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We investigate whether microscopic cascading of second-order nonlinearities of two molecules in
the side-by-side configuration can lead to a third-order molecular nonlinear-optical response that
exceeds the fundamental limit. We find that for large values of the second hyperpolarizability, the
side-by-side configuration has a cascading contribution that lowers the direct contribution. However,
we do find that there is a cascading contribution to the second hyperpolarizability when there is no
direct contribution. Thus, while cascading can never lead to a larger nonlinear-optical response than
for a single molecule with the same number of electrons, it may provide design flexibility in making
large third-order susceptibility materials when the molecular second hyperpolarizability vanishes.

I. INTRODUCTION

Cascading is a process in which the interactions of light
beams generated in lower-order nonlinear optical pro-
cesses lead to a higher-order nonlinear-optical response.
The lowest-order cascading phenomena is an effective
third-order susceptibility that results from interactions
of fields produced by two second-order nonlinear suscep-
tibilities. The microscopic analogue is a second hyper-
polarizability that results from interactions of fields pro-
duced by two molecules through their hyperpolarizabili-
ties.
Figure 1(a) shows how third harmonic light can be gen-

erated using two separate crystals through their second-
order susceptibilities. Similarly, within a material that
lacks inversion symmetry, monochromatic light of angu-
lar frequency ω is converted to second harmonic light at
frequency 2ω, which through parametric mixing with the
fundamental leads to the generation of third harmonic
light at frequency 3ω. Figure 1(b) illustrates that, from
the perspective of an observer outside the crystal, the
process appears as third-harmonic generation due to a
third-order nonlinear-optical susceptibility. Cascading of
nonlinear susceptibilities was used early on by Coffinet
and Martini to characterize coherent excitation of po-
laritons in Gallium Phosphide.[1]
Figure 1(c) shows one of the Feynman diagrams for cas-

cading between two molecules (time runs from bottom to
top). The effective third-order susceptibility is calculated
by summing over all topologically distinct diagrams.[2]
To an outside observer, who is not privy to the virtual
processes involved inside the dashed box, the cascading
third-order susceptibility is indistinguishable from a di-
rect third-order susceptibility, shown in Figures 1(b) and
1(d). Microscopic cascading can lead to a third-order sus-
ceptibility even in an isotropic material,[2] and is related
to the pair correlation function.[3–5]
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Yablonivitch showed that cascading contributes sub-
stantially to the third-order susceptibility in GaAs[6]
while Meredith and Buchalter studied the contribu-
tions of cascading in an α-quartz crystal using wedge
fringing,[7] and Meredith measured third harmonic gen-
eration of para nitroaniline (pNA) in solution as a func-
tion of concentration to determine the effects of micro-
scopic cascading.[8] Meridith concluded that most of the
observed third harmonic light for molecules with a large
hyperpolarizability, such as pNA, is due to microscopic
cascading, and that the hyperpolarizability needs to be
taken into account if the direct contribution of the second
hyperpolarizability is to be determined. Later, Torruellas
and coworkers showed that cascading was important in
Alkoxy-nitro-stilbene (MONS) and Di-alkyl-amino-nitro-
stilbene (DANS) side chain substituted polymers.[9]
These earlier studies focused on third harmonic gener-

ation or two beam mixing (at frequencies ω1 and ω2) that
yield light at 2ω1−ω2. Since optical switching devices re-
quired materials with a large intensity-dependent refrac-
tive index, subsequent studies - such as the ones by Stege-
man and coworkers [10, 11] - considered the role of cas-
cading in self-action effects such as the nonlinear phase
shift. A switching device based on non-phase-matched
second harmonic cascading was reported by Assanto and
coworkers.[12] Bosshard and coworkers demonstrated in
kNbO3 that in addition to cascading due to second har-
monic, the intermediate field could be static, as one finds
in the electrooptic effect and optical rectification.[13]
The earliest research on cascading focused on under-

standing the contributions of cascading to measurements
of the third-order response of the material so that the
direct response could be determined. Also, the cascad-
ing contribution was used to estimate the second-order
response, which could be compared with direct measure-
ments of the second-order response. Later, when it was
recognized that cascading’s and microscopic cascading’s
contributions could exceed the direct contribution, re-
searchers exploited this fact to demonstrate practical ap-
plications that required ever-higher third-order suscepti-
bilities.
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FIG. 1. (Color online) (a) Third harmonic generation from
two second-order processes; (b) phase-matched third har-
monic generation in a two step process; (c) a Feynman dia-
gram for one configuration of microscopic cascading; and, (d)
the direct third order process of third harmonic generation.

Recently, Baev and coworkers have developed a phe-
nomenological model for microscopic cascading with the
goal of introducing new design principles for making non-
linear materials with larger third-order nonlinearity.[5]
Thus, it is natural to ask whether two molecules with
large hyperpolarizabilities can have a larger second hy-
perpolarizability due to cascading effects than is possi-
ble for individual molecules. This question can be an-
swered using the theory of fundamental limits of a quan-
tum system,[14, 15] which is normally applied to single
molecules, to determine whether or not cascading pro-
vides a loophole for breaking the single-molecule limits.

Based on the fact that the theory of fundamental limits
[14–18] applies to any quantum system - independent of
the details, one would anticipate that if the two-molecule
system is considered as the quantum system, then the
fundamental limits must still hold for cascading. Our pa-
per is thus separated into testing two hypotheses. (1) We

calculate the cascading contribution to the third-order
nonlinearity for a two-molecule system in a side-by-side
geometry along the electric field lines where the nonlin-
ear contribution is expected to be optimal, and test the
hypothesis that the fundamental limit of this system is
not breachable. (2) When the direct third-order response
is small, we test the hypothesis that cascading can lead
to an appreciable third-order nonlinearity.
The first hypothesis is validated. With regards to

the second hypothesis, we find that for molecules with
a large second-order nonlinearity, the cascading contri-
bution can be large, but still falls far short of the fun-
damental limit due to the direction of the local electric
field. Whether the constraints imposed on real molecules
will lead to larger direct second hyperpolarizabilities or
cascading hyperpolarizabilities is yet to be seen. How-
ever, given that small molecules with second hyperpolar-
izabilities near the fundamental limit have already been
observed,[19, 20] cascading may be more promising in
the design of molecules with larger susceptibilities. We
conclude our work by discussing these scaling issues.

II. THEORY

In this section, we calculate the electric field due to
an arbitrarily-oriented dipole at the location of a sec-
ond dipole - taking into account back reaction using the
method of self-consistent fields. Then, treating a mate-
rial as a collection of molecules in a lattice, we calcu-
late the electric field at at two neighboring lattice points
due to dipole pair interactions. We focus on the classi-
cal model of cascading, which is defined by the fact that
the molecular properties such as the polarizability and
hyperpolarizabilities remain unchanged by local field in-
teractions, to which cascading contributes.
The classical model is well-behaved only for the side-

by-side geometry. As we will show in the companion
article,[25] the classical model breaks down in the end-to-
end configuration because changes in the optical proper-
ties of the molecules must be taken into account to offset
the effects of divergence. This requires the introduction
of quantum effects, which will be treated in the compan-
ion article using perturbation theory.
Since our focus is on understanding the largest possi-

ble cascading contribution, we treat only the cases that
should yield the largest response, i.e. those that approach
the fundamental limit. Our theory can be easily modi-
fied to other cases, but we do not do so here because this
would not address the question of enhancement of the
nonlinear-optical response at the extremes.

A. Two one-dimensional molecules

Consider two randomly oriented molecules that are
cylindrically symmetric and subject to a uniform applied
electric field. We define the laboratory frame’s z-axis to
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be parallel to the static electric field, where the cartesian
coordinates for the laboratory frame are x, y, and z. We
denote the body frame’s coordinates as x′

i, y′i, and z′i,
where i is a reference to molecule i, thus taking on val-
ues 1 or 2. The two dipoles are identical except for their
orientation. Moreover, we assume that each molecule’s
linear and nonlinear susceptibilities are dominated by one
of the diagonal tensor components, or equivalently, that
the molecules are approximately one dimensional. This
is found to be a good approximation for donor-accepter
molecules such as para-Nitroaniline (pNA), stilbenes, azo
dyes, etc.[21] - commonly used in nonlinear optics.
We can ignore the axial Euler angle due to the uniaxial

symmetry of the molecule, thus, only φi and θi need to
be considered. The Euler rotation matrices about the
two remaining axes are of the form,

A (φi) =





cosφi sinφi 0
− sinφi cosφi 0

0 0 1



 (1)

and

B (θi) =





1 0 0
0 cos θi sin θi
0 − sin θi cos θi



 . (2)

The full Euler transformation matrix from the body co-
ordinates to the laboratory frame is

D (φi, θi) =





cosφi − sinφi cos θi sinφi sin θi
sinφi cosφi cos θi − cosφi sin θi
0 sin θi cos θi



 .

(3)
where D (φi, θi) = AT (φi)B

T (θi). Here the superscript
T denotes the transpose.
The dipole moment of the ith molecule in the labora-

tory frame, pi, can now be written as

pi = D (φi, θi)p
′
i. (4)

The electric field in the laboratory frame at position r due
to molecule i with an induced dipole moment at position
ri is

Ei =
3 (r̂ − r̂i) [pi · (r̂ − r̂i)]− pi

|r− ri|3
, (5)

where ri is the vector from the origin to the ith molecule,
and r is the vector that points from the origin to the
electric field point.
We define the mth-order molecular susceptibility as

k(m), where α = k(1), β = k(2), and γ = k(3). Then
the induced dipole moment of the ith molecule in the
laboratory frame approximated to third order is

pi = f̂i (φi, θi)α
[

f̂i (φi, θi) · (Ea +Ej)
]

+ f̂i (φi, θi)β
[

f̂i (φi, θi) · (Ea +Ej)
]2

+ f̂i (φi, θi) γ
[

f̂i (φi, θi) · (Ea +Ej)
]3

, (6)

where Ea = Eaẑ is the applied electric field and

f̂i (φi, θi) = D (φi, θi) ẑ
′
i

= sinφi sin θix̂− cosφi sin θiŷ + cos θiẑ. (7)

Equation 6 describes the induced dipole moment of a
one-dimensional molecule in a system of two arbitrarily
oriented and positioned molecules in an applied electric
field. Because there are only two molecules, we only have
two possible combinations of i and j for i 6= j (i = 1,
j = 2 or i = 2, j = 1). Note that the molecules are

identical, and therefore k
(m)
1 = k

(m)
2 = k(m).

B. Cubic lattice

A self-consistent solution of the above problem is
highly complex. Such problems can be simplified by ap-
plying geometric constraints to the five degrees of free-
dom due to the second molecule: two rotational and three
translational degrees of freedom.
One common method used to eliminate the transla-

tional degrees of freedom is to use a lattice model,[22–24]
in which the molecules are confined to lattice points. For
our model, we choose the simple cubic lattice.
We choose the cubic lattice’s z-axis to be parallel to

the applied electric field. To the lowest degree of ap-
proximation, only the nearest neighbor interactions are
considered. There are six nearest neighbors to each lat-
tice point: four sites in a direction perpendicular to the
applied field and two sites parallel to the applied field.
We call these two types of nearest neighbor sites side-by-
side and end-to-end, respectively. The distance between
any two nearest neighbors, r, is related to the volume,
V , of the primary cell, according to r = 3

√
V . We use the

volume as a parameter to study how the nonlinear sus-
ceptibility depends on the nearest neighbor separation.
The ith molecule’s electric field along the three or-

thogonal lattice directions is calculated from Equation
5, yielding,

Ei,x =
pi
x3

(2x̂ sinφi sin θi + ŷ cosφi sin θi − ẑ cos θi) , (8)

Ei,y =
pi
y3

(−x̂ sinφi sin θi − 2ŷ cosφi sin θi − ẑ cos θi) ,

(9)

and

Ei,z =
pi
z3

(−x̂ sinφi sin θi + ŷ cosφi sin θi + 2ẑ cos θi) ,

(10)
where the six nearest neighbors to the site at (x, y, z) =
(0, 0, 0) for a cubic lattice are at (x, y, z) = (±r,±r,±r).
Since we seek to calculate the maximum molecular sus-

ceptibility due to an applied field and the induced dipole
field from an adjacent molecule, we chose to study the
configuration in which the largest tensor component of
the electron response of each molecule is aligned with
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the applied electric field. For the side-by-side case, the
electric field due to each neighbor is

E⊥ =
−p

r3
, (11)

and in the end-to-end configuration, the field is given by

E‖ =
2p

r3
, (12)

where ⊥ and ‖ denote the measurement of the induced-
dipole field in the direction of the applied field and at
either a position perpendicular or parallel to the direction
of the applied electric field.
While in this paper, we treat the case of two stationary

molecules with fixed orientations, we will use the above
theory in the companion article to treat the more general
case.

C. Approximations and Assumptions

In this work, we restrict ourselves to the cascading con-
tribution from molecules that are both aligned parallel
to the electric field. The alignment with the electric field
should yield the largest nonlinear response for each indi-
vidual molecule. Without loss of generality, we assume
that the nonlinearity is nonzero only along the long axis
of the molecule. In this case, the largest cascading con-
tribution, by either contributing or negating the direct
second hyperpolarizability, corresponds to a configura-
tion where the induced dipole moment of one molecule is
along the field line due to the other induced dipole. As
we find later in this paper, side-by-side cascading along
the electric field lines suppresses the second hyperpolar-
izability and thus gives the lower bound of the cascading
contribution.
Under the condition that each dipole axis is aligned

along the electric field of the other dipole, there are two
positions in the gas-lattice model that yield the largest
response to the applied electric field: the side-by-side and
end-to-end geometries. These cases will give the range of
the cascading contribution.[25] Here we focus on the side-
by-side case.
We argue that the best cascading response is due to

two identical dipoles. Moreover, we utilize the dipole
approximation, where higher order multipole moments
are ignored. Consider that a fixed amount of charge is
distributed between the two dipoles so that q1 + q2 = 1.
Since the cascading effect is proportional to the product
of the dipole moments, this yields p1p2 = p (1− p), which
is optimized when the two dipoles are of equal magnitude.
When the wavelength of the light is long compared

with the size of each molecule, the electric field will be ap-
proximately uniform. Since the dipole field of a molecule
is small, just a few molecular lengths away, then for typ-
ical molecules whose sizes are on the order of 1-10nm,
the optical field will appear uniform over all molecular
separations that will yield cascading. Figures 2 and 3

E

r

FIG. 2. (Color online) Two molecules are aligned in a static

electric field, ~E, and are separated by a distance r.

summarize the side-by-side configuration that we use in
our calculations, which we argue encompasses the full
domain of cascading.

It is important to stress that our focus is on micro-
scopic cascading. As such, the cascading process is con-
fined to the near field, with little cascading resulting in
the far field.[26] Thus, the cascading fields can be calcu-
lated in the near zone limit where ω → 0.

D. Self-consistent field calculation of interacting

dipoles

We apply a self-consistent field formulation to de-
termine the induced dipole moment of two interacting
dipoles. From Figure 2, it is clear that the polarization
of one molecule is due to the applied electric field and
the dipole field from the other molecule. The dipole field
at the second molecule is given by Equation 11. In the
zero-frequency limit, the polarizations of each molecule,
to third order, are:

p1 = α
(

Ea −
p2
r3

)

+ β
(

Ea −
p2
r3

)2

+ γ
(

Ea −
p2
r3

)3

, (13)

p2 = α
(

Ea −
p1
r3

)

+ β
(

Ea −
p1
r3

)2

+ γ
(

Ea −
p1
r3

)3

. (14)

Equations 13 and 14 can be used to solve for p1 and p2 in
terms of r and Ea. Note that this self consistent approach
takes into account all possible interactions between the
fields.

Defining the dipole moment of the two-particle system
as p = p1 + p2, and recalling that the one-dimensional
nth order molecular susceptibilities is defined as

k(n) =
1

n!

dnp

dEn
a

∣

∣

∣

∣

Ea=0

, (15)
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FIG. 3. (Color online) Two molecules in a static electric field,
~E, are separated by a distance r and are in the counter-aligned
geometry.

where k(1) = α, k(2) = β, and k(3) = γ, we get

α+
eff = 2r3

α

r3 + α
, (16)

β+
eff = 2r9

β

(r3 + α)
3 , (17)

γ+
eff = 2r12

(

r3 + α
)

γ − 2β2

(r3 + α)
5

= 2γ
r12

(r3 + α)
4 − 4β2 r12

(r3 + α)
5 , (18)

where the superscript “+” denotes the case where both
molecules are aligned with the electric field. It can be
shown that k−(n) = k+(n), where the superscript “-”
denotes the case in which the molecules are both anti-
aligned with the electric field. We emphasize that this
self-consistent approach automatically takes into account
the local field at each molecular site (the factor multiplied
by 2γ in Equation 18) as well as cascading, the second
term in Equation 18. The resultant cascading term is a
factor of 4 larger than that given by Baev et al.[5]
When the molecules are antiparallel to each other, as

shown in Figure 3, the polarization of each molecule is

p2 = α
(

Ea −
p1
r3

)

+ β
(

Ea −
p1
r3

)2

+ γ
(

Ea −
p1
r3

)3

, (19)

−p1 = α
(

Ea −
p2
r3

)

+ β
(

Ea −
p2
r3

)2

+ γ
(

Ea −
p2
r3

)3

. (20)

Substituting Equation 19 into Equation 20 yields

p = 0. (21)

Thus, α±
eff = 0, β±

eff = 0, and γ±
eff = 0. Here, the super-

script “±” denotes the antiparallel configuration of the
two molecules. Since we are interested in studying the
largest possible cascading response in the side-by-side ge-
ometry, we will only treat the parallel case.

The first term of Equation 18 describes the dressed
second hyperpolarizability and the second term describes
the cascading contribution. All that remains is the de-
termination of α, β and γ, from which the cascading
contribution can be calculated.

E. The three-level ansatz

Our approach is to calculate the zero-frequency nonlin-
earities using the sum-over states expressions, then ap-
ply the sum rules to reduce the number of parameters
that are required to model the response. The results
can then be compared with the fundamental limits of
the off-resonant nonlinear-optical response. Since a rig-
orous theory of the on-resonance fundamental limits are
also well-known,[27] we could apply the same approach
to resonant cascading. However, the problem is too com-
plex to treat here. We argue that since the off-resonant
response is usually of interest in many applications, we
limit our calculations to the zero-frequency limit.

The off-resonant polarizability, hyperpolarizability,
and second hyperpolarizability are given by[28]

α = 2e2
∞
∑

n

′ x0nxn0

En0
, (22)

β = 3e3
∞
∑

n,m

′ x0nx̄nmxm0

En0Em0
, (23)

γ = 4e4
∞
∑

n,m,l

′ x0nx̄nmx̄mlxl0

En0Em0El0

− 4e4
∞
∑

n,m

′ x0nxn0x0mxm0

E2
n0Em0

, (24)

respectively, which as we describe later, can be written
in dipole-free form.[29–31] Here, Ei0 = Ei − E0 is the
energy difference between the ith excited state and the
ground state, xij is the transition moment between state
i and state j, and e is the electron charge. The primed
sums in Equations 22-24 exclude the ground state from
the summation.

The three-level ansatz states that when the nonlinear-
optical response of a quantum system is at the funda-
mental limit, only three states contribute.[30] Since we
are interested in studying the limit when the direct and
cascading contributions are large, we represent all of the
susceptibilities using three states, i.e. the ground state
and first two excited states. In our calculations, we as-
sume that the three-level model is a good approximation
for all cases.

For a three-state model, we can explicitly write the
polarizability from Equation 22 as

α3L = 2e2
( |x10|2

E10
+

|x20|2
E20

)

. (25)
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The Thomas-Kuhn sum rules relate |x10|2 and |x20|2, and
thus can be used to simplify Equation 25. For a three-
state system, the ground state sum rule takes the form

E10|x10|2 + E20|x20|2 =
N~

2

2m
, (26)

where ~ is Planck’s constant, m is the mass of the elec-
tron, and N is the number of relevant electrons.[32] It
is straightforward to show from the sum rules that the
maximum value of x10 is given by [33]

|xmax
10 |2 =

N~
2

2mE10
. (27)

It is useful to define the dimensionless parameters

E =
E10

E20
, (28)

X =
|x10|
|xmax

10 | . (29)

Note that 0 ≤ E ≤ 1 and 0 ≤ X ≤ 1.
Using Equations 26, 27 and 29, Equation 26 can be

expressed as

|x20|2 = E|xmax
10 |2

(

1−X2
)

. (30)

Substituting Equation 30 into Equation 25 gives

α3L = 2e2
|xmax

10 |2
E10

[

X2 + E2
(

1−X2
)]

, (31)

and substituting Equation 27 into Equation 31 gives

α3L =
e2~2N

mE2
10

[

X2 + E2
(

1−X2
)]

. (32)

The three-state polarizability, α3L, is maximum when
the term in the brackets from Equation 32 equals unity.
Thus, the fundamental limit of the polarizability, αmax

is given by,

αmax =
e2~2N

mE2
10

. (33)

Note that Equation 33 is general. When more than
two excited states are present, the oscillator strength is
spread over more states, and the polarizability is smaller.
Thus, the polarizability can never exceed the fundamen-
tal limit. This is the motivation for the three-level ansatz,
which is also applied to higher-order nonlinearities.
It is convenient to define the intrinsic polarizability as

αint (X,E) =
α (X,E)

αmax
=
[

X2 + E2
(

1−X2
)]

, (34)

which is bound by 0 ≤ αint (X,E) ≤ 1. Thus, αint (X,E)
is a measure of the polarization as a fraction of the fun-
damental limit. More importantly, one can show that the
intrinsic polarizability is a scale invariant quantity that
allows one to compare molecules of different sizes.[33]

(a)

(b)

(c)

int

β
int

γ int

α

FIG. 4. (Color online) (a) αint, (b) βint, and (c) γint as func-
tions of E and X.

As such, the results of our calculations are applicable
to molecules of all sizes.

The top graph in Figure 4 shows the intrinsic polar-
izability, αint, as a function of X and E. The intrinsic
polarizability is a maximum when X = 1.

To calculate the higher-order susceptibilities, the sum
rules are used to determine the other moments in terms
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of E and X :

|x12| = |xmax
10 |

√

E

1− E

√

1 +X2, (35)

|x10|∆x10 = |xmax
10 |2 E − 2√

1− E

√

1−X4, (36)

|x20|∆x20 = |xmax
10 |2 (1− 2E)

√

E

1− E
X
√

1 +X2,

(37)

where ∆x10 = x11 − x00 and ∆x20 = x22 − x00. The
hyperpolarizability can be expressed in terms of E and X
by substituting Equations 28-30 and 35-37 into Equation
23,[30] thereby giving

β3L = 6e3
|xmax

10 |3
E2

10

(1− E)
3/2

×
(

E2 +
3

2
E + 1

)

X
√

1−X4. (38)

Equation 38 can be rewritten using Equation 27 to give
the intrinsic hyperpolarizability

βint (X,E) =
33/4√

2
(1− E)

3/2

×
(

1 +
3

2
E + E2

)

X
√

1−X4. (39)

Figure 4b shows the intrinsic hyperpolarizability, βint, as
a function of X and E. When E = 0 and X = −4

√
3,

βint = 1.
The intrinsic second hyperpolarizability for a three

level model can be written by substituting Equations 27-
30 and Equations 35-37 into Equation 24 and summing
over the first two excited states. This leads to an intrinsic
second hyperpolarizability,[14, 31]

γint (X,E) =
1

4

[

4− 2(E2 − 1)E3X2

− 5 (E − 1)
2
(E + 1)

(

E2 + E + 1
)

X4

−
(

E3 + E + 3
)

E2
]

. (40)

Figure 4c shows the intrinsic second hyperpolarizability,
γint, as a function of X and E. Note that γint = 1 when
X = 0 and E = 0 and γint = −1/4 when E = 1.

III. RESULTS AND DISCUSSION

A. Effective Susceptibilities in the weak interaction

limit

Equations 34, 39, and 40 relate the intrinsic molec-
ular susceptibilities to X and E. Using these results,
we can determine the first three effective molecular sus-
ceptibilities, which are of the form k

(n)
eff (r,X,E). With

α (X,E) = αmaxαint (X,E), β (X,E) = βmaxβint (X,E),

and γ (X,E) = γmaxγint (X,E) substituted into Equa-
tions 16 - 18, we obtain an equation for the first three
effective molecular susceptibilities as a function of r, X ,
and E, where

αeff (X,E, r) =
2r3α (X,E)

r3 + α (X,E)
, (41)

βeff (X,E, r) =
2r9β (X,E)

(r3 + α (X,E))
3 , (42)

γeff (X,E, r) =
2r12γ (X,E)

(r3 + α (X,E))4

− 4r12 [β (X,E)]
2

(r3 + α (X,E))
5 . (43)

It is important to point out that Equations 41-43 show
that the polarizability and hyperpolarizabilities can not
be independently varied, but are parameterized by E and
X . As we show below, it is not permissible to simulta-
neously make the direct second hyperpolarizability large
when the cascading contributions are also large.
We first treat the case where the molecules do not in-

teract so that N and E10 do not change as a function
of r. In this case, the intermediate cascading photon is
the only link between the two molecules. We call this
the non-interacting case because the molecular states re-
main unperturbed. Then, the fundamental limit of the
(hyper)polarizabilities is simply the sum of the individ-
ual values of each molecule. As we describe later, this
approximation overestimates the cascading contribution
because it underestimates the fundamental limits.
In the non-interacting limit, the intrinsic effective

molecular susceptibilities as a function of X and E are

αint
eff (X,E, r) =

αeff (X,E, r)

2αmax
, (44)

βint
eff (X,E, r) =

βeff (X,E, r)

2βmax
, (45)

γint
eff (X,E, r) =

γeff (X,E, r)

2γmax
, (46)

where the factor of two in the divisor results from the
additivity of susceptibilities.
In gaussian units, the polarizability has units of vol-

ume. In rough terms, the fundamental limit of the po-
larizability αmax defines the largest possible polarization
volume, which represents a length scale 3

√
αmax. Us-

ing Equation 33, we can express the separation of the
molecules in terms of this natural length scale,

r′ = r/ 3
√
αmax =

(

mE2
10

e2~2N

)
1

3

r. (47)

B. Effective second hyperpolarizability and

cascading

The intrinsic effective molecular susceptibilities from
cascading – αint

eff , β
int
eff , and γint

eff – as a function of X and E
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FIG. 5. (Color online) The effective molecular susceptibili-
ties αeff (X,E, r), βeff (X,E, r), and γeff (X,E, r), when the
distance of separation is r′ = 1 and r′ = 10.

at r′ = 1 and r′ = 10 are shown in Figure 5. When r′ = 1,
the molecules are close together and cascading is large
while when r′ = 10, the molecules are much further apart
than their sizes, so cascading should be negligible. A
comparison between Figure 4 and the righthand portion
of Figure 5, for which r′ = 10, shows that for r′ → ∞,
the cascading calculation reduces to the same result as
one gets for two independent molecules.
A comparison of the left and righthand side of Figure

5, which represents large and small contributions to cas-
cading, leads to several conclusions. First, the effective
second-order hyperpolarizability, γeff , never exceeds the
fundamental limit. Thus, cascading does not provide a
loophole that allows the largest possible value of γeff to
be larger than the fundamental limit of two individual
molecules.
The difference γeff (E,X) − γdirect (E,X) ≈

γeff (X,E, r′ = 1) − γeff (X,E, r′ = 10) is an estimate
of the cascading contribution. When the direct second
hyperpolarizability peaks at the fundamental limit (at
E = 0 and X = 0), the cascading contribution vanishes,
as we would expect if the fundamental limit is to be
obeyed. However, cascading in the current geometric
configuration interferes with the direct contribution near
the peak, leading to a smaller second hyperpolarizability
in the vicinity of the peak.
The direct second hyperpolarizability’s negative fun-

damental limit is given by γint = −0.25. In the regions

where γint ≈ −0.25, the cascading contribution cancels
the direct term, leading to a vanishing second hyperpo-
larizability. Thus, side-by-side cascading appears to be a
nuiscence rather than a design strategy for making large-
γ systems.
Note that the true separation distance, r, is related to

the dimensionless separation r′(E10, N), which depends
on the number of electrons and transition energy to the
first excited state. Molecules with a greater number of
electrons have a larger effective size, and therefore give a
larger cascading contribution for a fixed separation than
molecules with fewer electrons.

C. Molecular design using cascading

The fact that there exist examples where the cascad-
ing contribution is larger that the direct contribution
is not at odds with our results. The salient point is
that molecules that have small second hyperpolarizabil-
ities may have a relatively large cascading contribution.
However, given a fixed pallet of building blocks, i.e. elec-
trons and nuclei, an optimized arrangement of nuclei[34]
will always yield a larger second hyperpolarizability than
what one can attain with cascading between two separate
molecules with the same total number of electrons. Thus
in principle, it is always better to design a large molecule
than splitting it up into two smaller ones with the same
number of electrons and using cascading.
The crucial issue, however, is that nature may not

allow nuclei to be placed into the ideal geometry. In-
deed, that may be one of the reasons for the large
gap between the best molecules and the fundamental
limit.[30, 33, 35, 36] If that is the case, cascading may of-
fer an additional degree of design flexibility as described
by Baev and coworkers.[5] To investigate the promise of
such an approach, we consider γint

eff (X,E) when cascad-
ing dominates, which is the case when the direct second
hyperpolarizability vanishes, or γint (X,E) = 0.
Figure 6 shows a plot of the domain (E,X) where

γint (X,E) = 0. The blue solid curve is represented by
the function

X (E) =
1√
5

(

E3 − E5 +
√

f (E)

1− E2 − E3 + E5

)
1

2

, (48)

where

f (E) = 20− 35E2 − 25E3 + 15E4 + 35E5

+ 6E6 − 10E7 − 2E8 − 4E10 (49)

for 0 ≤ X ≤ 1. The red dotted curve was found numeri-
cally because E (X) is a high degree polynomial, and the
root could not solved analytically.
Along the curve X(E) where the direct second hyper-

polarizability vanishes, γint
eff can be expressed as a func-

tion of either r′ and X , or r′ and E. Figure 7a shows γint
eff

along the blue solid curve X (E) in Figure 6 as a function
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FIG. 6. (Color online) The function X(E) when γ = 0 for
0 ≤ X ≤ 1 and 0 ≤ E ≤ 1. The insets show an expanded
view.
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FIG. 7. (Color online) (a) A surface plot of γint
eff (r′, E) along

the branch corresponding to the solid blue curve in Figure 6;
and, (b) γint

eff (r′, X), along the dashed red curve.

of r′. Figure 7b shows the same plot but along the red
dashed curve E (X) in Figure 6
The cascading contribution shown in Figure 7a due to

the blue solid branch peaks at energy ratio E = 0 and
normalized separation r′ ≈ 2, and contributes just over
-0.035 to the intrinsic second hyperpolarizability - a fac-
tor of almost 30 below the fundamental limit for a direct
third-order susceptibility. The red branch, shown in Fig-
ure 7b, contributes less than 3 × 10−4 to the intrinsic
second hyperpolarizability. There are other regions in
the (E,X, r′) domain where the cascading contribution
is larger; but, it is of opposite sign to the direct contri-
bution, and makes the effective third-order susceptibility
smaller than if cascading were absent.
To summarize, we find three distinct regions:

1. The direct contribution is large and the cascading
contribution is negligible. This leads to the largest
second hyperpolarizability.

2. The direct contribution vanishes and only cascad-
ing contributes. This leads to intrinsic second hy-
perpolarizabilities that are more than a factor of 30
smaller than in case 1.

3. The cascading contribution is large. In this regime,
cascading cancels the direct term, leading to small
nonlinear susceptibilities.

Thus, the largest possible nonlinear response is in the
limit when there is no cascading contribution for the side-
by-side configuration. We emphasize that this does not
imply that the cascading contribution can not be larger
than the direct contribution. However, in these cases
the second hyperpolarizability will fall far short of the
fundamental limit.

D. Strongly interacting molecules

In the previous section, we considered only weak inter-
actions, where the wave functions of each molecule were
not affected by their proximity to the other molecule.
In the limit of weak interaction, the fundamental limit of
the susceptibilities of a two-molecule system is simply the
sum over the fundamental limits of each molecule. How-
ever, in the case of strong interactions, the two molecules
can be viewed as one, where cascading is one of many
electromagnetic interactions between what we would con-
sider the two separate molecules. Clearly, if the cascading
interactions are as strong as the interaction between the
electrons in each molecule, then each molecule loses its
separate identity.
The fundamental limits of the off-resonant susceptibil-

ities can be written as,

αmax
0 =

(

e~√
m

)2
N

E2
10

, (50)
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βmax
0 =

4
√
3

(

e~√
m

)3
[

N3/2

E
7/2
10

]

, (51)

and

−
(

e~√
m

)4
N2

E5
10

≤ γ0 ≤ 4

(

e~√
m

)4
N2

E5
10

≡ γmax
0 . (52)

Equations 50 through 52 can be used to determine
the scaling properties of various quantities. For exam-
ple, the fundamental limit of the polarizability is equiv-
alent to the upper limit of the cube of the the radius,
or (r0/2)

3 ∼ αmax
0 . This defines a fundamental limit of

the polarization length of x0 ∼ 3

√

αmax
0 . For a hydrogen

atom, E10 = 10.2 eV and N=1 yielding x0 = 1Å, the
Bohr diameter.
The concept of the polarization breaks down when

γE2 ∼ α. Since γ and α are maximal under the same
conditions in the three-level ansatz, the expression for
the polarization becomes meaningless when,

E0 ∼ 1

2

(√
m

e~

)

E
3/2
10

N1/2
. (53)

Using the hydrogen atom for illustration, Equation 62
gives a characteristic field limit that is smaller (but
within an order of magnitude) than the electric field ex-
perienced by the electron.[37]
First, we consider the fundamental limit of the di-

rect second hyperpolarizability for two molecules. If each
atom has N electrons, and the fundamental limit for one
molecule is γmax

0 , then the fundamental limit for two non-
interacting electrons is 2γmax

0 . If the two molecules are
combined so that the electrons fully mix, the fundamen-
tal limit is 4γmax

0 provided that the transition energy E10

remains the same. When N molecules are combined, the
direct second hyperpolarizability scales as N while com-
bining the molecules into one super molecule leads to N2

scaling. Thus, it is best to make a large molecule rather
than many small ones. Similarly, it may be better to
allow these molecules to interact with each other.
As an illustration, we calculate the scaling behavior

of the fundamental limits of a system with energy-level
spacing like a polyene molecule and compare it with the
model of a polyene of Rustagi and Ducuing.[38] Hans
Kuhn showed that light absorption in polyenes could be
modeled by an infinite box filled with N electrons that
obey the pauli exclusion principle, where N/2 is the num-
ber of double bonds in the conjugated chain.[39, 40]
We consider two cases. If n is an even state, these

molecules are called polyenes. The ground state consists
of two electrons in each energy level up to and including
the state n = N/2. The first excited state will correspond
to promoting an electron from state n = N/2, the highest
occupied energy level, to the state n = N/2+1, the lowest
unoccupied level. The transition energy is then given by,

E10 =
~
2π2

2mL2

(

[

N

2
+ 1

]2

−
[

N

2

]2
)

=
~
2π2

2mL2
(N + 1) ,

(54)

where L is the length of the molecule. The second excited
state corresponds to promoting the remaining electron
from the first excited state in level n = N/2 to level
n = N/2 + 1, and yields E20 = 2E10

For an odd number of electrons, such molecules are
called cyanines. All states through n = (N − 1)/2 are
each occupied with two electrons and the state with n =
(N−1)/2+1 is singly occupied. Thus, the lowest excited
state energy corresponds to promoting an electron from
the state with n = (N − 1)/2 to the state with n =
(N − 1)/2 + 1. This leads to

E10 =
~
2π2

2mL2
N. (55)

The second excited state is formed by promoting an elec-
tron from the system’s ground state from state n =
(N − 1)/2 to the state with n = (N − 1)/2 + 2. In

this case, E20 = 2(N+1)
N E10. Thus for small N , E20/E10

is large. Note that in the limit of large N , Equations 54
and 55 converge, as do the values of the ratio E20/E10.
Thus, we will us Equation 55 in the rest of the analysis
below.
Defining the average linear electron density λ = N/L

and the Bohr radius a0 = ~
2/me2, the energy of Equation

55 can be expressed as,

E10 =
π2e2a0λ

2L
; (56)

and, the susceptibilities in Equations 50 through 52 in
the large N limit for a polyene become,

αmax
poly =

4

π2a0λ
L3, (57)

βmax
poly =

27/2 4
√
3

π7λ2ea20
L5, (58)

and

γmax
poly =

128

π10e2a30λ
3
L7. (59)

The model of Rustagi and Ducuing gives,[38]

αRD
poly =

8

3π2a0λ
L3, (60)

γRD
poly =

256

45π6e2a30λ
5
L5. (61)

One may argue that the cascaded second hyperpolariz-
ability might scale more favorably than the direct one. It
is simple to show that both scale in the same way. Cas-
cading in the side-by-side configuration results from the
second term in Equation 18. Since the molecules cannot
be closer together than approximately the characteristic
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size, which at the fundamental limit is given by 3

√

αmax
0 ,

the cascading term scales as

γmax
cascading =

(βmax
0 )

2

α
=

√
3

(

e~√
m

)4
N2

E5
10

∼ γmax
direct, (62)

where we have used the fundamental limits in Equations
50 through 52 to determine how the susceptibilities scale
when the hyperpolarizability is optimized, a criteria for
optimizing β2. Hence, the cascading term scales in the
same way as the direct second hyperpolarizability.

E. Linear local electric fields

The self-consistent field calculation used to derive
Equations 16-18 are, in effect, calculating the local elec-
tric field, f0. Cascading is the lowest-order local field
correction to the hyperpolarizability. It is important to
stress that this calculation also treats the effective linear
local electric field (i.e. originating in the polarizability)
due to the neighboring molecule.

From Equations 16 through 18, it is clear that the
effective linear local electric field, f0 = Ea + Eloc =
Ea/

(

1 + α/r3
)

where Ea is the applied field, scales as

f0

Ea
=

1

1 + α/r3
, (63)

and the net polarization field scales as

Eloc

Ea
=

−1

r3/α+ 1
. (64)

F. Analysis of Approximations

It is worthwhile to summarize the various approxima-
tions used and whether or not they restrict the applica-
bility of the results to real molecules.

1. The dipole approximation and the point dipole

Most of nonlinear optics is based on the dipole ap-
proximation, and is embodied in the expansion of the
polarization in a power series of the electric field. This
approximation holds when the dipole coupling energy is
larger than the energy of higher-order moments. The
quadrupole moment couples to the electric field gradient,
the octupole moment to the a dyad of field gradients, etc.
As long as the electric field does not vary much on the
scale of the size of a molecule, the dipole approximation is
appropriate - a condition that holds well when the wave-
length of the light is long compared with the size of the
molecule.

Near interfaces, the electric field can change abruptly,
rendering the dipole approximation invalid. An impor-
tant question is whether or not the variation of the elec-
tric field is large enough in the vicinity of a molecule to
require higher-order moments to be taken into account.

For two isolated and stationary molecules, the field
gradients near each one can be large. However, in real
systems with many molecules, large local field fluctua-
tions cancel out and the local fields due to the surround-
ing material can be approximated as smooth. If this were
not the case, the Lorentz Lorenz local field models and
the Onsager models would not provide reasonable de-
scriptions of a molecule in a medium. Thus, using the
dipole approximation to describe pair interactions, then
summing over all possible pairs, removes, on average, the
higher-order contributions. Indeed, this process of aver-
aging can be shown to be equivalent to the physics un-
derlying cavity field models. Thus, the pair interaction
of two dipoles is the appropriate fundamental quantity
for any cascading calculation.

One can rightly argue that higher-order terms, as are
required for cascading, do not lead to a linear smoothing
effect because the average over an electric field to a power
n is not equal to the average over the nth power of the
electric field. As such, it is important that fluctuations in
the electric field not be too large. This will be the case if
the separation between molecules is larger than the size
of charge density fluctuations within a molecule. As we
show below, this approximation may hold even when the
molecules touch.

The point dipole approximation for an ideal dipole
holds when the separation between dipoles is much larger
than separation between the two point charges in each
dipole. In a molecule, this roughly translates into the
separation between molecules exceeding their size. The
dipole moment of a molecule is usually much smaller than
the product of its size and the number of electrons. Thus,
one can picture a molecule as being composed of a large
number of small dipoles whose moments are determined
from fluctuations of the wave functions over short dis-
tances. Thus, the calculations may hold even when the
molecules are close to touching.

When the molecules get too close together, the 1/r3

dipole form of the field has higher-order correction terms
in powers of a/r. where a is the size of the dipole mo-
ment. Interestingly, the next higher-order correction fac-
tor is negative, and thus decreases the strength of interac-
tions, and therefore decreases the strength of cascading.
Since we are interested in the upper limits enhancement
of the second hyperpolarizability upon using cascading,
neglect of the lowest-order corrections overestimates the
cascading contribution.

Once the separation between centers of the molecules
is less than the electromagnetic size of the molecule, it
no longer makes sense to consider the system as two dis-
tinct molecules. In this limit, the intermolecular coulomb
forces become comparable to the intramolecular coulomb
forces, so the individual character of each molecule is lost,
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and the two together act as a single quantum system;
that is, a single molecule. For these separations, the cas-
cading calculations break down because the meaning of
cascading breaks down.

2. One-dimensional approximation

For simplicity, all of our models assume that the largest
tensor component dominates all others; or, that only the
largest tensor component is used in the process. The 1D
approximation is extensively used, especially in the study
of donor-acceptor molecules, donor-donor molecules and
acceptor-acceptor molecules.[21] While this approxima-
tion has been highly successful in the study of a large
number of molecules, it would be useful to check how
this may impact the cascading calculations.
Table I illustrates the cascading third-order polariza-

tion for different molecular arrangements. Clearly, if the
applied electric field at molecule a and the field from
p(2) at molecule a due to molecule b are aligned along
the largest tensor element of β of molecule a; and if the
same holds for molecule b - i.e. the arrangements of the
molecules are reciprocal, than the cascading effect will
be optimized. The simplest case is shown in the first
column of Table I, where the molecules are in the end-
to-end arrangement with the applied field and molecular
fields in the same direction. Thus, the cascading term
will be proportional to β2

xxx. This case will be described
in detail in the companion article.[25]
As we have shown in this paper, the side-by-side case

with one-dimensional molecules yields a vanishing cas-
cading term when they are counteraligned. However,
when the molecules are two-dimensional, so that they
have a nonvanishing component of βyxx, then two applied
fields perpendicular to the long axis of each molecule will
yield a second-order dipole moment along the long axes
that leads to a dipole field that acts along the dipole
axis of each of the other molecules, as shown in Table I.
Thus, the cascading term will be proportional to β2

yxx.
Inasmuch as this tensor component is comparable to the
diagonal one, the cascading contribution will be half as
large due to the geometric factor in the dipole field.
The third column in Table I shows the general case

TABLE I. The cascading third-order polarization, p
(3)
x , for

the arrangement shown in each diagrams.

End-to-End Side-by-Side General

β2
xxxE

2Ea β2
yxxE

2Ea

∑
i
βixxβixxE

2Ei

E

a

b EaE

EbE

E

a

b

EaE

EbE
E

a

b

EaE

EbE

where the applied fields and induced dipole fields are
in arbitrary directions. This configuration will yield the
largest cascading term if the applied electric field yields a
second-order induced dipole moment whose electric field
at the second dipole moment, when properly oriented,
reinforces the nonlinear interaction between the applied
electric field and the dipole field. For example, when
only the three tensor components βixx for i = 1, 2, 3
are nonzero, this cascading term will be of the form
∑

i βixxβixxE
2Ei, where Ei is the dipole field along di-

rection i. Since this sum can be no larger than the dipole
field times the largest tensor component of β, this case
cannot yield a value that is larger than the case for the
one-dimensional molecule.

In using the one-dimensional approximation and align-
ing the molecules in a way that optimizes the cascading
term, one would expect to get the largest possible cas-
cading contribution. Since our interest is in understand-
ing the magnitude of the largest attainable response, the
one-dimensional approximation does not limit the gen-
erality of the result. However, taking into account the
relevant tensor components is clearly critical in modeling
a particular system.

3. Three-level Ansatz

The three-level ansatz (TLA) states that when a quan-
tum system has a nonlinear response that is at the fun-
damental limit, it is described by a three-level model.[30,
36, 41] While there is no analytical proof, the TLA has
been shown to hold in all cases ever studied.[30, 42, 43]
However, for systems with a nonlinear response substan-
tially smaller than the limit, more states can contribute.
Thus, our results can be highly uncertain in these cases.
However, when the nonlinear response is large, the regime
of interest, the calculations should be more accurate.

4. Summary of the Approximations

The dipole, point particle, and 1D approximations
serve to understand the largest possible response that
is attainable with cascading. While an equivalently large
response is possible in real systems where the 1D approx-
imation is relaxed, the point particle and dipole approxi-
mations should approximately hold for most real systems.
However, if the dipole approximation were strongly vio-
lated, then the theory presented here would fail, but so
would a description of the nonlinear optical properties of
a material in terms of linear and higher order hyperpo-
larizabilities.

Though we treat only special arrangements of the
dipoles, these are the ones that are expected to give the
largest results. The companion article discusses more re-
alistic systems in which the orientations are averaged as
they would be in a liquid or dye-doped polymer.
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IV. SUMMARY

We have applied a self-consistent field calculation to
determine the induced dipole moments of two molecules
in close proximity in the presence of an applied electric
field. From these, we use a semiclassical approach to
determine the nonlinear response of the dipole pair us-
ing the quantum-derived sum-over-states expressions for
the direct polarizability and hyperpolarizability to de-
termine the cascading contribution to the second hyper-
polarizability. The semi-classical approximation assumes
that the energies of the system are not affected by the
interaction, leading to an overestimate of the cascading
contribution.
The sum rules and the three-level ansatz are applied

to each molecule, thus decreasing the number of param-
eters that characterize the system to two parameters: E,
the energy ratio; and, X , the normalized transition mo-
ment. In this way, the cascading and direct terms can be
compared over the full domain spanned by E and X .
In order to remove scaling effects, the intrinsic

nonlinear-optical response is used for comparison. The
intrinsic values are calculated by normalizing the results
to the fundamental limit. Then, the intrinsic second hy-
perpolarizability of the molecule pair is calculated as a
function of the normalized transition moment, X , the en-
ergy ratio, E, and the distance between molecules, r, for
the aligned and counter-aligned cases. Counter-aligned
molecules lead to a null result.
The largest effective intrinsic second hyperpolarizabil-

ity - the sum of the direct second hyperpolarizability
and cascading contribution - are independent of r with
γint
eff = 1. However, for each r, this peak is found at

a unique point in the domain spanned by (X,E). Thus,
when the direct value of γ is optimized the cascading con-
tribution vanishes, while a large cascading contribution
demands that the direct contribution be sub-optimal.
Thus, the cascading process does not provide a back door
for breaking the fundamental limits. Interestingly, when
γ of the direct contribution vanishes, the cascading term
still contributes, and γint

eff ≈ 0.035.
While cascading does not provide a means for mak-

ing the nonlinear-optical response larger than the funda-
mental limit for a single molecule with the same num-
ber of electrons as the molecule pair, cascading intro-
duces an experimentally controllable parameter, r, the
distance between molecules. Thus, cascading may pro-
vide an additional degree of freedom for using molecules
with a sub-optimal direct second hyperpolarizability to
make a material with a larger effective second hyperpo-
larizability. Indeed, the cascading measurements found
in the literature are most likely operating in this domain.
Our results suggest that combining two molecules into

a single molecule of optimal structure should yield the
largest response. Connecting more molecules together
into a super molecule is an even better approach. We
have shown that the fundamental limit of the second
hyperpolarizability scales as the seventh power of the

length, compared with the model of Rustagi and Ducu-
ing, which shows scaling in proportion to the fifth power
- consistent with conjugated carbon chains. Thus, it
should be possible to make materials with much larger
nonlinear response. However, the paradigm for doing so
needs to be identified, and as we have seen in the present
work, the sum rules and fundamental limits provide a
useful guide for assessing the potential for a given ap-
proach.
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