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Abstract

We demonstrate experimentally and theoretically that the spatial distribution of high angular

momentum Rydberg wave packets, and thus off-diagonal elements of the density matrix, can be

probed in detail through extraction of the moments of the position distribution 〈yλ〉 (λ = 1, 2) from

quantum beat revivals. Detailed knowledge of the position distribution allows precise manipulation

of the wave packet which is demonstrated by the control of its n distribution.

1



I. INTRODUCTION

High angular momentum Rydberg atoms have numerous potential applications in, for

example, information processing, cavity quantum electrodynamics, and precision spec-

troscopy [1–6]. These rely on the production of stationary circular states for which various

techniques have been devised [7–11]. Recently, time dependent near-circular wave pack-

ets have been realized by coherently exciting high angular momentum Rydberg states with

n ∼ 300 [12]. The wave packet is a partially coherent superposition of (non)degenerate states

involving only a few n levels but about 70-80 (ℓ,m) states within each n level (n ∼ ℓ ∼ m).

The resulting statistical ensemble, described by the density matrix ρ, features strong corre-

lations between the complex phases of the angular momentum states [13]. As a result, the

wave packet can undergo strong transient spatial focusing creating a localized wave packet

that travels in a near-circular orbit, its motion mimicking that of the classical electron in

the original Bohr model of hydrogen atom [14]. The evolution of the (spatially-localized)

wave packet can be monitored by measuring its average position coordinates 〈x(t)〉 and

〈y(t)〉 [12, 15] (provided that its motion is confined to the xy plane), which oscillate si-

nusoidally and are phase shifted by π/2. Because several discrete n levels are involved,

the oscillations in 〈x(t)〉 and 〈y(t)〉 display a series of collapses and revivals [16, 17] that

result from focusing and defocusing of the spatial distribution. Even though high Rydberg

atoms are sensitive to interactions with the environment, quantum revivals can be observed

on microsecond time scales [18]. Here we show that detailed information on the spatial

distribution of a near-circular wave packet (or, more generally, of an ensemble of such wave

packets) can be extracted from the moments of the position distributions 〈yλ〉, (λ = 1, 2)

and related to distinct classes of elements in the density matrix. Furthermore, we demon-

strate both experimentally and theoretically how these moments can be extracted from the

revival signals. The analysis is applicable not only to circular Rydberg wave packets but

also to more general systems such as molecular wave packets [19]. The improved knowledge

of the spatial distribution obtained in this manner permits precise manipulation of the wave

packet. As an example, we demonstrate a protocol to narrow (or widen) the energy (or n)

distribution of a near-circular wave packet by applying a carefully-tailored half-cycle pulse

(HCP) [20]
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II. SPATIAL DISTRIBUTION OF BOHR WAVE PACKETS

A fully coherent ideal Bohr wave packet [21, 22] corresponds to a superposition of circular

states

|Ψideal(t)〉 =
∑

n

cne
−iΦn(t)|ψn,ℓ=n−1,m=n−1〉 (1)

where cn is the modulus of the complex expansion coefficient, Φn(t) = Φn(0) + Ent =

Φn(0) − t/(2n2), and the quantum numbers n extend over a narrow range (δn) that is

much smaller than their mean value ni (δn/ni ≪ 1). Because the spherical harmonics for

circular states are of the form Y ℓ
ℓ ∼ (sin θ)ℓ (where θ = arccos(z/r)), the wave function is

localized near the xy plane in a circle with radius ∼ n2
i . While the localization in the radial

direction is independent of the expansion coefficients cne
−iΦn(t), the spatial distribution on

the circle (i.e., the variation with azimuthal angle φ = arctan(y/x)) depends sensitively on

the complex expansion coefficients. For example, a superposition of two circular states with

adjacent n has an azimuthal angular distribution that can be written as

∫

∞

0
dr r2

∫ π

0
dθ sin θ

∣

∣

∣cne
−iΦn(t)ψn,n−1,n−1(~r)

+cn−1e
−iΦn−1(t)ψn−1,n−2,n−2(~r)

∣

∣

∣

2

= A0(n) + A0(n− 1) + 2A1(n) cos (φ−∆Φn(t)) (2)

where ∆Φn(t) ≡ Φn(t) − Φn−1(t) and the positive definite functions Aj(n) (j = 0, 1) are

given by

Aj(n) = cncn−j

∫

∞

0
dr r2

∫ π

0
dθ sin θ Rn(r, θ)Rn−j(r, θ) (3)

with ψn,n−1,n−1(~r) = Rn(r, θ)e
i(n−1)φ. The distribution (Eq. (2)) is localized and peaks

at φ = ∆Φn(t). Generally, the wave packet in Eq. (1) contains several pairs of adjacent

n-levels and each pair is localized at some φ = ∆Φn(t). Only when the relative phases

are independent of n, i.e., ∆Φn(t) = ∆Φ, is the wave packet as a whole localized at a

single azimuthal angle φ = ∆Φ [23]. Taking into account its time dependence, ∆Φn(t) =

(En − En−1) t + ∆Φn(0) ≃ Ωnt + ∆Φn(0), the wave packet travels along a circular orbit

with angular velocity Ωn ≡ En − En−1 ∼ (n − 1/2)−3. Due to the n-dependence of Ωn, a

wave packet involving a finite number of discrete n-levels must undergo dispersion leading

to spreading of the wave packet. At even later times, however, the various components of

the wave packet can rephase (modulo 2π) leading to a periodic series of revivals [18].
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The position and degree of localization of the wave packet can be characterized by the

expectation value of its Cartesian coordinates. For example,

〈y(t)〉 ≃
∑

n

cncn−1 |〈ψn,n−1,n−1|y|ψn−1,n−2,n−2〉|

× sin(Ωnt+∆Φn(0)) (4)

and comprises a sum of oscillatory terms mimicking classical circular motion with frequency

Ωn. This implies that the Fourier transform of 〈y(t)〉 can be used to extract information on

the amplitude weighted modulus of the dipole matrix elements

Dn,n−1 = cncn−1 |〈ψn,n−1,n−1|y|ψn−1,n−2,n−2〉| (5)

and the localization angles ∆Φn(t) associated with different pairs of adjacent n levels [13,

24, 25]. A key in this analysis is the interrelation between n and m (i.e., m = n − 1 for

circular states). The localization of each n component at φ = ∆Φn(t) (Eq. (2)) leads to a

correlation between n (or energy) and azimuthal angle φ. Due to their different frequencies

Ωn, each n level can be resolved through Fourier expansion.

The present analysis can be simply extended from the ideal circular wave packet, Eq. (1),

to near-circular wave packets comprising a distribution of high-ℓ states, ℓ ∼ n, with values

of m = n− µ, where µ≪ n

|Ψµ(t)〉 =
∑

n,ℓ

cµn,ℓe
−iΦµ

n,ℓ
(t)|ψn,ℓ,m=n−µ〉 . (6)

When the phase of the expansion coefficient is independent of ℓ (i.e. Φµ
n,ℓ ≃ Φµ

n), the

interferences between different m- (and n-) components survive after the summation over ℓ

and can form an azimuthally localized distribution similar to that in Eq. (2).

This analysis can further be generalized from a pure state to a partially coherent wave

packet made up of an ensemble of superpositions (Eq. (6)) with different values of µ. While

each superposition has the strong correlation between n and m (i.e. m = n − µ), it is

still possible experimentally to store the correlation into the ensemble by a relatively simple

pumping scheme as will be shown later. The initial ensemble is described by the density

operator

ρ(0) =
∑

µ

Pµ|Ψµ(0)〉〈Ψµ(0)| (7)
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(typically about 70 ℓ andm levels are involved in the ensemble.) Accordingly, the expectation

value of y can be written as

〈y(t)〉 ≃
∑

µ

∑

n

PµD
µ
n(0) sin(Ωnt +∆Φµ

n(0)) (8)

with

Dµ
n(t) ≃

∑

l

Pµ|〈ψn,l,n−µ|Ψµ(t)〉〈Ψµ(t)|y|ψn,l,n−µ〉| . (9)

This expression includes only the dominant dipole matrix elements (∆n = ∆ℓ = ∆m = ±1)

as all other elements (∆n > 1 or ∆ℓ = −∆m) are negligible. Only when the relative

phases ∆Φµ
n(0) are nearly independent of µ, do the corresponding off-diagonal elements of

the density matrix give a sizable contribution to 〈y(t)〉.
The expectation value of y (Eqs. (4) and (8)) can provide only limited information on

the localization of the wave packet. For example, when one coefficient cn in Eq. (1) is

nearly zero, the adjacent levels (n ± 1) may become invisible. Consequently, the relative

phases between the next to nearest neighboring states, Φn+1 − Φn−1, cannot be extracted.

Also, such information cannot be extracted from the expectation value of the orthogonal

coordinate, i.e., 〈x(t)〉. Due to the circular symmetry of the wave packet 〈x(t)〉 and 〈y(t)〉,
while shifted in azimuth by π/2 from each other, behave similarly and possess nearly identical

frequency spectra. However, as we now demonstrate, more complete information on the

spatial distribution can be obtained by exploring the higher moments 〈yλ(t)〉, λ=2, 3, ...

of a single Cartesian coordinate. For example, the second moment for the wave packet in

Eq. (6) is given by

〈y2(t)〉 ≃
∑

n,ℓ,µ

Pµ

[

〈ψn,ℓ,n−µ|ρ(0)|ψn,ℓ,n−µ〉〈ψn,ℓ,n−µ|y2|ψn,ℓ,n−µ〉

+2
∣

∣

∣〈ψn−1,ℓ,n−µ−1|ρ(0)|ψn+1,ℓ+2,n−µ+1〉〈ψn+1,ℓ+2,n−µ+1|y2|ψn−1,ℓ,n−µ−1〉
∣

∣

∣

× cos
(

Ω(2)
n t+∆Φ(2)

n (0) + π
)]

(10)

where ∆Φ(2)
n (0) = Φn+1(0)− Φn−1(0) (as discussed earlier just the phases of the expansion

coefficients that depend on n are measurable.) As for Eq. (9) only the dominant terms are

included. In Eq. (10), Ω(2)
n = En+1 − En−1 and in the limit n → ∞, Ω(2)

n ≃ 2Ωn. Conse-

quently, 〈y2(t)〉 has two maxima within an orbital period. This behavior can be understood

from the spatial distribution of the superposition between next to nearest neighbor states
∫

∞

0
dr r2

∫ 1

−1
d(cos θ)

∣

∣

∣

∣

∣

∑

ℓ

[

cµn+1,ℓe
−iΦn+1(t)ψn+1,ℓ,m−µ+1(~r)
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+cµn−1,ℓe
−iΦn−1(t)ψn−1,ℓ,m−µ−1(~r)

]∣

∣

∣

2

= B0(n + 1, µ) +B0(n− 1, µ)

+2B2(n + 1, µ) cos
(

2φ−∆Φ(2)
n (t)

)

(11)

with

Bj(n, µ) =
∑

ℓ,ℓ′
cµn,ℓc

µ
n−j,ℓ′

∫

∞

0
dr r2

∫ π

0
dθ sin θ

×R̃n,ℓ,n−µ(r, θ)R̃n−j,ℓ′,n−j−µ(r, θ) (12)

with ψn,ℓ,m(~r) = R̃n,ℓ,m(r, θ)e
imφ. Inspection of the cosine term reveals two maxima at

φ = ∆Φ(2)
n (t)/2 and π +∆Φ(2)

n (t)/2. These two peaks (separated by π) evolve at the same

rate ∆Φ(2)
n (t)/2 ∼ (Ω(2)

n /2)t resulting in contributions to the expectation value 〈y2(t)〉 at

twice the orbital period. Similar to the first moment, the population and the relative phase

between n± 1 levels can be obtained from the Fourier transform of 〈y2(t)〉. Extending this

analysis to higher moments can reveal further information on the density matrix and even

finer detail on the spatial distribution of the wave packet.

Direct experimental determination of the moments of a position coordinate presents a

challenge. In the special case of (near) circular states, ionization induced by sudden turn-

on, at t = tprobe, of a probe field can provide a measure of the initial electron position

distribution [15]. The evolution of this distribution can then be monitored by varying the

turn-on time and observing the time-dependence of the ionization (or survival) probability.

The motion of the electron in the presence of the probe field is governed by the Hamiltonian

H =
p2

2
− 1

r
+ yF (t) (13)

with

F (t) =











0 (t < tprobe)

F probe
y (t > tprobe)

. (14)

The energy transfer resulting from application of the probe pulse depends on the initial

position y(t = tprobe) of the electron. When the final energy (En + yF probe
y ) lies above

the potential barrier (−
√

2F probe
y ) formed by the Coulomb and applied fields (the “Stark

saddle”), i.e., when y(t = tprobe)> yion = −En/F
probe
y −

√

2/F probe
y , the electron can be

considered as ionized [15]. (Here and in the following F probe
y > 0 is assumed.) Consequently

the survival probability is given approximately by the probability that the electron is initially
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located in the region y < yion, which can be obtained by integrating the spatial distribution

ρ(~r, t) = 〈~r|ρ(t)|~r〉 over y < yion. Equivalently, we can consider the portion of the electronic

wave packet with y > yion as ionized. Assuming that ρ(~r, t) is localized in the xy plane

around a circle with radius r = n2
i , the y integral can be replaced by a φ integral as

Pion(t) ≃
∫

∞

0
drr2

∫ π

0
dθ sin θ

∫ π/2+φion

π/2−φion

dφ 〈~r|ρ(t)|~r〉 (15)

≃ 2
∑

n,µ

B0(n, µ)φion

+4
∑

n,µ

B1(n, µ) sin [Ωnt+∆Φn(0)] sin (φion)

+2
∑

n

B2(n, µ) cos
(

Ω(2)
n t+∆Φ(2)

n (0) + π
)

sin (2φion)

(16)

where φion = arccos(yion/n
2
i ) and the functions Bj are given by Eq. (12). Equation (16) rep-

resents a harmonic series with the second and the third terms mirroring the time dependence

of the first moment, 〈y(t)〉 [Eq. (4)], and the second moment, 〈y2(t)〉 [Eq. (10)], respectively.
By setting yion = 0 (or equivalently φion = π/2), the survival probability, Psp(t) = 1−Pion(t),

closely approximates the time dependence of 〈y(t)〉 as the second harmonic (and all even

order harmonics) cancel. When ∆Φn(t) = Ωnt+∆Φn(0) = ±π/2, the azimuthal distribution

is localized at φ = ±π/2 and 〈y(t)〉 attains its extreme values. On the other hand, with

finite yion, or equivalently, φion 6= ±π/2, non-vanishing second harmonic components become

visible. They can be maximized for φion = ±π/4. Note that to resolve the different harmonic

components the n-distribution must be narrow so that terms in different harmonic orders do

not overlap with each other in the frequency domain. In principle, even higher harmonics

can be extracted from the survival probability. In practice, Fourier amplitudes decay quickly

with harmonic order and render higher harmonics difficult to observe. Based on this analysis

we consider the harmonic decomposition (Eq. (16)) as a reasonable approximation to the

multipoles 〈yλ〉 (Eqs. (4) and (10)) as will be demonstrated below.

III. PRODUCTION OF NEAR-CIRCULAR WAVE PACKETS

The creation of near-circular wave packets and analysis of their multipoles
〈

yλ
〉

is under-

taken using the apparatus shown in Fig. 1 [18, 22]. Potassium atoms contained in a tightly

collimated beam are photoexcited to selected Rydberg states using the crossed output of a
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frequency-stabilized, extra-cavity doubled Rh6G CW dye laser. Experiments are conducted

in a pulsed mode. The output of the laser is chopped into a train of pulses of ∼ 1µs du-

ration using an acousto-optic modulator. Following each laser pulse, the Rydberg atoms

are manipulated (and subsequently probed) using a series of pulsed electric fields (directed

along either the x or y axis indicated) which are generated by applying voltage pulses to

the two electrodes shown. Following the pulse sequence, the number of surviving atoms is

determined by selective field ionization for which purpose a slowly rising voltage ramp (rise

time ∼ 1µs) is applied to the bottom plate. The resulting electrons pass through a mesh

grid and are counted using a particle multiplier. Measurements in which no pulsed fields are

applied are interspersed at routine intervals during data acquisition to monitor the number

of Rydberg atoms initially being created which permits the fraction of Rydberg atoms that

survive the pulse sequence, i.e., the survival probability, to be determined.

Creation of near-circular Bohr-like wave packets is a challenge since high-ℓ states are not

directly accessible from low-ℓ ground states through absorption of one or even a few photons.

Thus, in this work, we employ a method based on Stark precession which transforms strongly

oriented quasi-one-dimensional (quasi-1D) low-ℓ Rydberg states (accessible from the ground

state by a single photon) to circular states [26]. Extreme parabolic states oriented along the

+x or −x axis can be transformed to various elliptic states [27, 28] by sudden application

of a transverse “pump” electric field, F pump
y , along the y axis. After a time π/(3niF

pump
y ),

i.e., a quarter of the Stark precession period, high angular momentum states [Eq. (1)] are

formed. If, at this time, the pump field is suddenly turned off further Stark precession is

inhibited resulting in the formation of a near-circular wave packet comprising a coherent

superposition of several n levels that then evolve freely in time.

Experimentally it is challenging to generate single extreme parabolic states because the

oscillator strength for their photoexcitation is small and Doppler broadening limits the

available spectral resolution. In practice, an ensemble of quasi-1D high n, n ∼ 300, near-

extreme parabolic states is created by direct photoexcitation from the ground state in the

presence of a weak dc field. The creation of such Stark states can be optimized by properly

choosing the strength of the dc field (∼ 400 µV cm−1) [29]. The laser frequency is tuned to

ni ∼ 305 for which the energy difference between ni and ni + 2 states matches the splitting

of the ground F=1 and F=2 hyperfine states, allowing their simultaneous excitation. This

increases the photoexcitation rate and improves the statistical sampling of the data while the
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coherence of the initial ensemble is reduced. The dc field is then turned off and a transverse

pump is applied. The experimentally generated wave packet is therefore made up of an

ensemble of near-circular wave packets as described by the density matrix in Eq. (7). The

spatial distribution of the product wave packet is analyzed using a probe field, F probe
y , as

described earlier.

IV. CALCULATED SPATIAL DISTRIBUTIONS

Before analyzing the (partially-coherent) experimental wave packet we first examine the

spatial distribution associated with the “ideal” Bohr wave packet derived from a single initial

extreme “red-shifted” Stark state using both classical and quantum theory. Because full 3D

quantum calculations are not feasible at the values of n, n ∼ 300, studied experimentally,

this is undertaken at n = 150.

The “classical” wave packet is obtained by simulating the pumping process, i.e., by solving

the Liouville equation. A restricted microcanonical distribution is used to represent the

initial n = 150, kx = −149, mx = 0 Stark state, which is oriented along the −x axis. The

pump field, F pump
y = 346mV/cm, is applied for a duration of 2.5 ns. The resulting classical

phase space probability density

ρ̃cl(x, y) =
∫

dz d3p ρcl(~r, ~p) (17)

immediately following turn-off of the pump pulse (taken to define t = 0 in the following)

is shown in Fig.2(a), projected onto the xy plane. The wave packet is distributed nearly

uniformly around a circle with average radius ∼ n2
i forming a donut-shaped distribution.

However, when the wave packet is decomposed into spectral components, i.e., energy bins,

these are non-uniformly distributed around the circle . This is conveniently illustrated by

considering the expectation value of the local principal action 〈n(x, y)〉 evaluated as

〈n(x, y)〉 = 1

ρ̃cl(x, y)

∫

dz d3p

√

1

2|Hat(~r, ~p)|
ρcl(~r, ~p) (18)

(see Fig. 2(b)) where Hat = p2/2− 1/r. Those portions of the wave packet with the lowest

energies (or actions) n are localized at azimuthal angles near φ ∼ π/2 and the highest

energy components near φ ∼ −π/2. This correlation between the principal action n and the

azimuthal angle φ is caused by the energy transfer associated with the sudden turn-off of the
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pump pulse. As in the probing protocol [Eq. (13)], the energy transfer is determined by the

initial electron position y(t = 0). (Since the initial state is localized along the x axis little

energy transfer occurs at turn-on of the pump pulse.) For F pump
y > 0, the decrease in energy

is maximal for electrons with y ∼ n2
i . In consequence product states with the smallest values

of n, nmin ∼ 147, are localized near φ = π/2. Similarly, states with the largest values of n,

nmax ∼ 155, are localized near φ = −π/2. The various intermediate n levels are distributed

symmetrically with respect to the y axis (i.e. at φ = π/2± α).

As illustrated in Figs. 2(c) and 2(d), it is important to verify that this n-φ mapping

is also evident in the quantum calculations. The quantum simulations are performed by

numerically solving the time-dependent Schrödinger equation during the pump pulse. The

resulting quantum distributions

ρ̃(x, y) =
∫

dz ρ(~r, t = 0) (19)

and

〈n(x, y)〉 = 1

ρ̃(x, y)

∫

dz 〈~r|n̂1/2 ρ̂(0) n̂1/2|~r〉

=
1

ρ̃(x, y)

∑

µ

Pµ

∫

dz

∣

∣

∣

∣

∣

∣

∑

n,ℓ

√
n cµn,ℓ e

−iΦµ
n,ℓ

(t)ψn,ℓ,n−µ(~r)

∣

∣

∣

∣

∣

∣

2

(20)

closely resemble the classical distributions. As will be demonstrated, the extreme n levels,

localized at φ = ±π/2, as well as the intermediate n levels can be probed through harmonic

analysis.

Consider now a mix of near-extreme red-shifted Stark states as is created experimentally.

During the pump pulse (which acts like a π/2-pulse) each Stark state (n = ni, kx = ki, mx =

mi) is transformed to a near-circular Stark state (n = ni, k = −mi, m = −ki) [11]. Due to

the non-adiabatic turn-on/off of the pump pulse the final magnetic quantum number m is

distributed within a finite range with m = n − µ (µ = ni + ki). The same n-φ correlation

persists for each near-circular state |Ψµ〉 implying that the relative phases ∆Φn and ∆Φ(2)
n

depend only on n and are independent of ℓ and µ. This is illustrated by the quantum

calculations presented in Figs. 2(e) and 2(f) for a partially coherent mix of near-extreme

parabolic states (ni = 150, mx = 0 and values of kx equally distributed between -117 and

−133) that mimics the experimental protocol.
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V. EXTRACTION OF MULTIPOLES

In this section we first analyze the extraction of multipoles 〈yλ〉 using quantum simulations

(at ni ∼ 150) chosen to mimic the experimental conditions. Survival probabilities obtained

using Eq. (15) with φion = 2π/3 and π/2 were determined during the free evolution and

are presented in Figs. 3(a) and 3(b) respectively. (The choice φion = 2π/3 matches the

value used in the measurements.) The moments 〈y(t)〉 and 〈y2(t)〉 of the simulated wave

packet are shown in Figs. 3(c) and 3(d). The survival probabilities and 〈y(t)〉 display fast

oscillations at the orbital period Tni
= 2πn3

i (which sets the unit of scaled time.) As the

wave packet involves a finite number of discrete n levels, a series of collapses and revivals

in the oscillation amplitudes are observed as the various n components move in and out of

phase. The Fourier transforms of the time signals are shown in Figs. 4(a) to 4(d) and display

a series of discrete peaks each of which corresponds to a contributing n level. As expected

from Eqs. (4) and (10), the Fourier transforms of 〈y(t)〉 and 〈y2(t)〉 are peaked around the

first (Ωni
) and the second (2Ωni

) harmonics. The survival probabilities also display multiple

harmonics whose sizes depend on the choice of φion (Eq. (16)). Detailed inspection of the

first harmonic (see Fig. 4(e)) reveals a number of Fourier components whose phases are

well localized. As seen in the calculated spatial distributions, the extreme product n levels

(nmax ≃ 155 and nmin ≃ 147) are well localized in phase and contribute significantly to the

Fourier spectrum. These components of the wave packet are initially localized (at t = 0)

on opposite sides of the nucleus, i.e., at φ = 3π/2 for nmax and φ = π/2 for nmin (Fig. 4).

Thus the phase of the Fourier components acquires a direct geometric meaning in terms of

initial azimuthal localization (Eq. (2)). In contrast, those components with intermediate

values of n only appear prominently in the second harmonic spectrum implying a symmetric

spatial distribution with respect to the y axis (Eq. (11)). For the second harmonics, each

contributing n level has a double-peaked distribution in φ (see Eq. (11)). In Fig. 4(f),

the plotted phase is divided by 2π and corresponds to ∆Φ(2)
n /2 giving one of the two peak

positions. For n ∼ 150, this peak is initially positioned at φ = ∆Φ(2)
n /2 ∼ π , the second

peak being located at φ = ∆Φ(2)
n /2 + π = 2π, i.e., separated by π .

In general, the two angular peaks associated with the intermediate n levels are separated

by an angle other than π. Their exact separation can be extracted by analyzing higher

harmonic components of the survival probability for various values of the ionization threshold
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φion. To extract information about a certain harmonic order the choice of φion is important

(see Figs. 4(a) and 4(b)). When φion is set to π/2, the contributions from double peaked

spatial distributions in the survival probability are suppressed and the corresponding Fourier

amplitudes become quite small (see Fig. 4(b)). Accordingly at intermediate n the specific

phases extracted become unreliable. Observation of the second harmonics is facilitated

by a different choice of φion (e.g. φion = 2π/3). Alternatively, the second harmonic can be

observed in the time domain (Figs. 3(a) and 3(b)). At a scaled time of∼ 20-30 the oscillations

in the survival probability at the frequency of the first harmonic, i.e., the orbital frequency

(1/Tni
), collapse allowing the frequency doubled oscillation to become visible, known as a

1/2 fractional revival [21]. The quantum simulations demonstrate that the first and second

moments of the Cartesian coordinate y can be extracted from the first and second harmonic

components of the survival probabilities. We now employ this tool to analyze experimental

data for n ∼ 300.

Measurements were undertaken with near-circular n ∼ 305 wave packets obtained using

a pump field F pump
y of 10 mV cm−1 amplitude and 42 ns duration with rise and fall times

∼ 300 ps, << Tn. Probe pulses F
probe
y of 6 ns duration and amplitude ∼ 104 and 76 mV cm−1

were employed to obtain average survival probabilities P̄sp of ∼ 50% (Fig. 5(a)) and ∼ 75%

(Fig. 5(b)), respectively. The former enhances the first harmonics, the latter the second

harmonics. The measured survival probabilities, recorded at intervals of ∼ 0.4 ns, revealed

a series of strong quantum revivals. Fourier transforms of the data sets are presented in

Figs. 6(a) and 6(b). The first harmonic spectrum peaks at n ∼ 302-305 and 309-311. The

phase of the Fourier expansion coefficients shows that the lower n levels are initially (at

t = 0) located predominantly in the positive half-space (y > 0, φ ∼ π/2 ) whereas the

higher n states are positioned in the negative half-space (y < 0, φ ∼ 3π/2 ), just as seen in

Fig. 2. As noted earlier, the suppression of the Fourier amplitude in the vicinity of n = 306-

308 should not be interpreted as an indication that the population of the corresponding n

levels is small. Indeed, the second harmonic spectrum (Fig. 6(b)) displays strong peaks at

these intermediate n levels. Moreover, the Fourier phases show that the localization angles

for these levels are near φ = 0 (and π (Eq. (11))), i.e., they correspond to excitation near

y ≃ 0 and are nearly equally distributed at x ≃ ±n2
i . Since this symmetric distribution

is maintained during their time evolution, they contribute little to the time dependence of

〈y(t)〉. Only observation of the second harmonic renders them visible.

12



Careful inspection of the peak positions on the frequency axis reveals that the peaks

associated with the second harmonics are not simply at twice the frequencies associated

with the first harmonics. This results because the frequencies of the second harmonics

Ω(2)
n ≃ 2/n3 are defined by integer n whereas the frequencies of the first harmonics given by

Ωn ≃ 1/(n− 1/2)3 are defined by half integers, n − 1/2. This gives rise to the half-integer

shift seen in Fig. 6 and is a direct manifestation of the relative phase shift between fractional

revivals of different order [21, 30].

VI. NARROWING THE n-DISTRIBUTION BY A HALF-CYCLE PULSE

With detailed information on the spatial distribution in a Bohr wave packet, in partic-

ular, the correlation between principal quantum number n and azimuthal angle φ , it is

straightforward to design protocols to manipulate the wave packet. Here we demonstrate a

protocol designed to change the width of the n distribution that is directly based on the n-φ

correlation described above.

Consider the application of a half-cycle pulse (HCP), FHCP(t), with duration Tp ≪ Tn to

an atom. This results in an impulsive momentum transfer, or “kick” to the electron given

by

∆~p = −
∫

~FHCP(t)dt (21)

and an energy transfer

∆E = ~pi ·∆~p+O(∆p2) (22)

For small HCP strengths (|∆p| ≪ |pi|) the electron gains or loses energy depending on the

direction of its orbital momentum ~pi at the time of HCP application. This momentum-

dependent energy transfer provides the key to manipulating the n-distribution of the (near-

circular) wave packet. Consider an HCP that delivers a small kick in the +y direction.

Components of the wave packet initially located near the x axis moving in the −y (+y)

direction will lose (gain) energy, i.e., move to lower (higher) n. Components of the wave

packet located near the y axis moving in the +x or −x directions will suffer little energy

transfer. In all cases, since the HCP is small, only small changes in Lz occur. As demon-

strated above, immediately following turn-off of the pump pulse the high -n (n ∼ 309-311),

and low-n (n ∼ 302-305) components of the wave packet are located on opposite sides of
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the nucleus at φ ∼ 3π/2 and +π/2 , respectively. The intermediate n components are po-

sitioned near φ ≃ 0 and π . Application of a small kick (in the +y direction) at this time

will have little effect. The high- and low-n components remain essentially unchanged while

the intermediate-n components, on average, suffer little net change in n because of their

symmetrical distribution, i.e., each has components that move in the +y and −y directions.

However, after a delay equal to one quarter of a Kepler period the higher-n components are

located on the +x axis moving in the +y direction, the lower-n components on the −x axis

moving in the −y direction. The intermediate-n components are positioned near the +y and

−y axes. Thus application of a kick in the −y direction at this time can produce a signifi-

cant narrowing of the n distribution as the higher-n components lose energy and the lower-n

components gain energy. This is illustrated in Fig 7 which shows the measured survival

probabilities and Fourier amplitudes for a near-circular wave packet that is manipulated

by an HCP. The initial near-circular wave packet is generated from a mix of ni = 304, 306

quasi-1D states using an 85 ns, 5 mV/cm pump pulse. Its subsequent evolution is moni-

tored using a probe pulse and the time dependence in the survival probability is shown in

Fig. 7(a) together with its distribution of Fourier components in Fig. 7(d). Figures 7(b) and

7(e) show the effect of application of a small kick of 0.6 ns duration and scaled amplitude

∆p0 = ni∆p = 0.007 in the −y direction, 1 ns, i.e., one quarter of an orbital period, after

turn-off of the pump pulse. As seen in Fig. 7(b) the times associated with the growth and

decay of the revivals becomes much longer indicating that fewer n levels are involved in

the wave packet. Indeed, the Fourier transform (Fig. 7(e)) shows that the n distribution

is substantially narrowed, its final width, ∆n ∼ 2, approaching the limit of population of

just a single n shell. As seen in Figs. 7(c) and 7(f), reversal of the kick direction leads to a

broadening of the n distribution as the high-n (low-n) components now gain (lose) energy.

In consequence, the initial localization and delocalization of the wave packet occur at earlier

times when compared to the case where no HCP is applied.

VII. CONCLUSIONS

The dynamics of near-circular Bohr-like wave packets can be monitored by measuring

the survival probability following sudden application of a pulsed dc electric field. Because

the probability of ionization depends on the initial position of the electron, information
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on its spatial distribution is encoded into the survival probability. Fourier analysis of the

time dependent survival probability yields the first and second moments of the position

coordinate, 〈yλ〉 (λ = 1, 2), and provides information on the distribution in azimuthal angle

φ. This includes the average location of each n component, even when a single n component

has a distribution with two localization peaks. Such information is critical for the design of

protocols to further manipulate the wave packet.
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FIGURES

FIG. 1. (Color online) Schematic diagram of the apparatus.

FIG. 2. (Color online) (a) Simulated spatial distribution (projected onto the xy plane) immediately

following application of a 2.5 ns-long pump pulse of magnitude 346 mV/cm. The results are

obtained by numerically solving the classical equations of motion for an initial ensemble comprising

a restricted microcanonical ensemble modeling the extreme parabolic state with ni = 150, kx =

−149, and mx = 0. The corresponding average principal action 〈n(x, y)〉 evaluated locally at

each position (x, y) is shown in 1(b). (c) and (d), Results obtained, for the same conditions,

by numerically solving the time-dependent Schrödinger equation. (e) and (f), Results of quantum

mechanical calculations for an initial state comprising an ensemble of near extreme parabolic states

ni = 150, kx = −117,−119, · · · ,−133, (each equally populated), and mx = 0 (see text). In all

plots, the coordinates are in scaled units x0 = x/n2
i , and y0 = y/n2

i . 〈n(x, y)〉 is evaluated only

at positions where the probability density ρ̃(x, y) is larger than 0.01 (in scaled units) to avoid

divergence with small denominators (see Eqs. (18) and (20)).

FIG. 3. (a) and (b), Survival probabilities (Eq. (16)) of the Bohr wave packet (ni = 150) as a

function of time of application of the probe pulse calculated according to Eq. (15) with φion = 2π/3

and π/2, respectively. The results are obtained by numerically solving the Schrödinger equation.

The pump pulse and initial state are the same as for Figs. 1(e) and 1(f). The unit of the scaled

time is the Kepler period 2πn3
i (≃ 513 ps for n = 150) and that of the length is n2

i . The expectation

values of the moments 〈y0(t)〉 (Eq. (4)) and 〈y20(t)〉 (Eq. (10)) are presented in (c) and (d).
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FIG. 4. (Color online) (a) to (d), Amplitudes of the Fourier transforms of the data in Fig. 3, shown

in the same order. (e) and (f), Expanded views in the vicinity of the first and second harmonics.

The dots indicate the phases of the complex Fourier coefficients for the dominant peaks (phase

scale provided by the axes on the right). The conversion from frequency to the quantum number

n (dashed lines and top axes in (e) and (f)) is done using ωn = (n− 1/2)−3 and ωn = 2n−3 for the

first and second harmonics, respectively.

FIG. 5. Survival probabilities measured following sudden turn-off of a transverse 43 ns-long

10 mV cm−1 pump pulse applied to a mix of quasi-1D ni = 304 and 306 atoms (see text). Probe

pulses of 6 ns duration and amplitudes (a) 104 mV cm−1, and (b) 76 mV cm−1 are employed. The

inset illustrates the data on a finer scale.

FIG. 6. (Color online) (a) and (b) Fourier transform of the survival probabilities shown in Figs. 5(a)

and 5(b), respectively. The solid lines show the amplitudes of the Fourier expansion coefficients.

The dots indicate the phases φ of the dominant peaks. Frequency is mapped to the quantum

number n (indicated by the dashed lines) by ωn = (n− 1/2)−3 and ωn = 2n−3 for the first (a) and

second (b) harmonics, respectively.

FIG. 7. (a) Survival probability measured following application of an 85 ns-long 5 mV cm−1 pump

pulse to a mix of quasi-1D ni ∼ 305 atoms and (d) its Fourier transform. The 6 ns-long probe

pulse has an amplitude of 104 mV/cm. (b) and (c) Survival probabilities, and (e) and (f) Fourier

transforms obtained after application, following a delay of ∼ 1.1 ns, of an HCP delivering a kick

of scaled strength ∆p0 ≡ ni∆p = 0.007 in the −y and +y directions, respectively (see text).
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