) description of
the system for U > 12t for all values of N . For these
values of U/t, the absolute difference between the corre-
lation functions of the Hubbard and the Heisenberg sys-
tems is < 0.01. We expect therefore that in this regime
the SU(N) Heisenberg model will quantitatively describe
experiments with ultracold alkaline earth atoms on op-
tical lattices. We expect that also in higher dimensions
this may be true for similar values of U/t. Given that it
is more favorable for the experiments to work with values
of the spin-exchange interaction J as large as possible, we
therefore suggest to search for the proposed chiral spin
liquid state [67] in experiments on square lattices for val-
ues of the interaction 10t . U . 15t.
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Szirmai and Simon Fölling, as well as funding by NSF
(PFC, PIF-0904017, and DMR-0955707), the AFOSR,
and the ARO (DARPA-OLE). We also acknowledge
CPU-time at ARSC. KRAH and GC would like to thank
the Aspen Center for Physics, which is supported by
NSF, for its hospitality during the writing of this paper.

Appendix A: Bethe ansatz equations

Here we summarize the basic approximate Bethe ansatz equations developed in Refs. 94 and 95.

The rapidity distributions ρc are associated with the charge degree of freedom, and the ρj ’s for j ∈ {1, . . . , s} are
associated with the rapidity distribution governing the difference in spin states j − 1 and j (where we interpret spin
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state “0” as the charge). These distributions satisfy the coupled set of N linear integral equations

ρc(k) =
1

2π
+

cos(k)

2π

∫ Λ1

−Λ1

dΛK1(sin k − Λ)ρ1(Λ)

ρ1(Λ) =
1

2π

∫ k0

−k0
dkK1(Λ− sin k)ρc(k)− 1

2π

∫ Λ1

−Λ1

dΛ′K2(Λ− Λ′)ρ1(Λ′)

+
1

2π

∫ Λ2

−Λ2

dΛ′K1(Λ− Λ′)ρ2(Λ′)

ρs(Λ) =
1

2π

∫ Λs−1

−Λs−1

dΛ′K1(Λ− Λ′)ρs−1(Λ′)− 1

2π

∫ Λs

−Λs

dΛ′K2(Λ− Λ′)ρs(Λ
′)

+
1

2π

∫ Λs+1

−Λs+1

dΛ′K1(Λ− Λ′)ρs+1(Λ′) for s = 2, . . . , N − 2,

ρN−1(Λ) =
1

2π

∫ ΛN−2

−ΛN−2

dΛ′K1(Λ− Λ′)ρN−2(Λ′)− 1

2π

∫ ΛN−1

−ΛN−1

dΛ′K2(Λ− Λ′)ρN−1(Λ′) (A1)

with

Kq(x) =
1

2

qU

(qU/4)2 + x2
. (A2)

The parameters k0 and Λs for s = 1, . . . , N − 1 are determined by the charge and spin densities nc and nj through

nc =

∫ k0

−k0
dk ρc(k)

n1 =

∫ k0

−k0
dk ρc(k)−

∫ Λ1

−Λ1

dΛ ρ1(Λ)

ns =

∫ Λs−1

−Λs−1

dΛ ρs−1(Λ)

−
∫ Λs

−Λs

dΛ ρs(Λ) for s = 2, . . . , N − 1 (A3)

and the ground state energy per site is given by

EBA = −2t

∫ k0

−k0
dk cos(k)ρc(k) (A4)

We numerically solve the integral equations, Gauss-Legendre discretizing the linear integral equations and solving
the resulting linear equations [139]. To apply the discretization procedure for finite intervals, we first transform
the intervals (−k0, k0) and (−Λs,Λs) to (−1, 1). A uniform rescaling of the coordinates is suitable for the (−k0, k0)
interval, but is unfavorable for the rest because Λs tends to infinity for the population balanced gas, while the width of
the function in the original units approaches a constant. Thus, a uniform rescaling would require an unnecessarily large
number of points as one would sample mostly where the integrand was zero. Instead, we rescale to new coordinates
defined by

α(Λ) =
Λ

1 + Λ
. (A5)

Defining the Jacobian

jΛ(u) = Λ
1 + Λ + Λu2

(1 + Λ− Λu2)2
, (A6)
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the Bethe ansatz equations Eq. (A1) become

ρc(q) =
1

2π
+

cos(k0q)

2π

∫ 1

−1

du jΛ1(u)K1

(
sin(k0q)−

α(Λ1)u

1− α(Λ1)u2

)
ρ1(u)

ρ1(u) =
k0

2π

∫ 1

−1

dq K1

(
α(Λ1)u

1− α(Λ1)u2
− sin(k0q)

)
ρc(q)

− 1

2π

∫ 1

−1

du′ jΛ1
(u′)K2

(
α(Λ1)u

1− α(Λ1)u2
− α(Λ1)u′

1− α(Λ1)(u′)2

)
ρ1(u′)

+
1

2π

∫
du′ jΛ2

(u′)K1

(
α(Λ1)u

1− α(Λ1)u2
− α(Λ2)u′

1− α(Λ2)(u′)2

)
ρ2(u′)

ρs(u) =
1

2π

∫ 1

−1

du′ jΛs−1K1

(
α(Λs)u

1− α(Λs)u2
− α(Λs−1)u′

1− α(Λs−1)(u′)2

)
ρs−1(u′)

− 1

2π

∫ 1

−1

du′ jΛsK2

(
α(Λs)u

1− α(Λs)u2
− α(Λs)u

′

1− α(Λs)(u′)2

)
ρs(u

′)

+
1

2π

∫ 1

−1

du′ jΛs+1
K1

(
α(Λs)u

1− α(Λs)u2
− α(Λs+1)u′

1− α(Λs+1)(u′)2

)
ρs+1(u′) for s = 2, . . . , N − 2,

ρN−1(u) =
1

2π

∫ 1

−1

du′ jΛN−2
K1

(
α(ΛN−1)u

1− α(ΛN−1)u2
− α(ΛN−2)u′

1− α(ΛN−2)(u′)2

)
ρN−2(u′)

− 1

2π

∫ 1

−1

du′ jΛN−1
K2

(
α(ΛN−1)u

1− α(ΛN−1)u2
− α(ΛN−1)u′

1− α(ΛN−1)(u′)2

)
ρN−1(u′). (A7)

The relevant charge density, spin densities, and ground state energy are given by

nc = k0

∫ 1

−1

dq ρc(q)

n1 = k0

∫ 1

−1

dq ρc(q)−
∫ 1

−1

du jΛ1
(u)ρ1(u)

ns =

∫ 1

−1

du jΛs−1
(u)ρs−1(u)

−
∫ 1

−1

du jΛs(u)ρs(u) for s = 2, . . . , N − 1,

EBA = −2tk0

∫ 1

−1

dq ρc(q). (A8)

Note that the BA results are obtained in the thermodynamic limit. In Sec. III, we compare the results obtained by
this procedure to the umerical results of the DMRG after extrapolating to the thermodynamic limit.
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ΓD3 ΓD4 ΓD5 ΓT3 ΓT4 ΓT5 ΓQ4
4 ΓQ4

5 ΓQ5
5

N = 2 0 0 0 0 0 0 0 0 0
N = 3 3 0 0 1 0 0 0 0 0
N = 4 3 -6 0 1 4 0 1 0 0
N = 5 3 -6 10 1 4 -10 1 5 1

TABLE II. Numerical values of the coefficients in Eqs. (B1)-(B4).

Appendix B: Expressions for the higher local occupancies

In this appendix we define the expressions for the double occupancy 〈D〉, the triple occupancy 〈T 〉, the quadruple
occupancy 〈Q4〉, and the quintuple occupancy 〈Q5〉 discussed in Sec. V B. We obtain:

〈D〉 =
1

L

L∑
i=1

∑
α,α′

〈nαi nα
′

i 〉 − ΓD3
∑

α,α′,α′′

〈nαi nα
′

i n
α′′

i 〉 − ΓD4
∑

α,α′,α′′,α′′′

〈nαi nα
′

i n
α′′

i nα
′′′

i 〉 − ΓD5 〈n1
i n

2
i n

3
i n

4
i n

5
i 〉

 (B1)

〈T 〉 =
1

L

L∑
i=1

ΓT3
∑

α,α′,α′′

〈nαi nα
′

i n
α′′

i 〉 − ΓT4
∑

α,α′,α′′,α′′′

〈nαi nα
′

i n
α′′

i nα
′′′

i 〉 − ΓT5 〈n1
i n

2
i n

3
i n

4
i n

5
i 〉

 (B2)

〈Q4〉 =
1

L

L∑
i=1

ΓQ4

4

∑
α,α′,α′′,α′′′

〈nαi nα
′

i n
α′′

i nα
′′′

i 〉 − ΓQ4

5 〈n1
i n

2
i n

3
i n

4
i n

5
i 〉

 (B3)

〈Q5〉 =
ΓQ5

5

L

L∑
i=1

〈n1
i n

2
i n

3
i n

4
i n

5
i 〉. (B4)

The sums over the flavors α are over all possible permutations, and the numerical coefficients Γop are listed in Tab. II.
To obtain these coefficients, we choose them so that the N’th order polynomial of nαi reproduces the action of Pm on
a complete basis: f(nα) |m′〉 = Pm |m′〉 = δmm′ for the N + 1 values of m = 0, . . . , N .
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(2000).

[102] I. P. McCulloch and M. Gulácsi, Phil. Mag. Lett. 81,
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