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In this paper we extend the implementation of nonadiabatic molecular dynamics

within the framework of time-dependent density functional theory in an external field

described in [I. Tavernelli et al., Phys. Rev. A 81, 052508 (2010)] by calculating

on-the-fly pulses to control the population transfer between electronic states using

local control theory. Using Tully’s fewest switches trajectory surface hopping method

we perform molecular dynamics to control the photo-excitation of LiF and compare

the results to quantum dynamics calculations performed within the Heidelberg multi

configuration time dependent Hartree package. We show that this approach is able to

calculate a field which controls the population transfer between electronic states. The

calculated field is in good agreement with that obtained from quantum dynamics,

and the differences that arise are discussed in detail.
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I. INTRODUCTION

Nonadiabatic molecular dynamics (MD) schemes, of which the most well known is Tully’s

trajectory surface hopping (TSH) [1] discretises the wavepacket into a swarm of independent

classical trajectories and accounts for electronic-nuclear coupling effects by the hops of the

trajectories between different electronic states according to a stochastic algorithm calcu-

lated as a function of the nonadiabatic couplings (NACs). Its ability to accurately describe

nonadiabatic dynamics has lead to it becoming a widely used approach with successful ap-

plications to a range of chemical problems [2–7]. The condition of spatial locality enforced

by the discretisation of the wavepacket makes trajectory based methods ideal for the imple-

mentation of on-the-fly molecular dynamics, meaning that the energies and nuclear forces

are only required at the current point in coordinate space (a δ function) of the trajectory.

As a result TSH has been coupled with a variety of electronic structure methods described

in a recent review [8].

Most recently TSH has been implemented on-the-fly within the linear response time-

dependent density function theory (LR-TDDFT) framework [9–13], following the proposed

schemes for calculating the nonadiabatic coupling vectors (NACVs) within LR-TDDFT

using a set of auxiliary many-electron wavefunctions [14–18]. Further extensions by Tav-

ernelli et al. [19] and Mitric et al. [20–23] have included the effect of an external field.

Outside LR-TDDFT, it is interesting to note the recent contribution of Richter et al.,

who proposed an extension of surface hopping to arbitrary couplings (external field and

spin-orbit coupling) called SHARC (surface-hopping-in-adiabatic-representation-including-

arbitrary-couplings) [24]. By considering the effect of an electric field one is able to study

the response of a system under such a perturbation, furthermore by careful design of the

frequency-time evolution of this field one can control the dynamics of the system, driving

the trajectory into the region of interest.

The control of molecular processes by shaped laser fields has been applied to a wide va-

riety of systems since it was pioneered in the mid 1980’s by the Tannor-Rice pump-dump

[25] and the Brumer-Shapiro schemes [26]. Theoretically the most standardly used ap-

proach for coherent control is optimal control theory (OCT) [27], which is analogous to the

commonly used experimental learning algorithm approach [28]. This technique uses a varia-

tional principle and an iterative process of forward and backward propagations to construct
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a field which guides the wavefunction optimally towards a predefined target wavefunction.

However, its numerical implementation is extremely computationally expensive, due to the

multiple forward/backward propagations.

Local control theory (LCT) offers an attractive alternative for calculating the external

field because it can be calculated and applied on-the-fly. This approach diverges from the

global optimisation approach of OCT, by the fact that the field is calculated to ensure an

increase (or decrease) in the expectation value of one particular aspect of the system, such

as a specific electronic state population, vibrational state population or nuclear motion. The

requirement for it to be a function of some expectation value offers a large flexibility within

the method. This approach has been successfully applied to; photoexcitation, photoinduced

molecular fragmentation and association and vibrational stabilisation [29–31]. Recently,

Penfold et al. [32] studied the controlled excitation of simple hydrocarbons using potential

energy surfaces (PESs) which exhibited strong nonadiabatic effects, while Kritzer et al. [33]

studied the effect of environmental perturbations on the excitation in Na2. A detailed review

can be found in Ref. [34].

In this paper we present the implementation of LCT within a trajectory surface hopping

ab initio molecular dynamics scheme. All of the relevant quantities, namely electronic

energies, nuclear forces, NACVfs and transition dipole elements are calculated on-the-fly

within LR-TDDFT [19] as implemented in the software package CPMD [35]. The results are

compared with quantum dynamics (QD) calculations performed within the Heidelberg multi

configuration time dependent Hartree (MCTDH) package [36], using the PESs extracted

from DFT/LR-TDDFT calculations with CPMD. Comparison between TSH and QD has

been performed previously and can be found within Refs. [37, 38] and [20] (the latter also

includes an external field). However here we pay particular attention to the comparison

between the dynamics induced by the pulses calculated using LCT within the two approaches

and rationalize the approximations.

II. THEORY

In this Section we outline the formulation of nonadiabatic molecular dynamics and the

interaction with an external perturbation. This has been presented in detailed in Ref. [19]

and therefore we present only a summary for reference. The description of the interaction
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with the light field is then developed to incorporate LCT.

A. Nonadiabatic dynamics

We start from the non-relativistic time-dependent Schrödinger equation for a molecular

system composed of nuclei and electrons,

ĤΨ(r,R, t) = i~
∂

∂t
Ψ(r,R, t), (2.1)

where Ĥ = T̂N + Ĥel is the molecular time-independent Hamiltonian, Ψ(r,R, t) the total

wavefunction of the system under investigation, r is the collective position vector of all

electrons {ri}, and R the one of the nuclei {Rγ}. In order to derive our working equations,

we use the Born-Huang [39] Ansatz for the total wavefunction,

Ψ(r,R, t) =
∞∑
I

ΦI(r;R)ΩI(R, t) , (2.2)

where {ΦI(r;R)} describes a complete set of electronic basis functions that are solutions of

the time-independent electronic Schrödinger equation, Ĥel(r;R)ΦI(r;R) = Eel
I (R)ΦJ(r;R),

and depend parametrically on the nuclear coordinates R. Eel
I (R) is called the I th potential

energy surface (PES), which is a function of the nuclear coordinates R.

Inserting Ansatz (2.2) into the time-dependent Schrödinger equation and multiply from

the left by Φ∗J(r;R) we get, after integration over r, an equation for the temporal evolution

of the nuclear wavefunction χJ(R, t):

i~
∂χJ(R, t)

∂t
=−

∑
γ

~2

2Mγ

∇2
γχJ(R, t) +

∑
I

HJI(R)χI(R, t)

+
∑
γI

~2

2Mγ

DJI,γ(R)χI(R, t)

−
∑
γ,I 6=J

~2

Mγ

dJI,γ(R)∇γχI(R, t) (2.3)

where

HJI(R) =

∫
Φ∗J(r;R)ĤelΦI(r;R)dr , (2.4)

dJI,γ(R) are the first order nonadiabatic coupling vectors, defined as

dJI,γ(R) =

∫
Φ∗J(r;R) [∇γΦI(r;R)] dr (2.5)
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and DJI,γ(R) are the second order nonadiabatic coupling elements given by

DJI,γ(R) =

∫
Φ∗J(r;R)

[
∇2
γΦI(r;R)

]
dr . (2.6)

In order to reduce the computational expense associated with the propagation of a nuclear

wavepacket, Tully proposed an approximate solution of this coupled set of equations based on

the so-called independent trajectory approximation (ITA), which is known as TSH. First, the

nuclear wavepacket χJ(R, t) in the expansion (2.3) is replaced by the complex-valued time-

dependent amplitude Cα
J (t), which apportions trajectories (labelled by α) among electronic

states according to the correct quantum probability, so that

|ΩJ(R, t)|2 ∼ 1

M

∑
{α}

∫ ∞
t=0

dt′ |Cα
J (t′)|2δ(R−Rα(t′))δ(t− t′) (2.7)

once a sufficient number of trajectories has been sampled. The relation holds due to the ITA

assumption, while the R dependence of the Cα
J (t) coefficients is determined by the initial

conditions onlyR(t = 0) and Tully’s equations of motion for the nuclei. The time-dependent

differential equation for the amplitudes Cα
J (t) is obtained by replacing

Ψα(r,R, t) =
∞∑
J

Cα
J (t)ΦJ(r;R) (2.8)

in the time-dependent Schrödinger equation for the electrons and reads (in the Schrödinger

representation)

i~Ċα
J (t) =

∑
I

Cα
I (t)(HJI − i~Ṙα · dαJI) (2.9)

where the label α indicates that the corresponding quantities are evaluated for the trajectory

α of the ensemble of trajectories. The classical trajectories evolve adiabatically according to

Born-Oppenheimer dynamics until a hop between two potential energy surfaces (HII = Eel
I

and HJJ = Eel
J ) occurs with a probability given by a Monte Carlo-type procedure. In the

”fewest switches” algorithm [1], the transition probability from state I to state J in the time

interval [t, t+ dt] is

gαIJ(t, t+ dt) =

2

∫ t+dt

t

dτ
=[Cα

J (τ)Cα∗
I HJI(τ)]−<[Cα

J (τ)Cα∗
I (τ)Ξα

JI(τ)]

Cα
I (τ)Cα∗

I (τ)
, (2.10)

where Ξα
JI(τ) = Ṙα · dαJI(τ), and a hop occurs if and only if∑

K≤J−1

gαIK < ζ <
∑
K≤J

gαIK , (2.11)
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where ζ is generated randomly in the interval [0, 1]. In practice, a swarm of trajectories is

propagated independently starting from different initial conditions, and the final statistical

distribution of all these trajectories is assumed to reproduce the final density probability

given by the nuclear wavepacket.

B. Interaction Hamiltonian to local control theory

Upon interaction with a radiation field the full Hamiltonian becomes:

Ĥ = Ĥ0 + Ĥint (2.12)

Where Ĥ0 is the field free Hamiltonian and Ĥint is the interaction Hamiltonian expressed

with the Coulomb gauge:

Ĥint = − e

2mec

∑
i

A(ri, t) · p̂i (2.13)

where A(r, t) is the (classical) vector potential of the electromagnetic field, p̂i is the mo-

mentum operator of electron i, e is the electron charge, me is the electron mass, and c is the

speed of light. By using the dipole approximation, this can be expressed as

〈Ĥint〉JI = iωJI
A0

c
· µJIe−iωt (2.14)

which through the relation E(t) = −1
c
∂
∂t
A(t) can be written in the more common form as

〈Ĥint〉JI = −µJIE0e
−iωt = −µJIE(t) . (2.15)

In the presence of an external radiation field, the equation of motions in Eq. (2.9) becomes

i~Ċα
J (t) =

∑
I

Cα
I (t)(HJI − i~Ṙα · dαJI − µαJIE(t)) (2.16)

where µαJI is the position dipole vector between states I and J . Minor adaptions to Tully’s

hopping scheme are described in Ref. [19].

The aim of local control theory is to calculate an electric field on-the-fly as a function

of the dynamics at each time step to ensure the increase (or decrease) in some predefined

expectation value. If we consider the time evolution of an arbitrary operator O, one finds:

Ȯ(t) =
i

~

∫
Ψ∗(r,R, t)[Ĥ0,O]Ψ(r,R, t) dr dR

+

∫
Ψ∗(r,R, t)[Ĥint,O]Ψ(r,R, t) dr dR (2.17)



8

This equation shows that if O and Ĥint do not commute it is possible to influence the

changes in the expectation of O with a shaped external field. Assuming that Ĥ0 commutes

with the O, which is only true in the absence of NACs, Eq. (2.17) can be written

Ȯ(t) = −E(t)
i

~

∫
Ψ∗(r,R, t)[µ̂,O]Ψ(r,R, t) dr dR (2.18)

and therefore the control is achieved by changing the temporal evolution of E. We note that

in the presence of NACs Eq. (2.18) will contain an additional time-dependent term. To

control the population transfer for a particular electronic state |I〉 the projector operator

PI = |I〉〈I| is used. The time evolution of the state population can then be written as

ṖI(t) = −E(t)
i

~

∫
Ψ∗(r,R, t)[µ̂,PI ]Ψ(r,R, t) dr dR . (2.19)

By expanding the projector and using the Ansatz (2.8) for a trajectory α this becomes

ṖαI (t) = −2Eα(t)
∑
J

= [Cα ∗
J (t)µJIC

α
I (t)] . (2.20)

From this equation it is clear that choosing the electric field to be

Eα(t) = ±λ
∑
J

= [Cα ∗
J (t)Cα

I (t)µJI ] (2.21)

will ensure that Ȯ(t) increases (or decreases) at all times.

III. METHODS AND COMPUTATIONAL DETAILS

The focus of our study is the alkali halide molecule, LiF. The ground state of LiF, 11Σ+,

is followed by a doubly-degenerate 11Π+ state (here referred to as first excited state), a

21Σ+ state (second excited state), these are represented in potential energy curves shown

in Fig. 1. The equilibrium bond distance is 1.59 Å within DFT/PBE and plane waves

basis set (experimental value: 1.5639 Å, CAM-B3LYP/aug-cc-pVDZ: 1.58 Å). At larger

distances from equilibrium, the ground and first excited state correlate with the 2S(Li) +2

P (F) dissociation channel and the second excited state with the still bound 1S(Li+)+1S(F−)

channel. More details can be found in Refs. [19, 40] [41].

The nonadiabatic molecular dynamics was implemented within the CPMD package [35]

and the system was composed of an isolated LiF molecule, aligned along the x-axis of a box of
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dimensions 14Å×8Å×8Å. All calculations employed Goedecker-type pseudopotentials [42–

44], a cutoff of 120 Ry for the plane wave basis set, and a threshold of 10−7 a.u. for the

convergence of the orbitals. The ground state and first two excited states (S1 and S2) were

included in the simulation and the LR-TDDFT equations were solved within the Tamm-

Dancoff approximation (TDA) to obtain the unperturbed excitations energies and nuclear

forces [45]. The adiabatic approximation was used for the xc-kernel and the xc-functional

Perdew-Burke-Ernzerhof [46] (PBE) was employed. The initial geometries were sampled

from a canonical distribution at 100 K obtained from ground state Born-Oppenheimer

molecular dynamics. From this equilibrated ground state distribution, different initial con-

figurations were randomly selected and considered as starting points for the nonadiabatic

dynamics. Initial velocities were set equal to the corresponding ground state values.

The exact propagation of the nuclear wavepacket was performed using the Heidelberg

MCTDH package [47]. The potential energy curves and transition dipole was taken from

DFT/PBE and LR-TDDFT/PBE/TDA calculations, with the potential being quadratically

interpolated within the code between points every 0.1 Å. Only the two electronic states of

interest (ground state S0 and S2) were included, because the NACs between S2 and S1, as

mentioned above, were found to be negligible. The propagation was performed on a fast

Fourier transform (FFT) grid with 551 points between 0.8 Å to 3.5 Å. The initial wavepacket

was centered at 1.59 Å with 0.2 Å width.

The objective was to control the population transfer from the ground state to S2 (Fig. 1).

Within the LCT algorithm there are 3 parameters, λ, the strength factor shown in Eq. (2.21),

the seed strength and seed time. A seed was required because initially the population of S2

is zero and as shown in Eq. (2.21), in this scenario the pulse and therefore the population

will remain zero at all times. In both cases the seed strength was 0.004 a.u. and the seed

time was 2.5 fs. In the QD simulations λ=0.0622 and for the TSH simulations λ=0.3185,

the reason for the difference is discussed in Section V.

IV. RESULTS

In this Section we present the results in the following manner; firstly a TSH calculation

with a pulse containing only the resonance frequency of the S0 to S2 transition is shown, and

then in Section IV B we use LCT in conjunction with QD. These results form a reference



10

which allows us, in the final Section, to provide a detailed analysis of the results obtained

from the implementation of LCT using the TSH framework within the CPMD package.

We will make use of the following definitions : the square of the amplitude for a specific

trajectory, |CJ(t)|2, will be called ”probability” to be on state J , whereas PJ(t) will denote its

actual ”population”, which is either 0 or 1 for a single trajectory. The average over a swarm

of trajectories leads to the corresponding average values for the probabilities 〈|CJ(t)|2〉n and

the populations 〈PJ(t)〉n, where n is the total number of trajectories (Fig. 6).

A. Resonant frequency pulse with trajectories

First, as a reference, we consider the effect of a pulse containing a single resonant fre-

quency. In Fig. 2 we show the temporal evolution of the population in each state during

perturbation by an external field with frequency ω = 0.17 a.u. and functional form ex-

pressed as A(t) = −A0ε
λ exp

(
− (t−t0)2

T 2

)
sin(ωt). t0 and T are set equal to 100 fs and 67

fs respectively, which produces a pulse of a duration of ∼ 200 fs with a polarisation vector

ελ = (1, 0, 0). More details can be found in Refs. [19, 40].

The effect of this field causes amplitude transfer analogous to Rabi oscillations, and

although there is a significant probability on the S2 state (large |C2(t)|2), this is never

populated in a stable way. This is also reflected by the dynamics of the running state

(electronic state from which nuclear forces are computed, Fig. 2c), which shows how the

trajectory does not remain on S2 but instead constantly hops between S0 and S2.

B. Local control with quantum dynamics

In Fig. 3 we present the population transfer between the states S0 and S2 and corre-

sponding pulse for the QD simulation which makes use of the potential energy curves and

transition dipole extracted from DFT/PBE and LR-TDDFT/PBE/TDA calculations. This

result shows a transfer of population close to 100%, within 250 fs. The pulse has a maximum

intensity of 0.025 a.u., well within the weak field limit.

The temporal profile of the pulse clearly shows the superposition of a number of frequen-

cies which are resolved using a Fourier Transform (FT) (Fig. 7, upper panel). The most

prominent of these, at 4.25 eV, corresponds, unsurprisingly, to the energy gap between the
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two states when the bond length is around 2 Å, the point at which population transfer oc-

curs. The second largest peak in the FT is at 3.25 eV, exactly 1.0 eV lower and corresponds

to the oscillations of the wavepacket in the ground state (Fig. 9a, upper panel), which has a

time period of around 4 fs. We also observe two frequencies, shifted 0.3 eV from the peaks

at 3.25 and 4.25 eV. These correspond to the oscillations of the wavepacket in the excited

state (Fig. 9b).

C. Local control with trajectories

Figs. 4 and 5 show the time-evolution of the probabilities (|CJ(t)|2), calculated pulse,

and potential energy curves for two different trajectories computed using LCT within TSH

(three other trajectories are reported in the Supplemental Material [48]). In each case we

observe at least a 95% transfer of probability to S2 within 200 fs and the trajectory hops onto

the target state between 150-175 fs, typically when the probabilities of the two states are

equivalent. These results show a marked difference to that obtained using a single resonant

frequency pulse in Fig. 2. On the other hand, the agreement with the QD simulations on

the amplitude transfer and timescales is generally very good.

In a process driven by the product of the amplitudes on each state (see Eq. (2.21)), the

population transfer is initially slow due to the small amount of amplitude on S2 at time t = 0.

In fact, in all cases, little or no transfer occurs within the first 100 fs in agreement with the

QD calculations. In Fig. 4c we plot the running state on top of the potential energy curves

(see also SM for additional trajectories). This shows that once the trajectory has jumped to

S2 it remains in the excited state for the rest of the simulation. This contrasts with results

obtained for the unoptimised pulse (Fig. 2) where the trajectory frequently hops between

the two states. It is interesting to note that the statistics collected over 5 trajectories for

the population of state S2 (〈P2(t)〉5) and the different probabilities (〈|CJ(t)|2〉5) are in close

agreement with each other (see Fig. 6). However, we note that many more trajectories would

be needed to fully converge the TSH calculation and therefore to obtain a smoother time

evolution in Figs. 6c and d.

The agreement between TSH and QD calculations extends also to the shape of the calcu-

lated pulses (Fig. 4b and SM). In part, this is probably due to the simplicity of the system

under study, however it also reflects the simple nature of the control strategy. An exception
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is reported in Fig. 5, where we show a case in which the TSH dynamics produces a pulse

with a double envelope. This is due to a back jump from S2 to S0 at ∼125 fs, which leads to

a compression of the LiF bond (see Fig. 5c at t =150 fs). At this geometry, the transition

dipole to S2 becomes much smaller due to the mixing with other electronic states, and, as a

consequence, a stop in the growth (decline) of the population of S2 (GS) is observed. This

is also reflected in the overall shape of the pulse in the same time interval (Fig. 5b).

The Fourier transform of the calculated pulses (Fig. 7) shows that the largest frequency

contribution occurs at 4.75 eV, which corresponds to the energy gap between the two elec-

tronic states considered. This value is slightly shifted (0.5 eV) compared to the one obtained

in the QD simulation (4.25 eV) and is a result of the ”classical” nature of the TSH dynamics.

Finally, the second timescale of about 40 fs corresponds to the period of the oscillation of

the trajectory in the ground state (Fig. 9).

V. DISCUSSION

In the following Section, we discuss some important observations of the study and we pay

particular attention to the comparison between TSH and the nuclear QD.

In TSH, unlike QD where the nuclear wavepacket on the excited state will evolve under

the forces of that state, one can have amplitude on S2 even though the forces on the nuclei are

derived from S0 (see pictorial representation in Fig. 8). In fact, contrary to QD, amplitude in

TSH does not affect the nuclear dynamics directly, because change of the driving forces only

occurs after a surface hop (population transfer). Furthermore, simultaneous population of

both states does not occur in TSH because of the independent trajectory approximation that

cancels correlation between trajectories. The correct population of the different states as a

function of time cannot be obtained on-the-fly when trajectories are computed sequentially,

but it is recovered a posteriori from the statistics collected over subsequent runs (see Fig 6c-

d). As a consequence, superposition effects between ground and excited state dynamics

observed in QD are absent in TSH. These differences are reflected in the shape of the

computed pulses, which we will now discuss.

In QD both the ground state and excited state frequencies contribute to the pulse over

the entire length of the excitation dynamics because of the superposition between the ground

and the excited state wavefunctions. On the contrary, in TSH the produced pulse oscillates



13

at the frequency of the ground state until a surface hop to the excited state occurs. Once

the trajectory reaches the excited state we observed a sudden decrease of the frequency to

the value characteristic for the excited state, which produces a chirping of the pulse (see

Fig. 4). The same argument can also be used to explain the difference in the magnitude of

the coupling constant λ (Eq. (2.21)) used in the two approaches to achieve excitation over

the same time period. In QD, the progressive population of S2 induces a continuous increase

of the bond length with consequent growth of the transition dipole µIJ , which favors the

excitation. On the contrary, in TSH even though amplitude is transferred from the very

beginning of the pulse, elongations of the bond (and corresponding increase of the coupling

with the external field) only occurs after a surface hop (Fig. 9c and d) causing a delay in

the excitation.

In Section IV, we noted that the calculated pulse from TSH possesses a weak periodic

oscillation with a period of 40 fs, which is not present in the pulse calculated using QD. This

corresponds to the oscillatory period of the classical trajectory in the ground state (Fig. 9c)

and reflects the increased coupling strength (high transition dipole moment) at the classical

turning points on S0. Instead, in QD since the expectation value of the bond length does

not change, the wavepacket remains mainly stationary at its equilibrium position (Fig. 9a),

resulting in no change of the transition dipole moment at the classical bond length frequency.

Another interesting observation comes from the comparison of the exact nuclear wavepacket

dynamics (from QD) with the reconstructed ’classical’ wavepacket obtained from the col-

lection of the TSH trajectories (5 trajectories, each broadened by a frozen Gaussian with a

full width at half maximum of 0.68Å, the sum of the different contributions is represented

in Figs. 9c and 9d). In fact, event though each trajectory represents the time evolution of

classical nuclei, the time evolution of the ensemble of trajectories in TSH can reproduce, at

least approximately, the nuclear wavepacket dynamics [49]. In the first part of the trajectory

(first 150 fs in the ground state), both methods describe a stationary system characterized by

a LiF bond length distribution centered at the S0 average value (∼ 1.5Å, see Fig. 9). When

excitation to S2 occurs, QD shows the typical pattern of a vibrational excitation v = 1,

whereas the trajectory based method exhibits large amplitude oscillations of the LiF bond

length. After broadening of the trajectories, the reconstructed TSH wavepacket presents

maximum probability density at the turning points of the trajectories, as expected in the

case of classical trajectories. This example clearly shows how the collection of a swarm of



14

trajectories obtained with Tully’s TSH using classical trajectories can only describe approx-

imately the correct quantum dynamics of the system, while pure quantum effects like the

quantization of vibrational modes, quantum coherence and tunneling cannot be captured

by this approach. It is important to mention that a larger number of trajectories is required

in order to fully converge the TSH calculation and therefore to obtain a smoother time

evolution in Figs. 9c and 9d.

VI. CONCLUSION

In this work we combined LCT with the recently developed on-the-fly LR-TDDFT based

nonadiabatic TSH dynamics [14] and compared its predictions with those obtained from

the ”exact” wavepacket dynamics. LCT uses the instantaneous dynamics of the system to

calculate the pulse shape that ensures the desired change in the expectation value of a given

operator. This approach does not require the optimisation of any target functionals as in

OCT, in which gradients are computed using Lagrangian multiplier techniques based on the

computationally expensive forward and backward propagation of the equations of motion.

In this sense, LCT provides a valid alternative formulation of the problem, even though

the optimisation of the laser pulse present in the OCT formulation maybe important for

complex control of a global wavefunction. We note at this point, that there are connections

between LCT and OCT; in some cases using Krotov’s scheme yields the LCT equation [34].

We applied LCT to the study of the photodynamics of a simple linear molecule, LiF.

In this case, the target quantity is simply the population amplitude of the bound excited

state S2. Our approach is able to efficiently compute an electric field able to achieve almost

complete amplitude transfer from the ground state to S2 within approximately 250 fs. This

represents a significant improvement compared to the effect of a simple monochromatic

electric field at the resonant energy. The agreement between the QD and TSH results is

surprisingly good for both the length and shape of the pulse, and the underlying dynamics.

The differences observed for instance in the shift of the main pulse frequency and in the

excited state dynamics are mainly due to the classical nature of an individual TSH trajectory

and in particular to the enforced locality introduced by the ITA. We therefore expect better

agreement with the QD results when correlated trajectory based approaches [49–53] are used

in place of Tully’s type TSH.
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Finally, we would like to point out that the pulses calculated in this work are well within

the weak field limit with a temporal resolution of ∼150 fs. Such pulses are within the

capabilities of modern laser sources and therefore an experiment to confirm these findings

could be performed. However, more interestingly would be to extend this approach to larger

systems within a QM/MM framework including the dissipative effects of the environment.

Even though such an extension would pose a much greater experimental and theoretical

challenge, the analysis of the shaped pulse can eventually give important new insights into

the dynamics of the system, identifying characteristic times of the vibrational modes involved

in the specific targeted excitation. This becomes especially important when complex systems

with a large number of degrees of freedom are studied.

The combination of LCT with an efficient method for the computation of nonadiabatic

dynamics offers new opportunities in the discovery of novel chemical routes that include

activation steps triggered by properly shaped pulses.
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FIGURES
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FIG. 1. (Color online) Potential energy curve of the ground and first two excited states of the

LiF molecule. Energies (LR-TDDFT/PBE/TDA) are given with respect to the ground state

(DFT/PBE).
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FIG. 2. (Color online) LiF under a polarized pulse, ω = 0.17 a.u. and A0/c = 1.0 a.u. (a)

Probability (|CJ(t)|2) of each state for one trajectory. Colour code: black, ground state (GS) and

blue (dark gray), second excited state (S2). Green (medium gray) line and left axis shows the

electric field used. (b) Potential energy curves during the dynamics obtained by DFT/PBE and

LR-TDDFT/PBE/TDA calculations. Pale blue (light gray) line highlights the running state. (c)

Bond length of LiF during the simulation.
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FIG. 3. (Color online) Local control from QD. a) Population transfer for S0 (black) and S2 (red).

b) Calculated pulse (lambda value of 0.0622 au).
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FIG. 4. (Color online) LCT within TSH, trajectory 1. (a) Probabilities of each state. General

color code: black, ground state (GS); red (gray), doubly degenerate 11Π+ first excited state; green

(medium gray), second excited state 21Σ+ (S2). (b) Calculated LCT pulse (c) Potential energy

curves along the dynamics obtained by DFT/PBE and LR-TDDFT/PBE/TDA calculations. Pale

blue (light gray) line highlights the running state.
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FIG. 5. (Color online) LCT within TSH, trajectory 2. For the description of panels (a)-(c) and

the colour coding, see caption of Fig. 4.
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FIG. 6. (Color online) Time evolution of : a) the probabilities |CJ(t)|2 for five trajectories (S0

in black and S2 in magenta); b) the average of the probabilities 〈|CJ(t)|2〉5 over five trajectories;

c) the population of state S2 P2(t) for each trajectory (a different line style represents a different

trajectory); d) the average population of state S2 over five trajectories 〈P2(t)〉5 (light grey line

represents 〈|CJ(t)|2〉5).
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FIG. 7. (Color online) Upper pannel: Fourier transform of the control pulse in QD. Lower

pannel: Fourier transform of the control pulses calculations for five trajectories (a different line

style represents a different trajectory).
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FIG. 8. (Color online) Pictorial representation of the differences between (a) wavepacket and (b)

independent trajectory propagation schemes. For a wavepacket propagation population transferred

on the excited state will evolve as a function of the forces of that state. However in independent

trajectory based approaches amplitude on the excited state evolves on the running state of the

trajectory.
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FIG. 9. (Color online) Upper panel: Time-evolution of the probability density of the nuclear

wavepacket on (a) S0 and (b) S2 during the control propagation of Fig. 3. Lower panel: Time

evolution of the LiF bond length for each TSH trajectory during the control. Each trajectory

(black line) has been artificially broadened by a Gaussian with a full width at half maximum of

0.68Å and the resulting sum over all frozen Gaussians is represented. (c) Trajectories are running

on S0 and (d) on S2 during the control propagation. The unit of the intensity is arbitrary.


