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Using first-principles calculations, we identify “tune-out” optical wavelengths, Azero, for which the
ground-state frequency-dependent polarizabilities of alkali-metal atoms vanish. Our approach uses
high-precision, relativistic all-order methods in which all single, double, and partial triple excitations
of the Dirac-Fock wave functions are included to all orders of perturbation theory. We discuss the
use of tune-out wavelengths for sympathetic cooling in two-species mixtures of alkalis with group-
IT and other elements of interest. Special cases in which these wavelengths coincide with strong
resonance transitions in a target system are identified.
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I. INTRODUCTION

The realization of mixtures of trapped ultracold
atomic gases [1-5] has opened new paths towards the for-
mation of ultracold diatomic molecules [6-10], quantum-
state control of chemical reactions [11], prospects for
quantum computing with polar molecules [12-14], tests
of fundamental symmetries [15-17] and studies of fun-
damental aspects of correlated many-body systems [18],
and dilute quantum degenerate systems [19-23]. Co-
trapped diamagnetic-paramagnetic mixtures have also
made possible experimental realization of interspecies
Feshbach resonances [24-26], two-species Bose-Einstein
condensates and mixed Bose-Fermi and Fermi-Fermi de-
generate gases [18, 27-29].

In an optical lattice, atoms can be trapped in the in-
tensity maxima or minima of the light field by the optical
dipole force [30]. This force arises from the dispersive in-
teraction of the induced atomic dipole moment with the
intensity gradient of the light field, and is proportional
to the ac polarizability of the atom. When its ac polar-
izability vanishes, as can happen at certain wavelengths,
an atom experiences no dipole force and thus is unaf-
fected by the presence of an optical lattice. Our present
work provides accurate predictions of the \,er, which lead
to zero Stark shifts for alkali-metal atoms. These wave-
lengths have been introduced as “tune-out wavelengths”
by LeBlanc and Thywissen [31].

We suggest some possible uses for such wavelengths,
all of which take advantage of the fact (demonstrated
below), that tune-out wavelengths are highly dependent
upon atomic species and state. For a given atomic species
and state A, let La designate an optical lattice or trap
made with light at one of the tune-out wavelengths of
A. We start with a model configuration consisting of the
gas A embedded in Ly and confined by another trap, T.

Some process is performed on the gas, after which T is
turned off. Members of A will depart and Ly may confine
whatever is left. For example, one might photoassociate
some A atoms into dimers during the initial period, and
thereby be left with a nearly pure population of dimers
trapped in La at the end. LeBlanc and Thywissen [31]
have pointed out the advantage of tune-out wavelengths
for traps containing two species. If another species, B,
is added to the model configuration, it will ordinarily
be affected by La, so B can be moved by shifting Ly,
while A remains unaffected. Schemes of this type have
been used for entropy transfer and controlled collisions
between 8"Rb and 'K [32-34]. For bichromatic opti-
cal lattice schemes, such as those discussed by Brickman
Soderberg, et al. [35, 36], it could be useful to incorpo-
rate Ly into the model configuration, so as to be able to
move A and B completely independently. In another ap-
plication, a Sr lattice at a 3Py tune-out wavelength was
suggested for realization of quantum information process-
ing [37].

In the next section, we briefly discuss the calculation
of frequency-dependent polarizabilities of alkali-metal
atoms. In section III, we present the tune-out wave-
lengths for the alkalis from Li to Cs and discuss some
of their applications.

II. FREQUENCY-DEPENDENT
POLARIZABILITIES

The background to our approach to calculation of
atomic polarizabilities is treated in a recent review ar-
ticle [38]. Here we summarize points salient to the
present work. The frequency-dependent scalar polariz-
ability, aig(w), of an alkali-metal atom in its ground state
v may be separated into a contribution from the core elec-



trons, Qcore, a core modification due to the valence elec-
tron, ay., and a contribution from the valence electron,
af(w). Since core electrons have excitation energies in
the far-ultraviolet region of the spectrum, the core polar-
izability depends weakly on w for the optical frequencies
treated here. Therefore, we approximate the core polar-
izability by its dc value as calculated in the random-phase
approximation (RPA) [39], an approach that has been
quite successful in previous applications. The core po-
larizability is corrected for Pauli blocking of core-valence
excitations by introducing an extra term aw.. For con-
sistency, this is also calculated in RPA. Therefore, the
ground state polarizability may be separated as

ap(w) = Qcore + Qe + af (W). (1)

The valence contribution to the static ac polarizability is
calculated using the sum-over-states approach [40]:

2 (k||D v)*(Ex — Ey)
3(2j0 +1) 2 (Er — Ey)? —w? (2)

ag(w) =
k

where (k|| D||v) is the reduced electric-dipole (E1) ma-
trix element. In this equation, w is assumed to be at
least several linewidths off resonance with the corre-
sponding transitions. We use shorter designation, «y,
for frequency-dependent scalar polarizability below. Un-
less stated otherwise, we use the conventional system of
atomic units, a.u., in which e, me, 4meg and the reduced
Planck constant & have the numerical value 1. Polar-
izability in a.u. has the dimension of volume, and its
numerical values presented here are expressed in units of
a3, where ap ~ 0.052918 nm is the Bohr radius. The
atomic units for a can be converted to SI units via
a/h [Hz/(V/m)?)=2.48832x 108« [a.u.], where the con-
version coefficient is 4mepad/h and the Planck constant h
is factored out.

The calculation of the ground state frequency-
dependent polarizabilities in alkali-metal atoms has been
previously discussed in [41, 42], and we give only brief
summary of the approach. The sum over intermediate
k states in Eq. (2) converges rapidly. Therefore, we
separate the valence state polarizability into two parts,
Q'main, containing the contributions from the few lowest
np states, and the remainder, ag,;. We note that our
calculations are carried out with the finite basis set con-
structed using B-splines [43] making the sum finite. In
the calculation of apain, we use the experimental val-
ues compiled in Ref. [44] along with their uncertainties
for the first ns — np matrix elements, for example the
4s — 4p; matrix elements in K. For all other terms, we
use the relativistic all-order values [44, 45] of the matrix
elements and the experimental values of the energies [46-
48]. In the relativistic all-order method, all single-double
(SD) or single-double and partial valence triple (SDpT)
excitations of the Dirac-Fock (DF) wave function are in-
cluded to all orders of perturbation theory [40, 44, 49].
We conduct additional semi-empirical scaling of our all-
order values (SDg.) where we expect scaled values to be

TABLE I: 55 — np contributions to the frequency-dependent
polarizability of the ground state of Rb at Agero =
423.0448 nm = 1/(23638.16 cm™'). Absolute values of
electric-dipole matrix elements are expressed in a.u. (eao),
and the corresponding energy differences are expressed in con-
ventional wavenumber units (cm™' ).

Contribution [(5s]| D||np1 2)| Ernp; — Fss Qo
5p1/2 4.231 12579.0 -41.130
6p1/2 0.325 23715.1 50.235
D12 0.115 27835.0 0.124
8p1/2 0.059 29835.0 0.023
npy /o tail 0.085
5p3/2 5.978 12816.5 -84.938
6p3/2 0.528 23792.6 66.140
D32 0.202 27870.1 0.383
8p3/2 0.111 29853.8 0.081
npsz/o tail 0.285
Qcore 9.076
Qe -0.367
g -8.712
Total ag(w) 0.00
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FIG. 1: The frequency-dependent polarizability of the Rb
ground state. The first two tune-out wavelengths are marked
with arrows.

more accurate or for more accurate evaluation of the un-
certainties. Our scaling procedure and evaluation of the
uncertainties of the all-order results have been recently
discussed in Ref. [50]. Briefly, the uncertainties of the all-
order matrix elements are given by the spread of their SD,
SDpT, SDs. and SDpTg. values. These are also used to
calculate the uncertainties in the state-by-state contri-
butions to the frequency-dependent polarizability. The
tail contributions, ayaj), are calculated in the DF approx-
imation using complete basis set functions that are linear
combinations of B-splines [51]. In the cases treated here,
the tail contribution is of the order of 1% of the net va-



TABLE II: Tune-out wavelengths A,ero for alkali-metal atoms
from Li to Cs. The resonant wavelengths Aes for relevant
transitions are also listed. The wavelengths (in vacuum) are
given in nm.

Atom Resonance Ares Azero
5Li 25 — 2pq /2 670.992478
670.987445(1)
25 — 2p3 /o 670.977380
"Li 25 — 2pq /2 670.976658
670.971626(1)
25 — 2p3 /o 670.961561
Li 324.18(6)
25 — 3p1/2 323.3576
25 — 3p3/2 323.3566
274.911(7)
25 —4pq /2 274.2001
Na 35 — 3p1/2 589.7558
589.5565(3)
35 — 3p3/2 589.1583
331.905(3)
3s —4p1 /9 330.3929
330.3723
3s — 4p3 /2 330.3319
285.5817(8)
35 — 5p1/2 285.3850
K 4s — 4pq 2 770.1083
768.971(3)
4s — 4ps /o 766.7009
405.98(4)
4s — 5p1 /9 404.8356
404.72(4)
4s — 5p3/2 404.5285
344.933(1)
4s — 6p1 /2 344.8363
Rb 58 — 5p1/2 794.9789
790.034(7)
5s — 5])3/2 780.2415
423.05(8)
55 — 6p1/2 421.6726
421.08(3)
55 — 6p3/2 420.2989
359.42(3)
55 — Tp1/2 359.2593
Cs 6s — 6p1/2 894.5929
880.25(4)
6s — 6])3/2 852.3472
460.22(2)
6s — Tpy/2 459.4459
457.31(3)
6s — Tp3/2 455.6557
389.029(4)
65 — 8p1/2 388.9714

lence contribution of.

We define the tune-out wavelength Aser, as the wave-
length where the ac polarizability of the ground state
vanishes. In practice, we calculated ag(w) for a range of
values in the vicinity of relevant resonances and identi-
fied values of w where the polarizability turned to zero

with sufficient numerical accuracy.

We illustrate the cancellation of all contributions to 5s
Rb polarizability at Agero=423.0448 nm in Table I. Since
this wavelength is between 5s — 5p3/p and 5s — 6py /o
resonances, the contributions of the 5p; and 6p; terms
strongly dominate. However, the contribution from the
core is significant (11% of the largest valence term). This
table shows that A,ero is located where the valence con-
tribution to the polarizability cancels the adjusted core
contribution, a feature that is common to all the cases
treated here. The zero crossing point is in the close vicin-
ity of the 5s — 6p; /3 resonance owing to the relative size
of the 55 — 5p; and 5s — 6p; reduced electric-dipole ma-
trix elements given in the second column of Table I. The
5s—6p matrix elements are more than an order of magni-
tude smaller than the 5s — 5p matrix elements. Since po-
larizability contributions are proportional to the square
of the matrix element, the denominators of the 6p; terms
have to become very small to cancel out the 5p contribu-
tions.

This tune-out wavelength is illustrated in Fig. 1 where
we plot ground-state polarizability of Rb atom in a.u.
in the vicinity of the 55 — 6p; resonances. Another zero
crossing point shown in the figure is located between 5s—
6p1/2 and 5s — Gps /o resonances, as expected. The next
tune-out wavelength will be located close to the 5s —
7p1/2 resonance since the values of the matrix elements
continue to decrease with n.

IIT. RESULTS AND APPLICATIONS

In Table II, we list the vacuum A, wavelengths for
alkali-metal atoms from Li to Cs. For convenience of
presentation, we also list the resonant wavelength A5 in
vacuum in the relevant range of wavelengths. We order
the lists of the resonant wavelengths and A, to indi-
cate the respective placements of \,¢;, and their distances
from resonances. The resonant vacuum wavelength val-
ues are obtained from energy levels from National Insti-
tute of Standards and Technology (NIST) database [46]
with the exception of the 25 — 2p; / and 25 — 2p3 /5 tran-
sition wavelengths for SLi and “Li that are taken from
recent measurements [52].

Since alkali ground states have electric dipole transi-
tions only to p states, their polarizabilities will cross zero
only between two ns — n’p resonances. We set the wave-
length of the ns — (n +2)p; /2 resonance as a lower wave-
length bound for our search. The fine structure of the
(n + 2)p level is sufficiently small for all alkalis to make
the zero point between ns—(n+2)p; /2 and ns—(n-+2)ps 2
relatively difficult to use in practice, so we do not list it.
We omit the Ao between 2s — 3p; resonances for the
same reason. The wavelengths of the next zero-crossing
near the ns — (n + 3)py1 /2 resonances are in the ultravi-
olet, and not as readily accessible in most laboratories,
so we have not calculated them. However, this would be



TABLE III: Wavelength (in vacuum) of selected transitions in Mg, Ca, Zn, Cd, Sr, Ba, Hg, Yb, Dy, Ho, and Er in nm.
Comparison of these values with tune-out wavelengths listed in Table II yields many instances of resonant transitions that are

very close to Azero in alkali.

Atom Transition Wavelength Transition Wavelength
Mg 3s% 18y —3s3p TP, 285.3 3s% 1Sy — 3s3p ° P, 457.2
Ca 4s% 1Sq — 4sdp ' Py 422.8 4s% 1Sq — 4sdp 3P, 657.5
Sr 552 1Sq — 5s5p 1Py 460.9 552 1S5 — 5s5p 3Py 689.5
Ba 652 1Sq — 6s6p 1 Py 553.7 652 1Sy — 6s6p 3Py 791.4
Zn 45% 1Sq — 4sdp ' Py 213.9 4s% 1Sq — 4sdp 3P, 307.7
Cd 552 1Sq — 5s5p 1Py 228.9 552 1S5 — 5s5p 3Py 326.2
Hg 652 1Sq — 6s6p 1 Py 184.9 652 1Sy — 6s6p 3Py 253.7
Yb 652 1Sq — 6s6p 1 Py 398.9 652 1Sy — 6s6p 3Py 555.8
Dy 4119652 5Tg — 4f'°(°Is) 6s6p (* P1) J=9 421.3

Er 4f265% Hg — f“(3H ) 656p CrP)J=1 582.8

Ho 4f116s% *15/0 — 4Af" ( Ii5/2) 6s6p (PP1) J =17/2 598.5

Ho 4f16s% 50 — 4f (*1hs)2) 66p (*P1) J = 13/2 416.4

a routine matter for future work. There are no A\,ero at
wavelengths greater than those of the primary ns —np, /o
resonances. Within these constraints, we have found four
Azero for Na, K, Rb, and Cs and three A, for Li, as
shown in Table I.

The stated uncertainties in the A\,qro values are taken
to be the maximum difference between the central value
and the crossing of the agy £ dagy with zero, where day is
the uncertainty in the ground state polarizability value
at that wavelength. The uncertainties in the values of
polarizabilities are obtained by adding uncertainties in
the individual polarizability contributions in quadrature.

We find small but significant differences in the first
tune-out wavelengths of 6Li and 7Li due to the isotope
shift. These values refer to the centers of gravity of all
hyperfine states and do not take into account the hy-
perfine structure. Therefore, this Asero and the corre-
sponding 2s — 2p; resonance wavelengths are listed sepa-
rately. We verified that isotope shift of the 2s — 2p tradi-
tions in Li does not affect the next tune-out wavelength,
324.18(6)nm, so we use NIST data for the other transi-
tions. We also investigated possible dependence of the
first tune-out wavelengths on the isotope shift for 3K,
40K, 41K and 35Rb, 8"Rb. The D1 (4s — 4py/2) and D2
(45 — 4ps2) line wavelengths for 7K, “°K, and 'K have
been measured using a femtosecond laser frequency comb
by Falke et al. [53]. We carry out three calculations of
the first tune-out wavelength using D1, D2 wavelengths
for the specific isotope in our calculations. The resulting
value for 3°K and %°K, 768.971(3)nm, is the same as the
value quoted in Table IT. The 'K value is 768.970(3)nm
with the difference being well below our quoted uncer-
tainty. The calculations of the first tune-out wavelength
in Rb using D1 and D2 frequencies for ®Rb and 8"Rb
listed in [54, 55] gave results identical to result from Ta-
ble II, 790.034(7)nm that was obtained using NIST data.
We note that our values for the first tune-out wavelengths
are in good agreement with LeBlanc and Thywissen [31]
calculations with the exception of their value for 4°K.

The first tune-out wavelength in Rb has been measured
to be 789.85(1)nm in [32]. Some discrepancy with our re-
sult is most likely due to approximate linear polarization
of the beam in [32]. The difference is compatible with a
shift in the tune-out wavelength caused by few percent
spurious o~ polarization component [56].

Below, we identify two main applications of tune-
out wavelengths. First, these wavelengths are advanta-
geous for cooling of group-II and other more complicated
atoms, by sympathetic cooling using an accompanying
alkali atom.

Recently, group II atoms have been the subject of var-
ious experiments and proposals in atomic clock research
and quantum information. BEC of 8*Sr has been re-
ported recently by two groups [57, 58]. The element Yb
has four boson and two fermion isotopes, all of which
have been cooled into the microkelvin range. Several ex-
citing new prospects for quantum information processing
with the ground state nuclear spin have recently been
identified in group II elements [37]. Also, Sr or Yb are
useful for polarized mixtures of fermions, or Bose-Fermi
mixtures, where isotopic mixtures can be studied.

More complex systems have become of interest in the
development of frequency standards and quantum infor-
mation processing schemes. For example, the rare earth
holmium is a candidate for quantum information appli-
cations [59] due to its rich ground-state hyperfine struc-
ture. Erbium has been a subject of recent experimental
work [60, 61], stimulated by its possible use in a variety
of applications, including narrow linewidth laser cooling
and spectroscopy, unique collision studies, and degener-
ate bosonic and fermionic gases with long-range magnetic
dipole coupling.

Some species, particularly fermions, are difficult to cool
by themselves due to unfavorable ultracold collisional dy-
namics. In such cases, it may be possible to use sympa-
thetic cooling in a mixture of the target species and one
of the alkalis, where the alkali-metal atom is cooled di-
rectly by standard techniques. This has recently been



demonstrated in Yb:Rb mixtures [62]. Use of Ajero trap
wavelengths could allow one to release alkali atoms af-
ter the target atoms of the other species are sufficiently
cold, in a hybrid trap configuration that combines op-
tical and magnetic traps or bichromatic optical traps.
If the final trap configuration utilizes a A,ero wavelength,
strong trapping of the target atom is possible while alkali
atoms will be released by turning off its separate trap-
ping potential. Since placement of the resonances varies
significantly among the alkali-metal atoms, a wide range
of Azero 18 available as shown in Table III.

We list the resonant wavelengths for variety of atomic
systems in Table ITI. For consistency with the other ta-
bles, we list vacuum wavelengths obtained from the NIST
energy levels database [48]. Both strong and intercombi-
nation lines that can be used for trapping of these species
are listed. Comparing Tables IT and III yields many in-
stances of resonant transitions that are very close to Agero-
Here are few of the very close cases: Mg 285.3 - Na 285.6,
Sr 460.9 - Cs 460.2, Dy 421.3 - Rb 421.1, Ho 598.5 -
Na 589.6.

Tune-out wavelength laser light may be also useful in
three-species cooling schemes such as reported in Ref. [63]
by allowing easy release of one of the species from the
trap. The work [63] demonstrated that the efficiency of
sympathetic cooling of the SLi gas by 8"Rb was increased
by the presence of “°K through catalytic cooling.

Measurements of the tune-out wavelengths may be
used as high-precision benchmark tests of theory and de-
termination of the excited-state matrix elements that are
difficult to measure by other methods. Matrix elements
of ns — n/p transitions of alkali-metal atoms, where ns

is the ground state, are difficult to calculate accurately
owing to large correlation corrections and small values
of the final numbers. Experimental measurements of the
A,... predicted in this work will serve an an excellent
benchmark test of the all-order calculations. Moreover,
it will be possible to combine these measurements with
theoretical calculations to infer the values of these small
matrix elements. Only one high-precision measurement
of such matrix elements (6s — 7p; transitions in Cs) has

been carried out to date [64].

IV. CONCLUSION

In summary, we calculate tune-out wavelengths in
alkali-metal atoms from Li to Cs and estimate their un-
certainties. Applications of these tune-out wavelengths
to sympathetic cooling of group-II and other more com-
plicated atoms with alkalis are discussed. Special cases
where these wavelengths coincide with strong resonance
transition in group-II atoms, Yb, Dy, Ho, and Er are
identified. Measurements of the tune-out wavelengths for
benchmark tests of theory and experiment are proposed.
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