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 Pump-probe photoelectron velocity map imaging, using 27 eV high-harmonic excitation 

and 786 nm ionization, is used to resolve overlapping autoionizing resonances in atomic krypton, 

obtaining two-photon photoelectron angular distributions (PADs) for singly and doubly excited 

states.  Two features in the photoelectron spectrum are assigned to singly excited 4s14p6np1 (n =  

7, 8) configurations and four features provide information about double excitation 

configurations.  The anisotropy parameters for the singly excited 7p configuration are measured 

to be β2 = 1.61 ± 0.06 and β4 = 1.54 ± 0.16 while the 8p configuration gives β2 = 1.23 ± 0.19 and 

β4 = 0.60 ± 0.15.  These anisotropies most likely represent the sum of overlapping PADs from 

states of singlet and triplet spin multiplicities.  Of the four bands corresponding to ionization of 

doubly excited states, two are assigned to 4s24p45s16p1 configurations that are probed to different 

J-split ion states.  The two remaining doubly excited states are attributed to a previously 

observed, but unassigned, resonance in the vacuum-ultraviolet photoabsorption spectrum.  The 

PADs from each of the double excitation states are also influenced by overlap from neighboring 

states that are not completely spectrally resolved.  The anisotropies of the observed double 

excitation states are reported, anticipating future theoretical and experimental work to separate 
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the overlapping PADs into the state resolved PADs.  The results can be used to test theories of 

excited state ionization.  

 

1. Introduction  

Autoionizing resonances in atomic and molecular systems are typically short-lived states 

that decay into the continuum in which they are embedded.  The interaction between the 

continuum and resonance pathways during photoexcitation results in a characteristic interference 

pattern observed in static spectra known as a Fano line shape.1-3  The interference provides 

insight into the interaction between channels, which is obtained by fitting the spectral line 

shape.4  The information retrieved from the fit includes the determination of the profile index (q-

parameter), which is a measure of the relative oscillator strengths to the modified discrete-state 

and the band of continuum states, the spectral width, which yields the lifetime of the resonance 

and contains within it the coupling matrix elements between channels, and the resonance energy.  

Difficulties in obtaining this information can arise when fitting dense spectral regions or 

identifying overlapping resonances.5  Sometimes these limitations can be alleviated with two-

color pump-probe experiments that excite the overlapping resonances and subsequently probe 

them, separating the excited states either in the time6 or energy domains.  

The results of such two-photon experiments also allow for a determination of excited 

state photoelectron angular distributions (PADs), which can provide the ratio of radial dipole 

matrix elements that connect the excited state to the outgoing continuum electron partial waves 

and the phase shift difference between the partial waves.6-17  Thus, the composition of outgoing 

electron partial waves in the measured PADs carry with them information on the excited and 
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final state wavefunctions.  The PAD also contains information related to the free electron-ion 

scattering process, which can describe the interaction of the excited states with neighboring 

resonances.  Thus, by measuring two-photon PADs from multielectron atomic targets, a 

comparison of results with theoretical models of electronic excitation and photoionization can be 

made.   

The experiment reported here makes use of laser-based high-order harmonics to 

resonantly pump the 4s14p6np1 (n = 7, 8) autoionizing states in atomic Kr, which are henceforth 

referred to as 7p and 8p states for simplicity.  For each value of n, there are two optically allowed 

transitions to J = 1 excited states of differing spin multiplicities in LS-coupling; the lower energy 

configuration is a triplet and the higher energy configuration is a singlet.  The LS-coupled singlet 

and triplet states can be represented in a jj-coupling scheme as (1/2,3/2)1 and (1/2,1/2)1, 

respectively, although the  jj-coupled descriptions are not used in the remainder of this report.  

The singlet and triplet configurations of the 7p and 8p states are not resolved in high-resolution 

spectra18-21 and are typically referred to as the singlet state configuration.22, 23  The 7p and 8p 

states lie 26.80 eV and 27.03 eV above the 1S0 ground state, respectively.18-23  In this energetic 

region several double excitation states that converge to 4s24p45s1 ion cores are reported.18-21  

Specifically, signals attributed to 4s24p45s16p1 double excitation states are populated and ionized 

to 4s24p45s1(4PJ) ion states.  These two-electron double excitation states are also detected in this 

experiment, and the ejected photoelectrons are spectrally resolved due to the differences in the 

ionization energies of the single and double excitation ion states.  Two other double excitation 

state signals are also observed and matched with a previously reported resonance in the vacuum-

ultraviolet absorption spectrum.18, 19  All excited states are ionized by a near-infrared ionization 

laser pulse centered at 1.57 eV (786 nm), which ejects the outermost electron into the continuum 
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where it is collected with a velocity map imaging (VMI) spectrometer.  A schematic of the 

relevant energy levels and optically accessible pathways are depicted in Fig 1.  The excited states 

populated in this work decay via autoionization on multiple tens of femtoseconds time scale, 

based on preliminary time-resolved pump-probe measurements and from static line width data.24  

The results of this experiment focus on a single time delay when the pump and probe pulses are 

temporally overlapped, which is defined as t = 0 fs.   

The PADs from the single excitation states are treated as a sum of the unresolved singlet 

and triplet configurations.  The overlap of these two spin states prevents a quantitative 

determination of the ratio of radial dipole matrix elements and phase shift difference between the 

partial waves.6-17  Theoretical calculations might assist in separating the ionization dynamics of 

the overlapping states more quantitatively in the future.  Additional experimental efforts with 

enhanced time resolution might succeed in separating the singlet and triplet configurations in the 

time domain, as was performed on the 6p state of Kr.6  The observed double excitation features 

consist of four distinct photoelectron bands, two of which are positively assigned from previous 

spectral measurements;18-21 the two remaining features are assigned to a previously observed, but 

unassigned, resonance in the vacuum ultraviolet absorption spectrum.18, 19  The PADs for these 

states are reported and may aid in testing correlated electron theories in the future.   

 

2. Experimental Details 

The experimental setup used in this work has been described6, 8-10, 25, 26 and only the 

essential aspects will be reviewed here.  An amplified Ti:Sapphire (Spectra Physics Spitfire Pro) 

produces 50 fs, 2.5 mJ pulses at 1 kHz and is split into two arms with a waveplate-polarizer 
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combination.  The 17th harmonic is created by focusing approximately 915 mW average power 

of the fundamental 788 nm driver pulse into a pulsed jet of Ar.  The harmonic order and driver 

frequency are chosen to resonantly pump the 1S0 ground state of Kr to produce excited and 

aligned nPz states (ie: ΔJ = +1 and ΔMJ = 0 with linearly polarized light).  The harmonic 

spectrum is centered at 26.76 eV with a spectral width of ~0.3 eV (full width at half maximum) 

to populate the excited states shown in Fig. 1. The 17th harmonic is selected from the high-

harmonic output by use of a homebuilt monochromator consisting of a plane grating, plane 

mirror and torroidal mirror, which serves to separate and focus the light into an effusive beam of 

Kr.  The ionization pulse, centered at 1.57 eV, with average power of 780 mW, is overlapped in 

space and time with the harmonic pump pulse and the Kr effusive beam.  The probe photon acts 

on the excited Kr atoms, ejecting electron partial waves of several final angular momenta, which 

interfere in the continuum to yield the measured PAD.  The ejected electrons are projected with 

an electrostatic lens onto an imaging quality micro-channel plate detector in a particle counting 

VMI spectrometer.27  Cylindrical symmetry is maintained by optimization of the laser 

polarizations with a waveplate to be parallel to the detector face.  Evaluation of the inverse Abel 

transform to retrieve the photoelectron speed and angular distributions is accomplished by use of 

the pBasex inversion technique.28  Prior to inversion, the collected images are integrated, 

symmetrized and rebinned to create the final images in the analysis.   

The VMI spectrometer is calibrated by measuring single photon ionization of atoms with 

well-defined ionization energies, including helium, argon, and xenon.  The resulting PADs from 

the single photon ionization of rare gas atoms are also well documented and agree favorably with 

the results measured during calibration.29, 30  The probe laser intensity (estimated to be ~1012 

W/cm2) is tuned to eliminate multiphoton ionization of the Kr atoms to any detectable extent.  
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The low probe laser intensity also precludes strong-field effects that would complicate the 

analysis.31  The pressure of krypton in the interaction region is also kept low to avoid spectral 

pulse shaping of the harmonic pump pulse.32  Spectral line width data suggest the lifetimes of the 

7p and 8p states are 84 fs and 97 fs, respectively, while theoretical predictions place the lifetime 

of the 7p state in a range of 56 fs to 165 fs.33, 34  The excited state lifetimes of the 7p and 8p 

states are faster than can be clearly resolved with the current instrumental time-resolution of 

approximately 80 fs. This prohibits the use of temporal dynamics to potentially resolve the 

individual singlet and triplet state PADs in time.6  Efforts to measure the time-dependent 

evolution of the double excitation signals also reveal dynamics that occur faster than the present 

instrumental resolution.  There is no statistically significant difference among the time dependent 

signals of the observed photoelectron bands; thus, relative time scales also cannot be determined 

with the present time-resolution.  Errors bars and quoted uncertainties represent one standard 

deviation in all instances.   

 

3. Results and Analysis 

3.1. Assignment of the Pump-Probe Photoelectron Spectrum 

The sum of all the background-subtracted pump-probe photoelectron images collected in  

the experiment is shown in Fig. 2.  The left-hand side of the image in Fig. 2 is the raw data, 

while the right hand side is the inverted data.  The intense spot at the center of the inverted image 

is an artifact of the inversion, where noise is accumulated to the center of the image.28  Several 

distinct rings are observed, which correspond to singly and doubly excited state ionizations; 
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these rings are best assigned by angle-integrating the photoelectron image to produce the pump-

probe photoelectron spectrum.     

The angle-integrated photoelectron spectrum is shown in Fig. 3 and plotted versus the 

electron binding energy.  It is observed that at least six distinct photoelectron lines are present, 

which are labeled as bands numbered from 1 to 6, from lowest to highest electron binding energy 

(largest to smallest rings in Fig. 2).  The six bands observed in the photoelectron spectrum are 

not easily discerned in the photoelectron image shown in Fig. 2.  This is because the intensity of 

each band is spread out over the angular distribution and has a non-obvious radial dependence 

with the signal intensity.  When the photoelectron image is angle integrated, the intensities from 

each feature in the image accumulate to yield the photoelectron spectrum in Fig. 3.   

Bands 2 and 1 have measured binding energies of 0.73 eV and 0.50 eV, respectively.  

The expected binding energies for the singly excited 7p and 8p states are 0.72 eV and 0.48 eV,18, 

19, 23, 24 which are in excellent agreement with the presently measured values for band 2 and 1.  

The assignments and observed electron binding energies of bands 1 and 2 are listed in Table 1.  

Since each np-state in Kr can be populated in a singlet or triplet spin configuration, the bands 

corresponding to the 7p and 8p states are most likely the sum of two individual intensities and 

PADs.  This results in the summation of the individual state-resolved PADs with an unknown 

weighting factor to yield the total observed PAD.  Additionally, neighboring bands spectrally 

overlap with each other, which can further contaminate the PADs of an individual state.  The 

effect of overlapping signal intensity from neighboring states will be quantified after the angular 

distributions of the single excitation states are presented.     
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There are least four additional bands that are attributed to double excitation states 

energetically nearby the 7p and 8p resonances, but these are probed to different final ion states.  

Allowed double excitation states are those of the form 4s24p4nℓ1n’ℓ’1, where ℓℓ’ can take on the 

values of sp, pd, sf, or df.18, 19  The lowest energy electronic configuration that is accessible is 

4s24p45s1np1.  The electrons not excited by the harmonic pulse (ie: the 4s24p4 electrons) give a 3P 

term (in LS-coupling) in the energetic region excited and probed in this work.  This is useful to 

note because the ion states to which the double excitation states are probed are built upon this 

term.22, 23  The doubly excited states are constructed by coupling the 3P inner electrons with the 

outer valence 5s1np1 electrons, while the ion states result from coupling the remaining 5s1 

electron with the 3P term.  As an example, coupling the 5s1 electron to the 4s24p4(3P) ion state 

can give rise to the lowest energy 4PJ ion states. 

Bands 3 and 5 have measured electron binding energies of 1.05 eV and 1.35 eV, 

respectively, corresponding to excitation and subsequent ionization of 4s24p4(3P)5s16p1 double 

excitation states to different J-split ion states.21  The 4s24p4(3P)5s1(4P5/2)6p1 double excitation 

state has an expected electron binding energy of 1.31 eV when probed to the final 

4s24p4(3P)5s1(4P5/2) ion state.  Similarly, the 4s24p4(3P)5s1(4P3/2)6p1 double excitation state has 

binding energies of 1.31 eV and 1.03 eV when probed to the 4s24p4(3P)5s1 (4P3/2) and 

4s24p4(3P)5s1 (4P5/2) ion states, respectively.18, 19, 21-23  Since two ionization signals can potentially 

overlap at a binding energy of 1.35 eV, it is not certain if two ionizations signals contribute to the 

intensity of this feature, or if only one is present.  Thus, it is possible that band 5 represents two 

overlapped signals, specifically, from the ionization of the 4s24p4(3P)5s1(4P5/2)6p1 doubly excited 

state to the 4s24p4(3P)5s1(4P5/2) ion state and ionization of 4s24p4(3P)5s1(4P3/2)6p1 doubly excited 

states to the 4s24p4(3P)5s1(4P3/2) ion state; the uncertainty in the number of ionization signals that 
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contribute to band 5 is reflected in the assignment given in Table 1.   The good agreement 

between the measured and expected electron binding energies suggests a positive assignment of 

bands 3 and 5 to the ionization of 4s24p4(3P)5s1(4PJ)6p1 double excitation states.  The potential 

overlap of the two ionization signals in band 5 will complicate the interpretation of the PAD for 

this band.  The assignments and binding energies for bands 3 and 5 are summarized in Table 1.   

Additional states that might also be excited within the pump pulse spectral bandwidth are 

those with electronic configurations 4s24p4(1D)5s15p1.35  Previous measurements observe a 

resonance with this configuration at 26.95 eV,35 which has an electron binding energy of 1.03 eV 

if ionized to the 4s24p4(3P)5s1(4P5/2)  ion state and 1.31 eV when probed to the 

4s24p4(3P)5s1(4P3/2) ion state.  If probed, the ejected electrons from this state would overlap with 

the ionization signal from the nearby 4s24p4(3P)5s16p1 states.  Ionization of the 4s24p4(1D)5s15p1 

state to the energetically accessible 4s24p4(3P)5s1 ion core necessitates that the inner electrons 

(ie: 4s24p4(1D)) are excited via an electronic transition that changes the core electron spin while 

simultaneously ionizing the outermost valence electron.  Electronic transitions that result in the 

change of electron spins (ie: spin-flips) are forbidden in LS-coupling, so the contribution to the 

measured photoelectron spectrum from the 4s24p4(1D)5s15p1 state is expected to be small, if 

present at all.  The possibility exists that spin-orbit interactions might permit such a transition, 

but the present experimental results do not directly offer insight into the identity of the residual 

ion core.  Theoretical methods might best address the validity of LS-coupling selection rules for 

the ionization the states probed in this work.    

Bands 4 and 6 are attributed to a spectral feature observed, but not assigned, in the 

vacuum ultraviolet spectrum of Codling et al.18, 19 at 26.85 eV (labeled 15 by Codling et al.).  If 

this resonance is ionized to 4s24p4(3P)5s1(4P3/2) and 4s24p4(3P)5s1(4P5/2) ion states, the ejected 
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photoelectrons will have electron binding energies of 1.14 eV and 1.42 eV, respectively.  These 

expected binding energies agree reasonably well with the measured binding energies of bands 4 

and 6 at 1.22 eV and 1.43 eV, respectively.  The largest discrepancy is in the observed binding 

energy of band 4, which might indicate a different spectral assignment, but since no additional 

resonances have been reported in this energy region, the signals corresponding to bands 4 and 6 

are tentatively attributed to the ionization of resonance 15 of Codling et al.18, 19   

The low lying double excitation states of the form 4s24p4(3P)5s15p1 are not energetically 

accessible within the harmonic pump pulse spectral bandwidth.21  Similarly, states that converge 

to high lying ion cores such as those with 2S, 2D, and 2P terms are not excited within the spectral 

bandwidth of the harmonic pulse.18, 19  Based on the measured vacuum ultraviolet spectra and 

assignments above, it is reasonable to conclude that the measured pump-probe photoelectron 

spectrum does not have significant features unaccounted for, other than the dominant features 

shown in Fig. 3 and summarized in Table 1.  Two photon transitions in the probe step are 

neglected at this level of analysis since no obvious features, based upon the assignment of bands, 

are observed at higher electron kinetic energies.   

To determine the extent and effect of overlapping photoelectron intensity from 

neighboring states on the measured PADs for the 7p and 8p resonances, the photoelectron 

spectrum is fit to a sum of Gaussian functions, which allows for the percent composition of each 

photoelectron band to be estimated.  The peak positions of the 7p and 8p resonances are kept 

fixed while the spectral widths are freely fit.  The fitted width parameters do not contain 

information about the excited state lifetimes since the natural line width of each transition is 

expected to be smaller24 than the spectral width of the pump pulse, the probe pulse, and the VMI 

spectrometer energy resolution.  Using a broadband light source and a spectrometer with limited 
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resolution, it is not expected that a meaningful spectral line width can be obtained, even if the 

probe-laser/high-harmonic spectral widths and instrumental resolution are deconvolved.  To 

determine the natural line width, it would be more accurate to resolve the decay in time, but this 

cannot be done with the current instrumental time-resolution.   The resulting fits are plotted in 

Fig. 3 as solid lines below the experimental data.  The result of fitting the spectrum suggests that 

the 8p state (band 1) and the 7p state (band 2) might have a non-negligible signal overlap.  The 

7p state might also be spectrally overlapped with the neighboring double excitation band 3. To 

assess the influence of overlapping signals on the single excitation photoelectron bands, 

energetic regions of interest in the photoelectron spectrum are selected and centered at the 

electron binding energies of the 7p and 8p bands.  The regions of interest are illustrated in Fig. 3 

as shaded columns centered on the 7p and 8p photoelectron bands.  The width of each region of 

interest corresponds to the standard deviation of a Gaussian profile assumed for each band.  The 

individual Gaussian fits are integrated over the regions of interest and the percent compositions 

from the resulting summations are evaluated.   It is estimated that ~10% of the 8p band in the 

region of interest may be due to spectral overlap with the neighboring 7p resonance.  Similarly, 

the contamination of the 7p band is estimated to be ~1% in the region of interest.  The PAD from 

the 7p state is expected to yield accurate anisotropy parameters without additional consideration.  

After the angular distributions for the 7p and 8p states are obtained, the influence of the 7p state 

on the 8p PAD will be assessed.  It should also be noted that despite the energetic proximity of 

the 7p and 8p resonances to the double excitation resonances in the excitation spectrum, the 

addition of a probe photon allows one to resolve the nearby states by using the difference in 

ionization energies for single and double excited configurations.  
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The region of the pump-probe photoelectron spectrum where double excitation bands are 

observed can be fit to at least four discrete spectral bands. Given the overlap of these bands, 

which is easily recognized in Fig. 3, there is clearly significant contamination of the measured 

PADs of each band by adjacent bands, limiting the quantitative information that can be obtained. 

Theoretical calculations would aid in separating the state specific PADs for each band in the 

observed photoelectron spectrum.  Few-femtosecond experimental measurements might also 

help to resolve the overlapping PADs by resolving the states in the time domain rather than the 

frequency domain. 

 

3.2. Photoelectron Angular Distributions 

The excited states are prepared and probed with linearly polarized light that is fixed 

parallel to the detector face.  The PAD is written as a sum of Legendre polynomials with 

anisotropy coefficients that contain the dynamical information on the excitation and ionization 

steps.  Specifically, the PADs are given by  

ሻߠሺܫ ൌ ఙସగ ሾ1 ൅ ଶߚ ଶܲሺܿݏ݋ ሻߠ ൅ ସߚ ସܲሺܿݏ݋  ሻሿ  (1)ߠ

where β2 and β4 are anisotropy parameters, P2 and P4, are the second and fourth order Legendre 

polynomials, respectively, and σ is the total ionization cross section for the excited state.  The 

angle, θ, is defined relative to the laser polarization, which is vertically oriented in Fig. 2.  The 

anisotropy parameters for each band are determined by evaluating the weighted sum of the 

anisotropy parameters at each pixel across the band with the photoelectron spectrum intensity.  

The width of the regions where the anisotropies are measured correspond to approximately one 

standard deviation of a Gaussian line shape and this was systematically varied and found not to 
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influence the results in a statistically observable way.  Inversions were carried out including 

higher order expansion terms (up to P6) and none were found to statistically alter the results; 

thus, higher order anisotropy expansion terms are not included, as is expected from a two photon 

process.   

 

3.2.1. Single Excitation State PADs 

The measured anisotropy parameters for the 7p state are β2 = 1.61 ± 0.06 and β4 = 1.54 ± 

0.16 while the 8p state gives β2 = 1.23 ± 0.19 and β4 = 0.60 ± 0.15.  The anisotropies for each 

single excitation band are summarized in Table 1; polar plots for each band are given in Fig. 4.  

To test the assumption that the anisotropy parameters from the 8p state are not significantly 

altered by the estimated 10% contamination from the 7p state, the measured anisotropy 

parameters for the 8p state are represented as a weighted sum of the individual 7p and 8p 

anisotropy parameters.  The individual anisotropy parameters for the 7p and 8p state are scaled 

by their relative intensities over the region of interest for the 8p band.  The resulting anisotropies 

are given by the relationship βT,m = 0.10β7p,m + 0.90β8p,m, where βT,m is the measured mth order 

anisotropy parameter in the region of the 8p resonance, β7p,m is the anisotropy parameter for the 

7p state, which is assumed to be identical over the width of the signal, and β8p,m represents the 

anisotropy parameter for the pure 8p signal (i.e.: if completely spectrally resolved from the 7p 

state).  The assumption that the 7p anisotropy near the band maximum is identical to that at the 

edge of the band is not strictly correct since the anisotropy can vary across the photoelectron 

line, but the result still provides a basis for estimating the contamination of the 8p state PAD.  

Using the relationship given above, it is found that the β8p,2 = 1.20 ± 0.21 and β8p,4 = 0.51 ± 0.17, 
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which, when compared to the measured anisotropies before addition of contaminant anisotropy, 

is not statistically different.  Thus, the anisotropies for the 8p resonance are considered to be 

representative of the individual 8p resonance.  Since the separation of the overlapping 7p PAD 

from the 8p PAD performed above assumes the anisotropy of the 7p resonance at the peak 

maximum is the same as the anisotropy at the edge of the photoelectron band, the anisotropy 

parameters for the 8p state are quoted without modification (ie: not deconvolved); this is done to 

limit the systematic error that might be included during the deconvolution step. 

 Since the singlet and triplet configurations of the 7p and 8p states are not resolved in this 

work, the possibility that the PAD measured for bands 1 and 2 might have a coherent 

contribution should be assessed.  Both states could be excited coherently in the same atom by the 

broad band harmonic pulse.  In fact, the PADs from singlet and triplet ionization should not 

interfere in the continuum because the ejected electrons have different final spin states.  In the 

limit that LS-coupling adequately describes the ionization step, the two overlapping signals 

should not give rise to a coherent PAD; instead, the two overlapping PADs add incoherently to 

yield the measured PAD.  In the case of ionization events that flip the electron spin (ΔS ≠ 0), 

which might result because of spin-orbit interactions, the electrons from the singlet and triplet 

states can interfere and would contribute a coherent portion to the measured PAD.  Theoretical 

calculations might assess the validity of the ΔS = 0 dipole selection rule for the ionization of the 

singly excited states since LS-coupling may not adequately describe the ionization step.   

 The spectral overlap of the 7p band with the 8p band might yield a coherent part to the 8p 

PAD since the electron spins can be identical in the final continuum.  The magnitude of the 

coherent term in the PAD is proportional to the transition dipole matrix elements connecting the 

ground state to both excited states and the transition dipole matrix elements probing the excited 
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states to the same final continuum.  Given that the 8p band was estimated to be composed of 

~10% 7p spectral intensity and this was found not to influence the results in a statistically 

observable way, the possible coherent term is not expected to influence the results given the 

present experimental uncertainties.   

 The 7p and 8p anisotropies can be compared with the previously acquired values for the 

state resolved 6p anisotropy parameters.6 To compare the results in a meaningful way, the state 

resolved anisotropies from the 6p state are weighted by the excitation cross sections20 for each 

state (the singlet and triplet) then integrated.  This assumes the ionization cross section for the 

singlet and triplet configurations are the same, which might not be the case since the alignment 

of the singlet and triplet orbital electron densities are perpendicular to one another.6, 12, 15, 16  The 

resulting anisotropies for the 6p state are β2 = 1.52 ± 0.13 and β4 = 1.08 ± 0.09.  The 6p 

anisotropies agree qualitatively with the 7p and 8p anisotropies.  In some two-photon ionization 

experiments that probe aligned targets, the anisotropy parameters can be decomposed into the 

ratio of radial matrix elements and the phase shift difference between the outgoing electron 

partial waves.6, 8, 15, 16  This would allow for a quantitative comparison between the anisotropies 

of the np resonances.  However, since the 7p and 8p states measured here consist of two 

unresolved singlet and triplet signals and the measured anisotropy parameter represents the 

weighted sum of the two individual PADs, the decomposition of the anisotropies into these 

parameters is not possible.   

Additionally, the anisotropy parameters are strongly dependent on the ejected electron 

kinetic energy due to the Coulomb phase shift difference that contributes to the total phase shift 

difference between outgoing electron partial waves.17  Since the electron kinetic energies from 

each band are different, this prevents identifying a physical trend from the anisotropies since 
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each band will have a different total phase shift difference.  The observed anisotropy parameters 

still provide a basis for which future theoretical calculations can be compared since the measured 

anisotropies represent the essential physics of the excited state and ionization dynamics.  Future 

experimental and theoretical work can aid in separating the contributions of each electronic 

configuration to the PAD and eventually resolve the measured total anisotropy into state resolved 

anisotropies, from which a more detailed analysis can be performed. 

 

 3.2.2.   Doubly Excited PADs 

 The doubly excited 4s24p45s16p1 state ionizations have measured anisotropy parameters 

of β2 = 0.40 ± 0.38  and β4 = −0.01 ± 0.41, corresponding to band 3, and  β2 = 0.60 ± 0.14  and β4  

= −0.15 ± 0.23 for band 5.  Bands 4 and 6 yield anisotropy parameters of β2 = 0.49 ± 0.17 and β4 

= −0.16 ± 0.25 and  β2 = 0.89 ± 0.18 and β4 = −0.43 ± 0.13, respectively.  The anisotropies for 

the double excitation bands are summarized in Table 1 and corresponding polar plots are given 

in Fig. 4.  It is likely that overlapping band intensities contaminate the PADs for each individual 

double excitation state, which limits the quantitative information that can be extracted from the 

measured anisotropy parameters.   

Qualitatively, the PADs from the double excitation states are more isotropic compared to 

the PADs measured from the single excitation states.  The smaller anisotropies measured might 

be due to overlaps of each double excitation band by adjacent bands, which could lead to an 

overall lowering of the anisotropies.  The alignment of the excited state relative to the probe laser 

polarization (ie: parallel or perpendicular) will greatly affect the measured anisotropy 

parameters, most dramatically in the β4 parameter.6, 12, 15, 16  Typically, PADs with zero, or near 
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zero, β4 parameters reflect the ionization of unaligned targets.  The dipole selection rules require 

that the excited states studied here are prepared with  J = 1 and MJ = 0 (in any coupling scheme) 

such that the excited states are aligned relative to the pump pulse polarization, so it is unlikely 

that the small values of the β4 anisotropy parameters are due to ionization of an unaligned target.  

Future experimental and theoretical efforts would help determine the alignment of the doubly 

excited states and to gain a more quantitative understanding of the PADs.  Also, the effect of the 

overlapping PADs can be taken into consideration and separated to yield the nascent PAD for 

each state provided the PADs of the overlapped states and each contributing band intensity are 

known.  This might be accomplished with a time-resolved measurement, where the temporal 

evolution of the individual states might allow for a way to separate the individual contributions.6  

Theoretical calculations should also be able to reconstruct the measured PADs by determination 

of the individual PADs and weighting factors (cross sections) for each band.  Thus, the PADs 

presented here can provide a sensitive test of future theoretical models of doubly excited states 

and photoionization.   

 

4. Conclusions   

The work presented here populates singly excited 4s14p6np1 and previously observed 

doubly excited states in atomic Kr with a single high-order harmonic pump pulse.  A near 

infrared ionization laser pulse probes these excited states to the final continuum where the 

difference in ionization energy allows for spectral differentiation of the single and double 

excitation states.  The anisotropies for the singly excited 7p and 8p states are reported and 

regarded as a weighted sum of unresolved singlet and triplet PADs.  Future theoretical and 
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experimental efforts might be able to separate the measured total PADs into state-resolved PADs 

to gain insight into the excited state and photoionization dynamics for the singlet and triplet 

configurations of the 4s14p6np1 autoionizing series in Kr.  Four photoelectron bands are observed 

and assigned to doubly excited states previously reported  in the vacuum-ultraviolet 

photoabsorption spectrum.  Congestion of the double excitation bands at high photoelectron 

binding energies limits the quantitative information about the excited state and ionization 

dynamics that can be extracted with the present data alone.  The results will serve to test future 

theoretical models of photoionization from doubly excited states, but will also benefit from 

calculations that might separate the overlapping PADs into state resolved PADs for each double 

excitation band. 
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Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of 
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Figure Captions 

Fig. 1:  Sketch of the electronic states in Kr that are excited and subsequently probed in this 

work.  The excitation, ionization, and relaxation pathways are indicated by arrows.  The 1S0 

ground state is pumped by the 17th harmonic to simultaneously excite the 7p and 8p singly 

excited states as well as double excitation states (dbl).  Each of the populated states decays with a 

characteristic autoionization lifetime, given by τai.  The excited states are probed to a final 

continuum producing a photoelectron with a kinetic energy, EK, that is measured in the VMI 



21 
 

spectrometer.  The 4s14p6np1 states are ionized to the 4s14p6 continuum, while the double 

excitation states are probed to J-split 4s24p45s1 ion cores and are spectrally resolved from the 

single excitation bands by way of the difference in ionization energies.   

Fig. 2:  (Color Online) The raw (left hand side) and inverted (right hand side) pump-probe 

photoelectron images are shown here at a time delay where pump and probe pulses are 

temporally overlapped.  The single excitation bands are roughly indicated on the figure and 

discussed in more detail in the text.  The double excitation signals are also noted, but not 

individually identified because congestion at low photoelectron energies (small radius) makes it 

difficult to identify each state in the image.  The angle integrated photoelectron spectrum permits 

the assignment of each feature in the image more quantitatively.   

Fig. 3:  (Color Online) The angle integrated photoelectron spectrum is plotted here versus the 

electron binding energy.  Experimental data is plotted as a solid line bracketed by a filled area 

that represented the experimental uncertainty.  At least six distinct signals are observed and 

assigned a band number listed across the top of the figure.  To estimate the extent of spectral 

overlap for the single excitation PADs, the spectrum is fit to a sum of six Gaussian functions 

(solid lines beneath the experimental data), as described in the text.  The highlighted columns 

centered at the 7p and 8p signals represent the regions of interest used to estimate signal 

contamination on each resonance and also represent the region where the anisotropy parameters 

are measured for the 7p and 8p states.   

Fig. 4:  Polar plots of the photoelectron anisotropy parameters reported in Table 1.  The grey 

shaded regions represent the uncertainties associated with the quoted anisotropy parameters.  The 

laser polarization is vertically oriented in each plot. 
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Table 1: Summary of the observed photoelectron bands, their spectral assignments, the electron 

binding energy of each band, and the observed β2 and β4 anisotropy parameters is given here.  

Bands 4 and 6 are tentatively assigned as described in the text.   
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Fig. 4:
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Table 1: 

Band Assignment Binding 
Energy (eV) 

β2 β4 

1 4s14p6(2S1/2)8p1 →      
4s14p6(2S1/2) 

0.50 1.23 ± 0.19 0.60 ± 0.15 

2 4s14p6(2S1/2)7p1 →         
4s14p6(2S1/2) 

0.73 1.61 ± 0.06 1.54 ± 0.15 

3 4s24p45s1(4P3/2)6p1 → 
4s24p45s1(4P5/2) 

1.05 0.40 ± 0.38 −0.01 ± 0.41 

4 Codling et al. line 15 →       
4s24p4(3P)5s1(4P5/2) 

1.22 0.49 ± 0.17 −0.16 ± 0.25 

5 4s24p45s1(4P5/2 and/or 4P3/2)6p1 
→ 4s24p45s1(4P5/2 and/or 4P3/2) 

1.35 0.60 ± 0.14 −0.15 ± 0.23 

6 Codling et al. line 15 →        
4s24p4(3P)5s1(4P3/2) 

1.43 0.89 ± 0.18 −0.43 ± 0.13 

 


