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We propose blue-detuned optical traps that are suitable for trapping of both ground state and
Rydberg excited atoms. Addition of a background compensation field or suitable choice of the trap
geometry provides a magic trapping condition for ground and Rydberg atoms at the trap center.
Deviations from the magic condition at finite temperature are calculated. Designs that achieve less
than 200 kHz differential trap shift between Cs ground and 125s Rydberg states for 10 µK Cs atoms
are presented. Consideration of the trapping potential and photoionization rates suggest that these
traps will be useful for quantum information experiments with atomic qubits.
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I. INTRODUCTION

While ground state neutral atoms interact only weakly
due to small van der Waals and magnetostatic dipolar
interactions several recent experiments have shown that
Rydberg excitation can be used to turn on strong in-
teractions suitable for quantum gates and entanglement
generation [1–3]. Following these developments Rydberg
mediated quantum gates[4] are currently being studied
intensively as a route to scalable quantum information
processing[5].
Recent quantum gate experiments have used Rb atoms

that are laser cooled and then transferred into red de-
tuned far-off resonance optical traps (FORTs). Red de-
tuned traps are adequate for ground state atoms but they
present several difficulties for experiments that rely on
Rydberg excitation. The trapping light photoionizes Ry-
dberg atoms with typical photoionization rates for few
mK deep traps that can be faster than radiative decay
rates[6–8], and so photoionization presents a limit to the
usable Rydberg lifetime. Furthermore the differential
light shift of the Rydberg and ground states results in
a position dependent Rydberg excitation energy, unless
the atoms are cooled to the motional ground state of the
trapping potential. Variations in the excitation energy
impact the detuning of pulses used for gate operations,
and thus degrade gate fidelity. To get around these limits
the trap light is turned off during the gate sequence, and
then turned on again afterwards. Provided the atoms are
sufficiently cold, and the Rydberg gate lasts only a few
µs, turning the trap on and off does not lead to appre-
ciable heating or atom loss out of the trap.
In a multi-qubit experiment we envision an array of

optical traps, each holding a neutral atom. In most im-
plementations using lattices, or trap arrays generated
with diffractive optics, it is not possible to control the
trap intensity on a site by site basis. It would therefore
be necessary to turn off all traps whenever any atom is
Rydberg excited. This is problematic for implementa-
tions with many qubits and it is therefore of interest to
find traps that work for both ground and Rydberg state

atoms. Since the Rydberg polarizability is that of a free
electron and is negative, a stable trap must be a dark re-
gion surrounded by light, and the trap wavelength should
be chosen so also the ground state polarizability is neg-
ative. In the alkali atoms this implies tuning to the blue
of one or both of the first resonance lines[6]. Although
a blue detuned trap can be attractive for both ground
and Rydberg atoms, trap depth matching is still an issue
due to state dependent differences in the magnitude of
the polarizability and due to the different spatial extent
of the Rydberg wavefunction compared to the ground
state atom. For high fidelity quantum gates we expect
to access Rydberg levels with principal quantum num-
ber n > 100[5] and it is therefore necessary to consider
the local trapping potential averaged over the Rydberg
electron wavefunction[9] which may extend to more than
1 µm away from the nucleus.
Several authors have considered low frequency electro-

magnetic trap designs for ground and Rydberg atoms[10].
In this paper we show that optical frequency traps can
be used for both ground and Rydberg state atoms, and
that position dependent differential light shifts can be
minimized in what we refer to as “quasi-magic” trap ge-
ometries. In Sec. II we present three alternative designs
for blue detuned optical traps. In Sec. III we calculate
the Rydberg trapping potential and identify magic trap-
ping conditions. Representative numbers are given for
Cs atoms. Photoionization rates are calculated in Sec. V
and we conclude in Sec. VI.

II. BOTTLE BEAM OPTICAL TRAPS

Wavelength regions where the ground and Rydberg
state polarizabilities are the same sign are to the blue
of the first resonance lines in alkali atoms. Calculated
polarizability curves for the heavy alkalis Rb and Cs are
shown in Fig. 1. The curves for the 50d Rydberg state
are within a few percent of the value found from the free

electron polarizability αe = − e2

meω2 , except near the reso-
nance with the first excited p level. We see that for both
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FIG. 1. (color online) Scalar polarizability of ground and Ryd-
berg states of Rb and Cs (solid lines) and vector polarizability
of the ground state (dashed lines).

elements there is a matching wavelength to the red of
the second resonance lines at approximately 430 nm for
Rb and 470 nm for Cs. The ground state vector polariz-
abilities are also very small at this wavelength which im-
plies small rates for hyperfine or Zeeman state changing
Raman transitions. Although these wavelengths might
therefore appear attractive for trapping ground and Ryd-
berg states they are not useful due to the need to account
for the different spatial extent of the ground and Rydberg
wavefunctions. As we will see in Sec. III it is prefer-
able to work at longer wavelengths for which the ground
and Rydberg polarizabilities are both negative, but the
ground state polarizability is much larger in magnitude
than that of the Rydberg state.

Several methods have been used to produce bottle
beam traps (BoBs) that have an intensity null sur-
rounded by light in all directions [11], [12], [13]. We have
investigated in detail the three configurations shown in
Fig. 2. The Gaussian interference BoB in Fig. 2a) makes
use of the interference of two TEM00 Gaussian beams
with different waist sizes w1, w2 [13]. The crossed vortex
BoB[12] in Fig. 2b is formed by two Laguerre-Gaussian
L1
0 beams with orthogonal polarizations that cross with

an angle of 2θ. We have recently demosntrated trapping
of single ground state Cs atoms in both of these BoB

traps[14].
The third dipole trap 2c is created by four parallel

tightly focused TEM00 Gaussian beams. The four beams
with a waist size w0 are spaced on a square with sides
d. Each beam has the same polarization as its diagonal
neighbor and has orthogonal polarization to that of its
nearest neighbors. This polarization configuration mini-
mizes the effects of interference. Both the waist size w0

and beam spacing d are on the µm scale. The overlap of
the four beams forms a potential barrier around the cen-
ter of the square in the x−y plane. Diffractive spreading
of the Gaussians also creates a trapping potential along
z, thus forming a 3D BoB trap. This latter configuration
is of particular interest for forming tightly packed BoB
arrays.
For each trapping geometry atom localization near the

trap center can be quantified by an expansion of the po-
tential U(r) = − 1

2ǫ0c
αI(r) near the trap center. Here

α is the scalar polarizability and I is the intensity at
position r. The intensity distributions for the different
trap configurations are calculated in Appendix A. For the
Gaussian interference BoB we find near the origin

U(x, 0, 0) = −
αP1(w

2
1 − w2

2)
2

πǫ0cw6
1w

4
2

x4 +O(x6) (1a)

U(0, 0, z) = −
αλ2P1(w

2
1 − w2

2)
2

π3ǫ0cw6
1w

4
2

z2 +O(z4) (1b)

where α is the scalar polarizability of the atom, λ is
the trapping wavelength, and P1, P2 = (w2/w1)

2P1 are
the powers of the beams with waists w1, w2 repectively.
The trapping potential is axially symmetric and quartic
in the xy plane and quadratic along z. The total trap
power used in Fig. 2 is P = P1 + P2.
For the crossed vortex BoB an expansion about the

origin yields

U(x, 0, 0) = −
2αP cos2 θ

πǫ0cw4
x2 +O(x4) (2a)

U(0, y, 0) = −
2αP

πǫ0cw4
y2 +O(y4) (2b)

U(0, 0, z) = −
2αP sin2 θ

πǫ0cw4
z2 +O(z4) (2c)

where P is the total power of the two beams, and w
is the focused waist size. This trap is quadratic in all
directions.

For the Gaussian array BoB the expansion along x and
z is

U(x, 0, 0) = −U0e
− d2

w2

(

1−
2w2 − d2

w4
x2

)

+O(x4)

(3a)

U(0, 0, z) = −U0e
− d2

w2

[

1−
λ2(w2 − d2)

π2w6
z2
]

+O(z4)

(3b)
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FIG. 2. (color online) Setup of blue detuned dipole traps:
a) Gaussian interference BoB[13], b) crossed vortex BoB[12],
and c) Gaussian lattice.

with U0 = 8αP
πǫ0cw2 . Here P is the power of each beam

in Fig. 2c. In an array implementation each beam is
shared between four neighboring trapping sites, so a total
power of only P per site is required(this neglects a small
correction due to the rows at the edge of the array).
Trapping potentials of the three dipole trap configura-

tions for the ground state of Cs are plotted in Fig. 3 and
the trap oscillation frequencies along different axes are
listed in Table I. We see that all three designs provide
transverse oscillation frequencies of a few tens of kHz and
longitudinal oscillation frequencies of a few kHz. The vor-
tex and Gaussian lattice traps result in quite similar fre-
quencies and trapping depth. The Gaussian interference
BoB is about 3× shallower for the same optical power
and has the poorest axial confinement.

III. PONDEROMOTIVE POTENTIAL OF

TRAPPED RYDBERG ATOMS

High n Rydberg atoms with n > 100 have electron
wavefunctions that are comparable in spatial extent to
the trap potentials shown in Fig. 3. The AC Stark shift
of Rydberg atoms can therefore no longer be approxi-
mated by U = − 1

2ǫ0c
αI, with I the local intensity at the

nucleus. We need to consider the ponderomotive energy
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FIG. 3. (color online) Trapping Depth of blue detuned dipole
traps in the x − y (left column) and x − z (right column)
planes for Cs 6s, λ = 780 nm, α = −235.× 10−24 cm3, power
P = 50 mW for a) Gaussian interference BoB w1 = 2 µm,
w2 = 3.78 µm, b) crossed vortex BoB w = 3 µm, θ = 8.6o,
and c) Gaussian lattice trap w = 1.5 µm, d = 4 µm.

of Rydberg atoms in a field of varying intensity. The
ponderomotive shift is the time averaged kinetic energy
of a free electron in an oscillating electric field. For a
field of the form E cos(ωt), the ponderomotive energy is

UP =
e2|E|2

4meω2

where −e and me are the electron charge and mass re-
spectively. Using I = ǫ0c

2 |E|2 where c is the speed of light
we can write the ponderomotive energy of a free electron
as

UP =
e2

2ǫ0cmeω2
I.

Then the Hamiltonian of a Rydberg atom in an oscillat-
ing electromagnetic field can be written as

HF + UP (~R + ~r)ψ(~r; ~R) = ER(~R)ψ(~r; ~R),

where ~R is the center of mass coordinate of the atom,
and ~r is the coordinate of the electron relative to the
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TABLE I. Oscillation frequencies and the trap potential at the lowest saddle point for the BoB traps, each with the same total
power of 50 mW, with trap parameters from Fig.3.

design ωx/2π (kHz) ωy/2π (kHz) ωz/2π (kHz) U/kB (µK)

Gaussian In-
terference

62.5a 62.5a 0.315 60

crossed Vor-
tex

29.4 29.8 4.42 225

Gaussian
Lattice

15.4 15.4 2.79 256

a The Gaussian interference BoB is anharmonic in the radial direction. The vibration frequency was calculated by setting the particle

energy to 1/10 of the trapping potential.

center of mass. Using first order perturbation theory, and
supposing there is no degeneracy involved, the energy
shift of a Rydberg atom in state j is [9]

∆ERj(~R) =

∫

d3rUP (~R+ ~r)|ψ0
j (~r;

~R)|2

=
e2

2ǫ0cmeω2

∫

d3rI(~R + ~r)|ψ0
j (~r;

~R)|2. (4)

This expression is valid provided the ponderomotive po-
tential varies over distance scales that are larger than the
wavelength of the Rydberg electron. This is well satisfied
for the potentials we consider. At n = 150 the electron
wavelength is about 50 nm which is less than 10 % of the
wavelength of the light creating the trap. In addition it
is necessary that the ponderomotive shift is everywhere
small compared to the energy spacing of Rydberg levels.
For the 150s state, which is the highest we consider in
the examples below, the closest state is 146f7/2 which is
1.6 mK away. Looking at Fig. 4 the largest pondero-
motive energy seen by a 150s atom for the traps we are
considering is about 200 µK. The ratio of energy scales
would thus imply a higher order correction ∼ 0.12.
In fact this naive estimate is overly pessimistic since

the coupling between ns and (n − 4)f is strongly sup-
pressed by the trap geometry. The dipole traps in Fig. 2
all have spatial reflection symmetry so that the coupling
matrix elements between the ns and (n − 4)f Rydberg
states are exactly zero when the atom is at the origin. For
the low atom temperatures expected for Cs, the atom will
be very near the center of the trap and thus this coupling
will be strongly suppressed. The next closest states are
in the (n-4) degenerate manifold (l = 4, 5, ...) which are
separated from the 150s state by about 5 mK which is
more than a factor of 25 larger than the light shift. This
will lead to a second order perturbative correction to the
energy shift of approximately 1 part in 25. Since the Ry-
dberg level spacing scales as 1/n3, with n the principal
quantum number, the error will be even smaller for lower
levels.
We will calculate the wavefunctions ψ0

j using a model
pseudo potential method. The potential form adopted
here is [15]

Vl(r) = −
Zl(r)

r
−
αd

2r4

[

1− e−(r/rc)
3
]2

+
l(l+ 1)

2r2
(5)

where Zl(r) = 1 + 36e−α
(1)
l

r + α
(2)
l reα

(3)
l

r. αd = 15.81,
rc = 2.0, and all the other parameters are listed in Table
II. To verify our calculation of the wavefunctions, we

TABLE II. Parameters for the Cs model potential (5).

l 0 1 2 3 4+

α
(1)
l 3.49625 3.73801 3.45092 3.43592 3.43592

α
(2)
l 9.57499 9.56664 9.52285 9.54285 9.54285

α
(3)
l 1.41409 1.34016 1.58147 1.62147 1.62147

reproduced the planewave photoionization cross sections
listed in [6]. The fine structure of Cs adds less than
0.1% correction to the ponderomotive energy shifts, so
we ignore fine structure corrections in this paper.

Figure 4 gives sample calculation results for ns Ryd-
berg levels with n = 100, 125, 150. We see that as n in-
creases the effective trapping potential gets smaller and
smaller. This is because the large electron wavefunction
averages over the intensity distribution of the trap ac-
cording to Eq. (4) which washes out the potential min-
imum. If the trap parameters are not chosen correctly,
as is the case in Fig. 4b), the trap could be repulsive for
high n even though αe is negative. Even when the trap is
attractive for Rydberg states the ground to Rydberg trap
shift for an atom at R = 0 is not negligible. This shift
increases with n and is proportional to the light intensity.
In an experiment with an array of traps this would imply
that the Rydberg excitation energy would vary from site
to site due to intensity variations across the array. To
minimize this effect we seek trap parameters for which
the R = 0 trap induced shift vanishes. We will refer to
this in what follows as “quasi-magic” trapping. A quasi-
magic trap will give an intensity independent excitation
shift for atoms at the trap center (or for atoms in the mo-
tional ground state with slightly different compensation
parameters) and only a small shift for sufficiently cold
atoms. We quantify the notion of small in the following
section.
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parameters the same as in Fig. 3.

IV. MAGIC CONDITION FOR ZERO

TEMPERATURE ATOMS

Inspection of Fig. 1 shows that apart from wavelengths
that are very close to the second resonance lines the mag-
nitude of the ground state polarizability is larger than
that of the Rydberg state. Conversely Fig. 4 shows that
the trapping potential at R = 0 is larger for Rydberg
states than for ground states. This implies that we can
balance the R = 0 trap shifts by adding a constant back-
ground intensity that will shift the ground state poten-
tials more than the Rydberg state potentials. With the
correct background intensity Im the differential shift will
vanish. This is the quasi-magic trapping condition. Note
that if we were to use the wavelengths in Fig. 1 where the
ground and Rydberg polarizabilities are equal we would
have to add a relatively large background intensity. At
λ = 780 nm the ground state polarizability α is about
5.4× larger than that of the Rydberg state αe which re-
duces the power requirement for the background beam by
this factor. It is possible to work even closer to the first
resonance line where α/αe is even larger, but decoherence
rates associated with photon scattering and differential
hyperfine shifts[6, 16] increase correspondingly. We have
therefore chosen 780 nm for Cs as a viable working wave-
length.
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FIG. 5. (color online) Energy shift compensation for the
crossed vortex BoB with a planewave of intensity Im =
128 µW/µm2, w = 3 µm, θ = 8.6o, and P = 50 mW.

Using the ground state light shift

∆Ug = −
αg

2ǫ0c
[IBoB(~R) + Im(~R)],

and the Rydberg state shift

∆UR =
e2

2ǫ0cmeω2
∫

d3r[IBoB(~R+ ~r) + Im(~R+ ~r)]|ψ0
j (~r; ~R)|

2

the quasi-magic condition is simply ∆Ug = ∆UR. Figure
5 shows an example of such a magic condition for the
crossed vortex BoB.
Although the additional power required for matching

is small for a single site, the additional light require-
ment becomes substantial if we consider a 100 × 100
or 1000 × 1000 µm2 array. The Gaussian lattice design
presents an interesting alternative since the light inten-
sity is naturally not zero at the trap center. The R = 0
intensity changes as we vary the waist size or separation
of the beams, and by judicious choice of parameters we
can achieve the matching condition without adding any
additional plane wave. Note that the compensating in-
tensity is in this case not uniform but is spatially varying.
Figure 6 shows such a self magic condition for n = 125.
For a ground state atom with a low temperature,

we can estimate the average trap induced shift be-
tween ground and Rydberg states by < dU >=
1
2

∑

i=x,y,z dUii(0, 0, 0)
〈

r2i
〉

, where the mean square po-
sition of the atom found from the Virial theorem is
< r2i >=

kBT
2∂iiUg

, dUii = ∂ii(UR −Ug) and Ug, UR are the

ground and Rydberg state trapping potentials. Figure 7
shows that the transition shift decreases nearly linearly
with decreasing atom temperature. This shift would be
below 0.2 MHz for an atom temperature of 10 µK which
is readily achieved using polarization gradient cooling of
Cs.

V. PHOTOIONIZATION RATE

In this section we calculate the photoionization rate of
Rydberg atoms in a BoB trap. Since the Rydberg elec-
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tron is not exposed to a uniform intensity field the pho-
toionization calculation must be modified accordingly.
The local photoionization rate R scales as R = σ I

h̄ω with
ω the photon frequency. The cross section is [17]

σ = 2π2 h̄2

m2
ec

2α

dfif
dE

,

α is the fine structure constant and the derivative of the
oscillator strength with respect to the energy is

dfif
dE

=
2h̄

mω

1

2li + 1

∑

mi

∑

lf ,mf

|〈f | ~A · ~p|i〉|2. (6)

where the initial state |i〉 = |ni, li,mi〉 is a Rydberg
state with principle quantum number ni, and the final

state |f〉 = |Ef , lf ,mf 〉 is a continuum state with en-
ergy Ef = Eω + ER, with Eω = h̄ω the photon energy.
The magnitude of A is normalized to unit peak intensity.
Even though kr ∼ kn2a0 ≫ 1 is large for our parameters
we may ignore high powers of r in the expansion of A
when calculating the matrix element since, even though
the electron’s wavefunction is comparable in size to the
photon’s wavelength, the photon absorption takes place
near the nucleus[18]. The quadrupole term is included
due to the small electric dipole transition rate for s state
atoms near the center of a dark trap. We tested the ma-
trix element calculation using the full multipole operator
and verified that only the dipole and quadrupole terms
gave a substantial contribution.

For a planewave field polarized in the x direction ~A =

ei
~k·~rx̂, and Eq. (6) can be approximated by

dfif
dE

≈
2h̄

mω

1

2li + 1

×
∑

mi

∑

lf ,mf

|〈f |px + ikxxpx + ikyypx + ikzzpx|i〉|
2.

(7)

Using the following relations

xpx = im
2h̄ (Hxx− xxH) + 1

2 ih̄

ypx = im
2h̄ (Hxy − xyH)− 1

2 lz

zpx = im
2h̄ (Hxz − xzH) + 1

2 ly.

and dropping the magnetic dipole terms, which give no
contribution to the photoionization rate, Eq. (7) becomes

dfif
dE

≈
2mω

h̄

1

2li + 1

×
∑

mi

∑

lf ,mf

∣

∣

∣

∣

〈f |x+
ikx
2
x2 +

iky
2
xy +

ikz
2
xz|i〉

∣

∣

∣

∣

2

.

For a spatially inhomogeneous field like the Gaussian
lattice BoB we decompose into planewaves as

A(~r) =
1

(2π)3

∫

d3~k g~ke
i~k·~r,

g~k =

∫

d3~r A(~r)e−i~k·~r.

The oscillator strength derivative can then be written as

dfif
dE

≈
2mω

(2π)6h̄

1

2li + 1

∑

mi

∑

lf ,mf

∣

∣

∣

∣

∫

d3~k g~k

(

〈x〉+
ikx
2

〈xx〉 +
iky
2

〈xy〉 +
ikz
2

〈xz〉

)∣

∣

∣

∣

2

.

To evaluate the matrix elements the wavefunctions are
calculated with the same method as in Section III. The
radial part of the continuum state is normalized to

φEf ,lf →

√

2m

πh̄2ke
sin(ker + δ), as r → ∞.
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FIG. 8. (color online) Photoionization rate for 125s Cs in a
780 nm self-magic Gaussian lattice dipole trap, w = 1.57 µm,
d = 4 µm, P = 50 mW, and Utrap = kB × 300 µK.

where ke is the wavenumber of the free electron and δ is
the continuum state phase shift.
Figure 8 shows the photoionization rate for a 125s state

Cs atom in a Gaussian lattice trap which satisfies the self
magic condition of Fig. 6. The quadrupole term gives less
than 3% correction to the final result shown in the plot
due to the non-zero light intensity at the trap center. The
photoionization rate is also substantially smaller than the
room temperature radiative decay rate of the same Ry-
dberg state which is about 1800 s−1. Nevertheless the
room temperature photoionization rate of the 125s state
is dominated by blackbody radiation which gives a rate
of about[19] 20 s−1 at 300 K. Only at cryogenic temper-
atures less than 10 K does the trap light induced rate at
trap center seen in Fig. 8 dominate over the blackbody
rate.

VI. DISCUSSION AND CONCLUSIONS

In summary we have presented three designs for blue
detuned dipole traps that are capable of trapping both
ground and Rydberg state atoms. Using visible or near-
infrared trapping wavelengths, and alkali atoms with
temperatures < 100 µK, these traps are capable of
µm scale atomic localization in three dimensions. We
have calculated the ponderomotive potential energy of
trapped Rydberg atoms, the importance of which has
been demonstrated in recent experiments [20], and shown
that it is possible to match the ground and Rydberg state
trap shifts for atoms at the center of the trap.
One attractive feature of these optical traps is that

they can be replicated easily in two dimensions with a
diffractive beam splitter. In this way the traps could be
used in experiments that require control over individual
sites of a closely spaced two-dimensional atomic array as

in[21]. This type of holographically replicated and pro-
jected array has the interesting feature compared to more
traditional optical lattices that the position of each trap-
ping site does not depend on a relative phase between
two interfering beams. This suggests the potential for
better long term stability compared to optical lattice im-
plementations.
A particular feature of the Gaussian array BoB trap

(Fig. 2c) is that a periodic array of Gaussian beams
creates an array of dark traps with the same periodicity,
without any extra confining walls. This approach would
enable quasi-magic trapping of 125s atoms on a lattice
with 4 µm periodicity as detailed in Sec. IV. Conversely
the Gaussian interference and crossed vortex BoB traps
(Fig. 2a,b) have a confining wall around each trap site
so that there would be two confining walls between each
site in a replicated array. This implies an approximately
50% larger trap period for quasi-magic trapping of 125s
atoms, which would reduce the number of sites per unit
area by more than a factor of two.
As we have shown in Sec.. IV quasi-magic ground-

Rydberg trap shift matching can be achieved either by
adding a uniform background field to the trap designs
that have zero intensity at the trap center (Fig. 2a,b),
or by careful choice of the trap parameters of the Gaus-
sian lattice trap (Fig. 2c) which has a finite intensity at
the trap center. These quasi-magic traps have no inten-
sity dependent shift for atoms at the trap center (or in
the motional ground state), but do show shifts at finite
temperature. We have shown in Sec. IV that the finite
temperature shifts can be limited to ∼ 200 kHz for 10 µK
Cs atoms, and would be even less for colder atoms. Trap
shift matching is important for high fidelity Rydberg me-
diated quantum gates[5], furthermore this method may
also be relevant for high accuracy control of black body
radiation shifts[22] in optical transition atomic clocks. In
principle it may be possible to improve upon our results
by designing a compensating field with the correct spa-
tial shape such that not only the differential shift at trap
center, but also higher spatial derivatives of the differen-
tial shift are canceled. We leave this as a challenge for
future work.
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[1] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshny-
chenko, P. Grangier, and A. Browaeys, Phys. Rev. Lett.
104, 010502 (2010).

[2] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill,
T. Henage, T. A. Johnson, T. G. Walker, and
M. Saffman, Phys. Rev. Lett. 104, 010503 (2010).



8

[3] X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and
M. Saffman, Phys. Rev. A 82, 030306(R) (2010).

[4] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan,
D. Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.
87, 037901 (2001).

[5] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod.
Phys. 82, 2313 (2010).

[6] M. Saffman and T. G. Walker, Phys. Rev. A 72, 022347
(2005).

[7] R. M. Potvliege and C. S. Adams, New J. Phys. 8, 163
(2006).

[8] J. Tallant, D. Booth, and J. P. Shaffer, Phys. Rev. A
82, 063406 (2010).

[9] S. K. Dutta, J. R. Guest, D. Feldbaum, A. Walz-
Flannigan, and G. Raithel, Phys. Rev. Lett. 85, 5551
(2000).

[10] J. H. Choi, B. Knuffman, T. C. Leibisch, A. Reinhard,
and G. Raithel, Adv. At. Mol. Opt. Phys. 54, 131 (2007);
P. Hyafil, J. Mozley, A. Perrin, J. Tailleur, G. Nogues,
M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev.
Lett. 93, 103001 (2004); J. Mozley, P. Hyafil, G. Nogues,
M. Brune, J.-M. Raimond, and S. Haroche, Eur. Phys.
J. D 35, 43 (2005); M. Mayle, I. Lesanovsky, and
P. Schmelcher, Phys. Rev. A 79, 041403(R) (2009); 80,
053410 (2009).

[11] T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu,
and H. Sasada, Phys. Rev. Lett. 78, 4713 (1997); R. Oz-
eri, L. Khaykovich, and N. Davidson, Phys. Rev. A 59,
R1750 (1999), erratum: Phys. Rev. A 65, 069903 (2002);
J. Arlt and M. J. Padgett, Opt. Lett. 25, 191 (2000);
S. Kulin, S. Aubin, S. Christe, B. Peker, S. L. Rolston,
and L. A. Orozco, J. Opt. B 3, 353 (2001); D. Yelin, B. E.
Bouma, and G. J. Tearney, Opt. Lett. 29, 661 (2004);
P. Xu, X. He, J. Wang, and M. Zhan, 35, 2164 (2010).

[12] F. K. Fatemi, M. Bashkansky, and Z. Dutton, Opt. Ex-
press 15, 3589 (2007).

[13] L. Isenhower, W. Williams, A. Dally, and M. Saffman,
Opt. Lett. 34, 1159 (2009).

[14] S. Zhang, G. Li, K. Maller, and M. Saffman, (2011), to
be published.

[15] F. Robicheaux and J. Shaw, Phys. Rev. A 56, 278 (1997).
[16] S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Mirosh-

nychenko, A. Rauschenbeutel, and D. Meschede, Phys.
Rev. A 72, 023406 (2005).

[17] T. F. Gallagher, Rydberg atoms (Cambridge University
Press, Cambridge, 1994).

[18] U. Fano, Phys. Rev. A 32, 617 (1985).
[19] I. I. Beterov, D. B. Tretyakov, I. I. Ryabtsev, V. M.

Entin, A. Ekers, and N. N. Bezuglov, New J. Phys. 11,
013052 (2009).

[20] K. C. Younge, B. Knuffman, S. E. Anderson, and
G. Raithel, Phys. Rev. Lett. 104, 173001 (2010).

[21] C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau,
P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, Nature
(London) 471, 319 (2011).

[22] K. Beloy, U. I. Safronova, and A. Derevianko, Phys. Rev.
Lett. 97, 040801 (2006).

Appendix A: Calculation of trap intensity

distributions

In this appendix we document the calculation steps
used to derive the intensity distributions leading to the
trapping potentials of Eqs. (1,2,3) for the Gaussian beam
interference BoB, crossed vortex BoB, and Gaussian ar-
ray BoB respectively.

1. Gaussian Interference BoB

The two Gaussian beams have a phase difference of π
after the Mach-Zehnder interferometer, and the on-axis
intensities are set equal by putting P1/w

2
1 = P2/w

2
2 with

P1,2 the power and w1,2 the beam waist. The combined
intensity of the BoB trap is

I(ρ, z) =
2P1

πw2
1

∣

∣

∣

∣

w1

w1(z)
e
− ρ2

w2
1(z) e

ı[kz+k ρ2

2R1(z)
−η1(z)] −

w2

w2(z)
e
− ρ2

w2
2(z) e

ı[kz+k ρ2

2R2(z)
−η2(z)]

∣

∣

∣

∣

2

where from the properties of TEM00 Gaussian beams

zR1,2 = πw2
1,2/λ, w1,2(z) = w1,2

√

1 + ( z
zR1,2

)2, R1,2(z) =

z+
z2
R1,2

z , η1,2(z) = arctan( z
zR1,2

) and ρ2 = x2 + y2. Mul-

tiplying by the polarizability to convert to energy units

and Taylor expanding about the origin gives Eqs. (1).

2. Crossed Vortex BoB

The intensity of a Laguerre-Gaussian beam can be
written as

Il,p(ρ, z) = I0

(

Clp

w(z)

)2 (
2r2

w2(z)

)|l|

e
− 2ρ2

w2(z)

[

L|l|
p

(

2ρ2

w2(z)

)]2

where I0 = P
w2

0
, Clp =

√

2p!
π(l+p)! , w(z) = w0

√

1 + ( z
zR

)2,

and zR =
πw2

0

λ . For the crossed vortex BoB we are using,

l = 1, p = 0.
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The BoB trap is created by passing two orthogonally
polarized beams with separation d through a lens of fo-
cal length f . After the focusing lens, the two beams are
rotated by ±θ = ± arctan( d

2f ) in the x, z plane. For not

too large angles such that we can neglect local polariza-
tion changes due to the beam focusing the BoB intensity
is given by

I(x, y, z) = I1,0(ρ+, z+) + I1,0(ρ−, z−)

with ρ± =
√

y2 + (x cos θ ± z sin θ)2 and z± = z cos θ ∓
x sin θ. Multiplying by the polarizability and Taylor ex-
panding about the origin gives Eqs. (2).

3. Gaussian Lattice

Each unit cell of the Gaussian beam lattice has the
same polarization on the upper right and lower left cor-
ners and an opposite polarization on the lower right and
upper left corners as shown in Fig. 2c). We therefore add
the fields from the beams centered at opposite corners,
and then add the two intensities. This can be written as

I(x, y, z) =
2P

πw2
0

[

|E(x − d/2, y − d/2, z) + E(x+ d/2, y + d/2, z)|
2

+ |E(x+ d/2, y − d/2, z) + E(x− d/2, y + d/2, z)|
2
]

where each side of the unit cell has length d, P is the
power of each beam, and the unity normalized field dis-
tribution of each beam is

E(x, y, z) =
w0

w(z)
e
−x2+y2

w2(z) eı[kz+k x2+y2

2R(z)
−η(z)].

Taylor expanding the potential about the center of the
unit cell at x = y = 0 gives Eqs. (3).


